Skip to main content
Log in

RAGE: The beneficial and deleterious effects by diverse mechanisms of actions

  • Minireview
  • Published:
Molecules and Cells

Abstract

Receptor for advanced glycation endproducts (RAGE) is a transmembrane protein that belongs to the immunoglobulin superfamily. RAGE is expressed ubiquitously-high in lung and moderate to low in a wide range of cells-in a tightly regulated manner at various stages of development. RAGE is a pattern recognition receptor that binds to multiple ligands, including amphoterin, members of the S100/calgranulin family, the integrin Mac-1, and amyloid β-peptide (Aβ). RAGE-ligand engagement effects the activation of diverse cascades that initiate and stimulate chronic stress pathways and repair, depending on the ligand, environment, and developmental stage. Further, RAGE-ligand interaction and the consequent upregulation of RAGE through a positive feedback loop are often associated with various diseases, including vascular disease, diabetes, cancer, and neurodegenerative disease. It is unknown how RAGE mediates these events, but such phenomena appear to be linked to the inflammatory response. In this review, we summarize the findings on RAGE from published reports and ongoing studies. Also, the implication of RAGE in Alzheimer disease, the most common neurodegenerative disease in the elderly population, will be discussed, with a focus on Aβ-RAGE interactions with regard to signaling pathways and their impact on cellular activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arancio, O., Zhang, H.P., Chen, X., Lin, C., Trinchese, F., Puzzo, D., Liu, S., Hegde, A., Yan, S.F., Stern, A., et al. (2004). RAGE potentiates Abeta-induced perturbation of neuronal function in transgenic mice. EMBO J. 23, 4096–4105.

    Article  PubMed  CAS  Google Scholar 

  • Barnes, P.J., and Karin, M. (1997). Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N. Engl. J. Med. 336, 1066–1071.

    Article  PubMed  CAS  Google Scholar 

  • Basta, G., Lazzerini, G., Massaro, M., Simoncini, T., Tanganelli, P., Fu, C., Kislinger, T., Stern, D.M., Schmidt, A.M., and De Caterina, R. (2002). Advanced glycation end products activate endothelium through signal-transduction receptor RAGE: a mechanism for amplification of inflammatory responses. Circulation 105, 816–822.

    Article  PubMed  CAS  Google Scholar 

  • Bianchi, R., Adami, C., Giambanco, I., and Donato, R. (2007). S100B binding to RAGE in microglia stimulates COX-2 expression. J. Leukoc. Biol. 81, 108–118.

    Article  PubMed  CAS  Google Scholar 

  • Bianchi, R., Giambanco, I., and Donato, R. (2010). S100B/RAGE-dependent activation of microglia via NF-kappaB and AP-1 Coregulation of COX-2 expression by S100B, IL-1beta and TNF-alpha. Neurobiol. Aging 31, 665–677.

    Article  PubMed  CAS  Google Scholar 

  • Bierhaus, A., Schiekofer, S., Schwaninger, M., Andrassy, M., Humpert, P.M., Chen, J., Hong, M., Luther, T., Henle, T., Kloting, I., et al. (2001). Diabetes-associated sustained activation of the transcription factor nuclear factor-kappaB. Diabetes 50, 2792–2808.

    Article  PubMed  CAS  Google Scholar 

  • Bierhaus, A., Humpert, P.M., Morcos, M., Wendt, T., Chavakis, T., Arnold, B., Stern, D.M., and Nawroth, P.P. (2005). Understanding RAGE, the receptor for advanced glycation end products. J. Mol. Med. 83, 876–886.

    Article  PubMed  CAS  Google Scholar 

  • Brett, J., Schmidt, A.M., Yan, S.D., Zou, Y.S., Weidman, E., Pinsky, D., Nowygrod, R., Neeper, M., Przysiecki, C., Shaw, A., et al. (1993). Survey of the distribution of a newly characterized receptor for advanced glycation end products in tissues. Am. J. Pathol. 143, 1699–1712.

