Skip to main content

The Evolution and Diversity of Pineal and Parapineal Photopigments

  • Chapter
  • First Online:
Evolution of Visual and Non-visual Pigments

Abstract

Pineal and related organs are major extraocular photoreceptors in non-mammalian vertebrates. The pineal organ contains several types of photoreceptor cells, which contribute to regulating light-dependent melatonin secretion and the neural light response, including irradiance detection and wavelength discrimination. Visual opsins and pineal-specific opsins have been identified from the pineal and related organs in a wide variety of non-mammalian vertebrates. Pinopsin and parapinopsin are key opsins for understanding melatonin secretion in the chicken pineal organ and wavelength discrimination in the lamprey pineal organ, respectively. Interestingly, parapinopsin has the molecular characteristics of both vertebrate and invertebrate opsin-based pigments, making it an important photopigment for understanding the molecular evolution of vertebrate visual opsins. In this chapter, we discuss the opsin-based pigments functioning in the pineal and related organs with a focus on parapinopsin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alloway PG, Howard L, Dolph PJ. The formation of stable rhodopsin-arrestin complexes induces apoptosis and photoreceptor cell degeneration. Neuron. 2000;28(1):129–38.

    Article  PubMed  CAS  Google Scholar 

  • Altenbach C, Kusnetzow AK, Ernst OP, Hofmann KP, Hubbell WL. High-resolution distance mapping in rhodopsin reveals the pattern of helix movement due to activation. Proc Natl Acad Sci U S A. 2008;105(21):7439–44.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bailes HJ, Lucas RJ. Human melanopsin forms a pigment maximally sensitive to blue light (λmax ≈ 479 nm) supporting activation of G(q/11) and G(i/o) signalling cascades. Proc Biol Sci. 2013;280(1759):20122987.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bailey MJ, Cassone VM. Melanopsin expression in the chick retina and pineal gland. Brain Res Mol Brain Res. 2005;134(2):345–8.

    Article  PubMed  CAS  Google Scholar 

  • Bell-Pedersen D, Cassone VM, Earnest DJ, Golden SS, Hardin PE, Thomas TL, et al. Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat Rev Genet. 2005;6(7): 544–56.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Blackshaw S, Snyder SH. Parapinopsin, a novel catfish opsin localized to the parapineal organ, defines a new gene family. J Neurosci. 1997;17(21):8083–92.

    PubMed  CAS  Google Scholar 

  • Collin JP, Mirshahi M, Brisson P, Falcon J, Guerlotte J, Faure JP. Pineal-retinal molecular relationships: distribution of “S-antigen” in the pineal complex. Neuroscience. 1986;19(2):657–66.

    Article  PubMed  CAS  Google Scholar 

  • Collin JP, Voisin P, Falcon J, Faure JP, Brisson P, Defaye JR. Pineal transducers in the course of evolution: molecular organization, rhythmic metabolic activity and role. Arch Histol Cytol. 1989;52(Suppl):441–9.

    Article  PubMed  Google Scholar 

  • Deguchi T. Rhodopsin-Like Photosensitivity of Isolated Chicken Pineal-Gland. Nature. 1981; 290(5808):706–7.

    Article  PubMed  CAS  Google Scholar 

  • Dodt E. The parietal eye (pineal and parietal organs) of lower vertebrates. In: Jung R, editor. Handbook of sensory physiology. Berlin: Springer; 1973. p. 113–40.

    Google Scholar 

  • Dodt E, Heerd E. Mode of action of pineal nerve fibers in frogs. J Neurophysiol. 1962;25: 405–29.

    PubMed  CAS  Google Scholar 

  • Dodt E, Meissl H. The Pineal and Parietal Organs of Lower-Vertebrates. Experientia. 1982;38(9):996–1000.

    Article  PubMed  CAS  Google Scholar 

  • Dolph PJ, Ranganathan R, Colley NJ, Hardy RW, Socolich M, Zuker CS. Arrestin function in inactivation of G protein-coupled receptor rhodopsin in vivo. Science. 1993;260(5116): 1910–6.

    Article  PubMed  CAS  Google Scholar 

  • Falcon J. Cellular circadian clocks in the pineal. Prog Neurobiol. 1999;58(2):121–62.

    Article  PubMed  CAS  Google Scholar 

  • Falcon J, Marmillon JB, Claustrat B, Collin JP. Regulation of melatonin secretion in a photoreceptive pineal organ: an in vitro study in the pike. J Neurosci. 1989;9(6):1943–50.

    PubMed  CAS  Google Scholar 

  • Farrens DL, Altenbach C, Yang K, Hubbell WL, Khorana HG. Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science. 1996;274(5288):768–70.

    Article  PubMed  CAS  Google Scholar 

  • Ferguson SS, Barak LS, Zhang J, Caron MG. G-protein-coupled receptor regulation: role of G-protein-coupled receptor kinases and arrestins. Can J Physiol Pharmacol. 1996a;74(10): 1095–110.

    Article  PubMed  CAS  Google Scholar 

  • Ferguson SS, Downey 3rd WE, Colapietro AM, Barak LS, Menard L, Caron MG. Role of beta-arrestin in mediating agonist-promoted G protein-coupled receptor internalization. Science. 1996b;271(5247):363–6.

    Article  PubMed  CAS  Google Scholar 

  • Findlay JB, Pappin DJ. The opsin family of proteins. Biochem J. 1986;238(3):625–42.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Frigato E, Vallone D, Bertolucci C, Foulkes NS. Isolation and characterization of melanopsin and pinopsin expression within photoreceptive sites of reptiles. Naturwissenschaften. 2006;93(8): 379–85.

    Article  PubMed  CAS  Google Scholar 

  • Gern WA, Greenhouse SS. Examination of in vitro melatonin secretion from superfused trout (Salmo gairdneri) pineal organs maintained under diel illumination or continuous darkness. Gen Comp Endocrinol. 1988;71(1):163–74.

    Article  PubMed  CAS  Google Scholar 

  • Goodman Jr OB, Krupnick JG, Santini F, Gurevich VV, Penn RB, Gagnon AW, et al. Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor. Nature. 1996;383(6599):447–50.

    Article  PubMed  CAS  Google Scholar 

  • Hargrave PA, McDowell JH, Curtis DR, Wang JK, Juszczak E, Fong SL, et al. The structure of bovine rhodopsin. Biophys Struct Mech. 1983;9(4):235–44.

    Article  PubMed  CAS  Google Scholar 

  • Hattar S, Liao HW, Takao M, Berson DM, Yau KW. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science. 2002;295(5557):1065–70.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hisatomi O, Ishikawa M, Tonosaki A, Tokunaga F. Characterization of lamprey rhodopsin by isolation from lamprey retina and expression in mammalian cells. Photochem Photobiol. 1997;66(6):792–5.

    Article  PubMed  CAS  Google Scholar 

  • Hubbell WL, Altenbach C, Hubbell CM, Khorana HG. Rhodopsin structure, dynamics, and activation: a perspective from crystallography, site-directed spin labeling, sulfhydryl reactivity, and disulfide cross-linking. Adv Protein Chem. 2003;63:243–90.

    Article  PubMed  CAS  Google Scholar 

  • Kappers JA. Survey of the innervation of the epiphysis cerebri and the accessory pineal organs of vertebrates. Prog Brain Res. 1965;10:87–153.

    Article  PubMed  CAS  Google Scholar 

  • Kawamura S, Yokoyama S. Expression of visual and nonvisual opsins in American chameleon. Vision Res. 1997;37(14):1867–71.