    PubMed  CAS  Google Scholar 

  • Chaney, M.O., Stine, W.B., Kokjohn, T.A., Kuo, Y.M., Esh, C., Rahman, A., Luehrs, D.C., Schmidt, A.M., Stern, D., Yan, S.D., et al. (2005). RAGE and amyloid beta interactions: atomic force microscopy and molecular modeling. Biochim. Biophys. Acta 1741, 199–205.

    PubMed  CAS  Google Scholar 

  • Chen, X., Walker, D.G., Schmidt, A.M., Arancio, O., Lue, L.F., and Yan, S.D. (2007). RAGE: a potential target for Abeta-mediated cellular perturbation in Alzheimer’s disease. Curr. Mol. Med. 7, 735–742.

    Article  PubMed  CAS  Google Scholar 

  • Cho, H.J., Son, S.M., Jin, S.M., Hong, H.S., Shin, D.H., Kim, S.J., Huh, K., and Mook-Jung, I. (2009). RAGE regulates BACE1 and Abeta generation via NFAT1 activation in Alzheimer’s disease animal model. FASEB J. 23, 2639–2649.

    Article  PubMed  CAS  Google Scholar 

  • Clynes, R., Moser, B., Yan, S.F., Ramasamy, R., Herold, K., and Schmidt, A.M. (2007). Receptor for AGE (RAGE): weaving tangled webs within the inflammatory response. Curr. Mol. Med. 7, 743–751.

    Article  PubMed  CAS  Google Scholar 

  • Deane, R., and Zlokovic, B.V. (2007). Role of the blood-brain barrier in the pathogenesis of Alzheimer’s disease. Curr. Alzheimer Res. 4, 191–197.

    Article  PubMed  CAS  Google Scholar 

  • Deane, R., Du Yan, S., Submamaryan, R.K., LaRue, B., Jovanovic, S., Hogg, E., Welch, D., Manness, L., Lin, C., Yu, J., et al. (2003). RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain. Nat. Med. 9, 907–913.

    Article  PubMed  CAS  Google Scholar 

  • Ding, Q., and Keller, J.N. (2005). Splice variants of the receptor for advanced glycosylation end products (RAGE) in human brain. Neurosci. Lett. 373, 67–72.

    Article  PubMed  CAS  Google Scholar 

  • Du Yan, S., Zhu, H., Fu, J., Yan, S.F., Roher, A., Tourtellotte, W.W., Rajavashisth, T., Chen, X., Godman, G.C., Stern, D., et al. (1997). Amyloid-beta peptide-receptor for advanced glycation endproduct interaction elicits neuronal expression of macrophagecolony stimulating factor: a proinflammatory pathway in Alzheimer disease. Proc. Natl. Acad. Sci. USA 94, 5296–5301.

    Article  PubMed  CAS  Google Scholar 

  • Fang, F., Lue, L.F., Yan, S., Xu, H., Luddy, J.S., Chen, D., Walker, D.G., Stern, D.M., Schmidt, A.M., Chen, J.X., et al. (2010). RAGE-dependent signaling in microglia contributes to neuroinflammation, Abeta accumulation, and impaired learning/memory in a mouse model of Alzheimer’s disease. FASEB J. 24, 1043–1055.

    Article  PubMed  CAS  Google Scholar 

  • Galichet, A., Weibel, M., and Heizmann, C.W. (2008). Calcium-regulated intramembrane proteolysis of the RAGE receptor. Biochem. Biophys. Res. Commun. 370, 1–5.

    Article  PubMed  CAS  Google Scholar 

  • Giri, R., Shen, Y., Stins, M., Du Yan, S., Schmidt, A.M., Stern, D., Kim, K.S., Zlokovic, B., and Kalra, V.K. (2000). beta-amyloidinduced migration of monocytes across human brain endothelial cells involves RAGE and PECAM-1. Am. J. Physiol. Cell Physiol. 279, C1772–1781.

    PubMed  CAS  Google Scholar 

  • Grotzinger, J. (2002). Molecular mechanisms of cytokine receptor activation. Biochim. Biophys. Acta 1592, 215–223.

    Article  PubMed  CAS  Google Scholar 

  • Hardy, J., and Selkoe, D.J. (2002). The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297, 353–356.

    Article  PubMed  CAS  Google Scholar 

  • Herold, K., Moser, B., Chen, Y., Zeng, S., Yan, S.F., Ramasamy, R., Emond, J., Clynes, R., and Schmidt, A.M. (2007). Receptor for advanced glycation end products (RAGE) in a dash to the rescue: inflammatory signals gone awry in the primal response to stress. J. Leukoc. Biol. 82, 204–212.

    Article  PubMed  CAS  Google Scholar 

  • Hofmann, M.A., Drury, S., Fu, C., Qu, W., Taguchi, A., Lu, Y., Avila, C., Kambham, N., Bierhaus, A., Nawroth, P., et al. (1999). RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell 97, 889–901.

    Article  PubMed  CAS  Google Scholar 

  • Hori, O., Brett, J., Slattery, T., Cao, R., Zhang, J., Chen, J.X., Nagashima, M., Lundh, E.R., Vijay, S., Nitecki, D., et al. (1995). The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and co-expression of rage and amphoterin in the developing nervous system. J. Biol. Chem. 270, 25752–25761.

    Article  PubMed  CAS  Google Scholar 

  • Hsieh, H., Boehm, J., Sato, C., Iwatsubo, T., Tomita, T., Sisodia, S., and Malinow, R. (2006). AMPAR removal underlies Abetainduced synaptic depression and dendritic spine loss. Neuron 52, 831–843.

    Article  PubMed  CAS  Google Scholar 

  • Huang, J.S., Guh, J.Y., Chen, H.C., Hung, W.C., Lai, Y.H., and Chuang, L.Y. (2001). Role of receptor for advanced glycation end-product (RAGE) and the JAK/STAT-signaling pathway in AGE-induced collagen production in NRK-49F cells. J. Cell. Biochem. 81, 102–113.

    Article  PubMed  CAS  Google Scholar 

  • Hudson, B.I., Kalea, A.Z., Del Mar Arriero, M., Harja, E., Boulanger, E., D’Agati, V., and Schmidt, A.M. (2008). Interaction of the RAGE cytoplasmic domain with diaphanous-1 is required for ligand-stimulated cellular migration through activation of Rac1 and Cdc42. J. Biol. Chem. 283, 34457–34468.

    Article  PubMed  CAS  Google Scholar 

  • Huttunen, H.J., Fages, C., and Rauvala, H. (1999). Receptor for advanced glycation end products (RAGE)-mediated neurite outgrowth and activation of NF-kappaB require the cytoplasmic domain of the receptor but different downstream signaling pathways. J. Biol. Chem. 274, 19919–19924.

    Article  PubMed  CAS  Google Scholar 

  • Huttunen, H.J., Kuja-Panula, J., Sorci, G., Agneletti, A. L., Donato, R., and Rauvala, H. (2000). Coregulation of neurite outgrowth and cell survival by amphoterin and S100 proteins through receptor for advanced glycation end products (RAGE) activation. J. Biol. Chem. 275, 40096–40105.

    Article  PubMed  CAS  Google Scholar 

  • Huttunen, H.J., Kuja-Panula, J., and Rauvala, H. (2002). Receptor for advanced glycation end products (RAGE) signaling induces CREB-dependent chromogranin expression during neuronal differentiation. J. Biol. Chem. 277, 38635–38646.

    Article  PubMed  CAS  Google Scholar 

  • Ishihara, K., Tsutsumi, K., Kawane, S., Nakajima, M., and Kasaoka, T. (2003) The receptor for advanced glycation end-products (RAGE) directly binds to ERK by a D-domain-like docking site. FEBS Lett. 550, 107–113.

    Article  PubMed  CAS  Google Scholar 

  • Kalea, A.Z., Reiniger, N., Yang, H., Arriero, M., Schmidt, A.M., and Hudson, B.I. (2009). Alternative splicing of the murine receptor for advanced glycation end-products (RAGE) gene. FASEB J. 23, 1766–1774.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S.H., Smith, C.J., and Van Eldik, L.J. (2004). Importance of MAPK pathways for microglial pro-inflammatory cytokine IL-1 beta production. Neurobiol. Aging 25, 431–439.