    Article  PubMed  CAS  Google Scholar 

  • Kawano-Yamashita E, Terakita A, Koyanagi M, Shichida Y, Oishi T, Tamotsu S. Immunohistochemical characterization of a parapinopsin-containing photoreceptor cell involved in the ultraviolet/green discrimination in the pineal organ of the river lamprey Lethenteron japonicum. J Exp Biol. 2007;210(Pt 21):3821–9.

    Article  PubMed  CAS  Google Scholar 

  • Kawano-Yamashita E, Koyanagi M, Shichida Y, Oishi T, Tamotsu S, Terakita A. beta-arrestin functionally regulates the non-bleaching pigment parapinopsin in lamprey pineal. PLoS One. 2011;6(1):e16402.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kiselev A, Socolich M, Vinos J, Hardy RW, Zuker CS, Ranganathan R. A molecular pathway for light-dependent photoreceptor apoptosis in Drosophila. Neuron. 2000;28(1):139–52.

    Article  PubMed  CAS  Google Scholar 

  • Kojima D, Mori S, Torii M, Wada A, Morishita R, Fukada Y. UV-sensitive photoreceptor protein OPN5 in humans and mice. PLoS One. 2011;6(10):e26388.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Korf HW, Liesner R, Meissl H, Kirk A. Pineal complex of the clawed toad, Xenopus laevis Daud.: structure and function. Cell Tissue Res. 1981;216(1):113–30.

    Article  PubMed  CAS  Google Scholar 

  • Korf HW, Foster RG, Ekstrom P, Schalken JJ. Opsin-like immunoreaction in the retinae and pineal organs of four mammalian species. Cell Tissue Res. 1985a;242(3):645–8.

    Article  PubMed  CAS  Google Scholar 

  • Korf HW, Moller M, Gery I, Zigler JS, Klein DC. Immunocytochemical demonstration of retinal S-antigen in the pineal organ of four mammalian species. Cell Tissue Res. 1985b;239(1):81–5.

    Article  PubMed  CAS  Google Scholar 

  • Koyanagi M, Terakita A. Gq-coupled rhodopsin subfamily composed of invertebrate visual pigment and melanopsin. Photochem Photobiol. 2008;84(4):1024–30.

    Article  PubMed  CAS  Google Scholar 

  • Koyanagi M, Kawano E, Kinugawa Y, Oishi T, Shichida Y, Tamotsu S, et al. Bistable UV pigment in the lamprey pineal. Proc Natl Acad Sci U S A. 2004;101(17):6687–91.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Koyanagi M, Kubokawa K, Tsukamoto H, Shichida Y, Terakita A. Cephalochordate melanopsin: evolutionary linkage between invertebrate visual cells and vertebrate photosensitive retinal ganglion cells. Curr Biol. 2005;15(11):1065–9.

    Article  PubMed  CAS  Google Scholar 

  • Koyanagi M, Takada E, Nagata T, Tsukamoto H, Terakita A. Homologs of vertebrate Opn3 potentially serve as a light sensor in nonphotoreceptive tissue. Proc Natl Acad Sci U S A. 2013;110(13):4998–5003.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Krupnick JG, Benovic JL. The role of receptor kinases and arrestins in G protein-coupled receptor regulation. Annu Rev Pharmacol Toxicol. 1998;38:289–319.

    Article  PubMed  CAS  Google Scholar 

  • Lefkowitz RJ. G protein-coupled receptors. III. New roles for receptor kinases and beta-arrestins in receptor signaling and desensitization. J Biol Chem. 1998;273(30):18677–80.

    Article  PubMed  CAS  Google Scholar 

  • Lohse MJ, Benovic JL, Codina J, Caron MG, Lefkowitz RJ. beta-Arrestin: a protein that regulates beta-adrenergic receptor function. Science. 1990;248(4962):1547–50.

    Article  PubMed  CAS  Google Scholar 

  • Mano H, Kojima D, Fukada Y. Exo-rhodopsin: a novel rhodopsin expressed in the zebrafish pineal gland. Brain Res Mol Brain Res. 1999;73(1–2):110–8.