    Article  PubMed  CAS  Google Scholar 

  • Kojro, E., and Postina, R. (2009). Regulated proteolysis of RAGE and AbetaPP as possible link between type 2 diabetes mellitus and Alzheimer’s disease. J. Alzheimers Dis. 16, 865–878.

    PubMed  Google Scholar 

  • Lander, H.M., Tauras, J.M., Ogiste, J.S., Hori, O., Moss, R.A., and Schmidt, A.M. (1997). Activation of the receptor for advanced glycation end products triggers a p21(ras)-dependent mitogenactivated protein kinase pathway regulated by oxidant stress. J. Biol. Chem. 272, 17810–17814.

    Article  PubMed  CAS  Google Scholar 

  • Li, J., and Schmidt, A.M. (1997). Characterization and functional analysis of the promoter of RAGE, the receptor for advanced glycation end products. J. Biol. Chem. 272, 16498–16506.

    Article  PubMed  CAS  Google Scholar 

  • Li, S., Hong, S., Shepardson, N.E., Walsh, D.M., Shankar, G.M., and Selkoe, D. (2009). Soluble oligomers of amyloid Beta protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron 62, 788–801.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y., Dargusch, R., and Schubert, D. (1997). Beta amyloid toxicity does not require RAGE protein. Biochem. Biophys. Res. Commun. 237, 37–40.

    Article  PubMed  CAS  Google Scholar 

  • Lue, L.F., Walker, D.G., Brachova, L., Beach, T.G., Rogers, J., Schmidt, A.M., Stern, D.M., and Yan, S.D. (2001). Involvement of microglial receptor for advanced glycation endproducts (RAGE) in Alzheimer’s disease: identification of a cellular activation mechanism. Exp. Neurol. 171, 29–45.

    Article  PubMed  CAS  Google Scholar 

  • Lue, L.F., Yan, S.D., Stern, D.M., and Walker, D.G. (2005). Preventing activation of receptor for advanced glycation endproducts in Alzheimer’s disease. Curr. Drug Targets CNS Neurol. Disord. 4, 249–266.

    Article  PubMed  CAS  Google Scholar 

  • Mackic, J.B., Stins, M., McComb, J.G., Calero, M., Ghiso, J., Kim, K.S., Yan, S.D., Stern, D., Schmidt, A.M., Frangione, B., et al. (1998). Human blood-brain barrier receptors for Alzheimer’s amyloid-beta 1–40. Asymmetrical binding, endocytosis, and transcytosis at the apical side of brain microvascular endothelial cell monolayer. J. Clin. Invest. 102, 734–743.

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Luehmann, M., Spires-Jones, T.L., Prada, C., Garcia-Alloza, M., de Calignon, A., Rozkalne, A., Koenigsknecht-Talboo, J., Holtzman, D.M., Bacskai, B.J., and Hyman, B.T. (2008). Rapid appearance and local toxicity of amyloid-beta plaques in a mouse model of Alzheimer’s disease. Nature 451, 720–724.

    Article  PubMed  CAS  Google Scholar 

  • Mucke, L. (2009). Neuroscience: Alzheimer’s disease. Nature 461, 895–897.

    Article  PubMed  CAS  Google Scholar 

  • Onyango, I.G., Tuttle, J.B., and Bennett, J.P., Jr. (2005). Altered intracellular signaling and reduced viability of Alzheimer’s disease neuronal cybrids is reproduced by beta-amyloid peptide acting through receptor for advanced glycation end products (RAGE). Mol. Cell. Neurosci. 29, 333–343.

    Article  PubMed  CAS  Google Scholar 

  • Origlia, N., Righi, M., Capsoni, S., Cattaneo, A., Fang, F., Stern, D.M., Chen, J.X., Schmidt, A.M., Arancio, O., Yan, S.D., et al. (2008). Receptor for advanced glycation end product-dependent activation of p38 mitogen-activated protein kinase contributes to amyloid-beta-mediated cortical synaptic dysfunction. J. Neurosci. 28, 3521–3530.

    Article  PubMed  CAS  Google Scholar 

  • Origlia, N., Capsoni, S., Cattaneo, A., Fang, F., Arancio, O., Yan, S.D., and Domenici, L. (2009). Abeta-dependent Inhibition of LTP in different intracortical circuits of the visual cortex: the role of RAGE. J. Alzheimers Dis. 17, 59–68.

    PubMed  CAS  Google Scholar 

  • Origlia, N., Bonadonna, C., Rosellini, A., Leznik, E., Arancio, O., Yan, S.S., and Domenici, L. (2010). Microglial receptor for advanced glycation end product-dependent signal pathway drives beta-amyloid-induced synaptic depression and long-term depression impairment in entorhinal cortex. J. Neurosci. 30, 11414–11425.

    Article  PubMed  CAS  Google Scholar 

  • Raucci, A., Cugusi, S., Antonelli, A., Barabino, S.M., Monti, L., Bierhaus, A., Reiss, K., Saftig, P., and Bianchi, M.E. (2008). A soluble form of the receptor for advanced glycation endproducts (RAGE) is produced by proteolytic cleavage of the membranebound form by the sheddase a disintegrin and metalloprotease 10 (ADAM10). FASEB J. 22, 3716–3727.

    Article  PubMed  CAS  Google Scholar 

  • Rauvala, H., and Pihlaskari, R. (1987). Isolation and some characteristics of an adhesive factor of brain that enhances neurite outgrowth in central neurons. J. Biol. Chem. 262, 16625–16635.

    PubMed  CAS  Google Scholar 

  • Reddy, M.A., Li, S.L., Sahar, S., Kim, Y.S., Xu, Z.G., Lanting, L., and Natarajan, R. (2006). Key role of Src kinase in S100B-induced activation of the receptor for advanced glycation end products in vascular smooth muscle cells. J. Biol. Chem. 281, 13685–13693.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, A.M., Yan, S.D., Yan, S.F., and Stern, D.M. (2001). The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses. J. Clin. Invest. 108, 949–955.

    PubMed  CAS  Google Scholar 

  • Shankar, G.M., Li, S., Mehta, T.H., Garcia-Munoz, A., Shepardson, N.E., Smith, I., Brett, F.M., Farrell, M.A., Rowan, M.J., Lemere, C.A., et al. (2008). Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat. Med. 14, 837–842.

    Article  PubMed  CAS  Google Scholar 

  • Srikrishna, G., Huttunen, H.J., Johansson, L., Weigle, B., Yamaguchi, Y., Rauvala, H., and Freeze, H.H. (2002). N -Glycans on the receptor for advanced glycation end products influence amphoterin binding and neurite outgrowth. J. Neurochem. 80, 998–1008.

    Article  PubMed  CAS  Google Scholar 

  • Sturchler, E., Galichet, A., Weibel, M., Leclerc, E., and Heizmann, C.W. (2008). Site-specific blockade of RAGE-Vd prevents amyloid-beta oligomer neurotoxicity. J. Neurosci. 28, 5149–5158.

    Article  PubMed  CAS  Google Scholar 

  • Taguchi, A., Blood, D.C., del Toro, G., Canet, A., Lee, D.C., Qu, W., Tanji, N., Lu, Y., Lalla, E., Fu, C., et al. (2000). Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases. Nature 405, 354–360.

    Article  PubMed  CAS  Google Scholar 

  • Verdier, Y., Zarandi, M., and Penke, B. (2004). Amyloid betapeptide interactions with neuronal and glial cell plasma membrane: binding sites and implications for Alzheimer’s disease. J. Pept. Sci. 10, 229–248.

    Article  PubMed  CAS  Google Scholar 

  • Vincent, A.M., Perrone, L., Sullivan, K.A., Backus, C., Sastry, A.M., Lastoskie, C., and Feldman, E.L. (2007). Receptor for advanced glycation end products activation injures primary sensory neurons via oxidative stress. Endocrinology 148, 548–558.