    Article  PubMed  CAS  Google Scholar 

  • Masuda H, Oishi T, Ohtani M, Michinomae M, Fukada Y, Shichida Y, et al. Visual pigments in the pineal complex of the Japanese quail, Japanese grass lizard and bullfrog: immunocytochemistry and HPLC analysis. Tissue Cell. 1994;26(1):101–13.

    Article  PubMed  CAS  Google Scholar 

  • Matsushita A, Yoshikawa T, Okano T, Kasahara T, Fukada Y. Colocalization of pinopsin with two types of G-protein alpha-subunits in the chicken pineal gland. Cell Tissue Res. 2000;299(2): 245–51.

    PubMed  CAS  Google Scholar 

  • Matsuyama T, Yamashita T, Imamoto Y, Shichida Y. Photochemical properties of mammalian melanopsin. Biochemistry. 2012;51(27):5454–62.

    Article  PubMed  CAS  Google Scholar 

  • Max M, McKinnon PJ, Seidenman KJ, Barrett RK, Applebury ML, Takahashi JS, et al. Pineal opsin: a nonvisual opsin expressed in chick pineal. Science. 1995;267(5203):1502–6.

    Article  PubMed  CAS  Google Scholar 

  • Meiniel A. Detection and localization of biogenic amines in the pineal complex of Lampetra planeri (Petromizontidae). Prog Brain Res. 1979;52:303–7.

    Article  PubMed  CAS  Google Scholar 

  • Meiniel A. Ultrastructure of serotonin-containing cells in the pineal organ of Lampetra planeri (Petromyzontidae). Cell Tissue Res. 1980;207(3):407–27.

    Article  PubMed  CAS  Google Scholar 

  • Morita Y. Lead pattern of the pineal neuron of the rainbow trout (Salmo irideus) by illumination of the diencephalon. Pflugers Arch Gesamte Physiol Menschen Tiere. 1966;289(3):155–67.

    Article  PubMed  CAS  Google Scholar 

  • Morita Y. Wave length discriminators in the intracranial pineal organ of Rana catesbyana. Experientia. 1969;25(12):1277.

    Article  PubMed  CAS  Google Scholar 

  • Morita Y, Dodt E. Slow photic responses of the isolated pineal organ of lamprey. Nova Acta Leopold. 1973;38:331–9.

    Google Scholar 

  • Morita Y, Samejima M, Tamotsu S. Response patterns and neuronal networks of photosensory pineal organs. Arch Histol Cytol. 1989;52(Suppl):469–75.

    Article  PubMed  Google Scholar 

  • Nakagawa M, Orii H, Yoshida N, Jojima E, Horie T, Yoshida R, et al. Ascidian arrestin (Ci-arr), the origin of the visual and nonvisual arrestins of vertebrate. Eur J Biochem. 2002;269(21): 5112–8.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura A, Kojima D, Imai H, Terakita A, Okano T, Shichida Y, et al. Chimeric nature of pinopsin between rod and cone visual pigments. Biochemistry. 1999;38(45):14738–45.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura A, Kojima D, Okano T, Imai H, Terakita A, Shichida Y, et al. Regulatory mechanism for the stability of the meta II intermediate of pinopsin. J Biochem. 2001;129(2):329–34.

    Article  PubMed  CAS  Google Scholar 

  • Nathans J. Determinants of visual pigment absorbance: role of charged amino acids in the putative transmembrane segments. Biochemistry. 1990;29(4):937–42.

    Article  PubMed  CAS  Google Scholar 

  • Okano T, Fukada Y. Phototransduction cascade and circadian oscillator in chicken pineal gland. J Pineal Res. 1997;22(3):145–51.

    Article  PubMed  CAS  Google Scholar 

  • Okano T, Fukada Y. Photoreception and circadian clock system of the chicken pineal gland. Microsc Res Tech. 2001;53(1):72–80.