    Article  PubMed  CAS  Google Scholar 

  • Vitolo, O.V., Sant’Angelo, A., Costanzo, V., Battaglia, F., Arancio, O., and Shelanski, M. (2002). Amyloid beta-peptide inhibition of the PKA/CREB pathway and long-term potentiation: reversibility by drugs that enhance cAMP signaling. Proc. Natl. Acad. Sci. USA 99, 13217–13221.

    Article  PubMed  CAS  Google Scholar 

  • Wang, H.W., Pasternak, J.F., Kuo, H., Ristic, H., Lambert, M.P., Chromy, B., Viola, K.L., Klein, W.L., Stine, W.B., Krafft, G.A., et al. (2002). Soluble oligomers of beta amyloid (1–42) inhibit long-term potentiation but not long-term depression in rat dentate gyrus. Brain Res. 924, 133–140.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Q., Walsh, D.M., Rowan, M.J., Selkoe, D.J., and Anwyl, R. (2004). Block of long-term potentiation by naturally secreted and synthetic amyloid beta-peptide in hippocampal slices is mediated via activation of the kinases c-Jun N-terminal kinase, cyclindependent kinase 5, and p38 mitogen-activated protein kinase as well as metabotropic glutamate receptor type 5. J. Neurosci. 24, 3370–3378.

    Article  PubMed  CAS  Google Scholar 

  • Wang, L., Li, S., and Jungalwala, F.B. (2008). Receptor for advanced glycation end products (RAGE) mediates neuronal differentiation and neurite outgrowth. J. Neurosci. Res. 86, 1254–1266.

    Article  PubMed  CAS  Google Scholar 

  • Yan, S.D., Chen, X., Fu, J., Chen, M., Zhu, H., Roher, A., Slattery, T., Zhao, L., Nagashima, M., Morser, J., et al. (1996). RAGE and amyloid-beta peptide neurotoxicity in Alzheimer’s disease. Nature 382, 685–691.

    Article  PubMed  CAS  Google Scholar 

  • Yan, S.D., Stern, D., Kane, M.D., Kuo, Y.M., Lampert, H.C., and Roher, A.E. (1998). RAGE-Abeta interactions in the pathophysiology of Alzheimer’s disease. Restor. Neurol. Neurosci. 12, 167–173.

    PubMed  CAS  Google Scholar 

  • Yonekura, H., Yamamoto, Y., Sakurai, S., Petrova, R.G., Abedin, M.J., Li, H., Yasui, K., Takeuchi, M., Makita, Z., Takasawa, S., et al. (2003). Novel splice variants of the receptor for advanced glycation end-products expressed in human vascular endothelial cells and pericytes, and their putative roles in diabetes-induced vascular injury. Biochem. J. 370, 1097–1109.

    Article  PubMed  CAS  Google Scholar 

  • Zhai, D.X., Kong, Q.F., Xu, W.S., Bai, S.S., Peng, H.S., Zhao, K., Li, G.Z., Wang, D.D., Sun, B., Wang, J.H., et al. (2008). RAGE expression is up-regulated in human cerebral ischemia and pMCAO rats. Neurosci. Lett. 445, 117–121.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, L., Bukulin, M., Kojro, E., Roth, A., Metz, V.V., Fahrenholz, F., Nawroth, P.P., Bierhaus, A., and Postina, R. (2008). Receptor for advanced glycation end products is subjected to protein ectodomain shedding by metalloproteinases. J. Biol. Chem. 283, 35507–35516.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, L., Postina, R., and Wang, Y. (2009). Ectodomain shedding of the receptor for advanced glycation end products: a novel therapeutic target for Alzheimer’s disease. Cell. Mol. Life Sci. 66, 3923–3935.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inhee Mook-Jung.

About this article

Cite this article

Han, SH., Kim, Y.H. & Mook-Jung, I. RAGE: The beneficial and deleterious effects by diverse mechanisms of actions. Mol Cells 31, 91–97 (2011). https://doi.org/10.1007/s10059-011-0030-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-011-0030-x

Keywords

Navigation