    Article  PubMed  CAS  Google Scholar 

  • Okano T, Yoshizawa T, Fukada Y. Pinopsin is a chicken pineal photoreceptive molecule. Nature. 1994;372(6501):94–7.

    Article  PubMed  CAS  Google Scholar 

  • Okano T, Takanaka Y, Nakamura A, Hirunagi K, Adachi A, Ebihara S, et al. Immunocytochemical identification of pinopsin in pineal glands of chicken and pigeon. Mol Brain Res. 1997;50(1–2):190–6.

    Article  PubMed  CAS  Google Scholar 

  • Oksche A. Survey of the Development and Comparative Morphology of the Pineal Organ. Prog Brain Res. 1965;10:3–29.

    Article  PubMed  CAS  Google Scholar 

  • Oksche A. Sensory and glandular elements of the pineal organ. In: Wolstenholme GEWKJ, editor. The pineal gland (A Ciba Foundation Symposium). London: Churchill; 1971. p. 127–46.

    Google Scholar 

  • Orem NR, Xia L, Dolph PJ. An essential role for endocytosis of rhodopsin through interaction of visual arrestin with the AP-2 adaptor. J Cell Sci. 2006;119(Pt 15):3141–8.

    Article  PubMed  CAS  Google Scholar 

  • Panda S, Sato TK, Castrucci AM, Rollag MD, DeGrip WJ, Hogenesch JB, et al. Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting. Science. 2002; 298(5601):2213–6.

    Article  PubMed  CAS  Google Scholar 

  • Philp NJ, Chang W, Long K. Light-stimulated protein movement in rod photoreceptor cells of the rat retina. FEBS Lett. 1987;225(1–2):127–32.

    Article  PubMed  CAS  Google Scholar 

  • Philp AR, Garcia-Fernandez JM, Soni BG, Lucas RJ, Bellingham J, Foster RG. Vertebrate ancient (VA) opsin and extraretinal photoreception in the Atlantic salmon (Salmo salar). J Exp Biol. 2000;203(Pt 12):1925–36.

    PubMed  CAS  Google Scholar 

  • Pitt GA, Collins FD, Morton RA, Stok P. Studies on rhodopsin. VIII. Retinylidenemethylamine, an indicator yellow analogue. Biochem J. 1955;59(1):122–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Provencio I, Jiang G, De Grip WJ, Hayes WP, Rollag MD. Melanopsin: An opsin in melanophores, brain, and eye. Proc Natl Acad Sci U S A. 1998;95(1):340–5.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sakai K, Imamoto Y, Su CY, Tsukamoto H, Yamashita T, Terakita A, et al. Photochemical nature of parietopsin. Biochemistry. 2012;51(9):1933–41.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sakmar TP, Franke RR, Khorana HG. Glutamic acid-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin. Proc Natl Acad Sci U S A. 1989;86(21):8309–13.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Samejima M, Tamotsu S, Uchida K, Moriguchi Y, Morita Y. Melatonin excretion rhythms in the cultured pineal organ of the lamprey, Lampetra japonica. Biol Signals. 1997;6(4–6):241–6.

    PubMed  CAS  Google Scholar 

  • Samejima M, Shavali S, Tamotsu S, Uchida K, Morita Y, Fukuda A. Light- and temperature-dependence of the melatonin secretion rhythm in the pineal organ of the lamprey, Lampetra japonica. Jpn J Physiol. 2000;50(4):437–42.

    Article  PubMed  CAS  Google Scholar 

  • Sato K, Yamashita T, Ohuchi H, Shichida Y. Vertebrate ancient-long opsin has molecular properties intermediate between those of vertebrate and invertebrate visual pigments. Biochemistry. 2011;50(48):10484–90.

    Article  PubMed  CAS  Google Scholar 

  • Satoh AK, Ready DF. Arrestin1 mediates light-dependent rhodopsin endocytosis and cell survival. Curr Biol. 2005;15(19):1722–33.

    Article  PubMed  CAS  Google Scholar 

  • Solessio E, Engbretson GA. Antagonistic Chromatic Mechanisms in Photoreceptors of the Parietal Eye of Lizards. Nature. 1993;364(6436):442–5.

    Article  PubMed  CAS  Google Scholar 

  • Su CY, Luo DG, Terakita A, Shichida Y, Liao HW, Kazmi MA, et al. Parietal-eye phototransduction components and their potential evolutionary implications. Science. 2006;311(5767):1617–21.

    Article  PubMed  CAS  Google Scholar 

  • Tamotsu S, Morita Y. Blue sensitive visual pigment and photoregeneration in pineal photoreceptors measured by high performance liquid chromatography. Comp Biochem Physiol. 1990;96B:487–90.

    CAS  Google Scholar 

  • Tamotsu S, Korf H-W, Morita Y, Oksche A. Immunocytochemical localization of serotonin and photoreceptor-specific proteins (rod-opsin, S-antigen) in the pineal complex of the river lamprey, Lampetra japonica, with special reference to photoneuroendocrine cells. Cell Tissue Res. 1990;262(2):205–16.

    Article  PubMed  CAS  Google Scholar 

  • Tamotsu S, Oishi T, Nakao K, Fukada Y, Shichida Y, Yoshizawa T, et al. Localization of iodopsin and rod-opsin immunoreactivity in the retina and pineal complex of the river lamprey, Lampetra japonica. Cell Tissue Res. 1994;278:1–10.

    Article  CAS  Google Scholar 

  • Taniguchi Y, Hisatomi O, Yoshida M, Tokunaga F. Pinopsin expressed in the retinal photoreceptors of a diurnal gecko. FEBS Lett. 2001;496(2–3):69–74.

    Article  PubMed  CAS  Google Scholar 

  • Tarttelin EE, Fransen MP, Edwards PC, Hankins MW, Schertler GF, Vogel R, et al. Adaptation of pineal expressed teleost exo-rod opsin to non-image forming photoreception through enhanced Meta II decay. Cell Mol Life Sci. 2011;68(22):3713–23.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Terakita A. The opsins. Genome Biol. 2005;6(3):213.

    Article  PubMed  PubMed Central  Google Scholar 

  • Terakita A, Yamashita T, Shichida Y. Highly conserved glutamic acid in the extracellular IV-V loop in rhodopsins acts as the counterion in retinochrome, a member of the rhodopsin family. Proc Natl Acad Sci U S A. 2000;97(26):14263–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Terakita A, Koyanagi M, Tsukamoto H, Yamashita T, Miyata T, Shichida Y. Counterion displacement in the molecular evolution of the rhodopsin family. Nat Struct Mol Biol. 2004;11(3): 284–9.

    Article  PubMed  CAS  Google Scholar 

  • Terakita A, Kawano-Yamashita E, Koyanagi M. Evolution and diversity of opsins. WIREs Membr Transp Signal. 2012;1:104–11.

    Article  CAS  Google Scholar 

  • Tsukamoto H, Farrens DL, Koyanagi M, Terakita A. The magnitude of the light-induced conformational change in different rhodopsins correlates with their ability to activate G proteins. J Biol Chem. 2009;284(31):20676–83.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Uchida K, Morita Y. Intracellular responses from UV-sensitive cells in the photosensory pineal organ. Brain Res. 1990;534(1–2):237–42.

    Article  PubMed  CAS  Google Scholar 

  • Uchida K, Morita Y. Spectral sensitivity and mechanism of interaction between inhibitory and excitatory responses of photosensory pineal neurons. Pflugers Arch. 1994;427(3–4):373–7.

    Article  PubMed  CAS  Google Scholar 

  • Uchida K, Nakamura T, Morita Y. Signal transmission from pineal photoreceptors to luminosity-type ganglion cells in the lamprey, Lampetra japonica. Neuroscience. 1992;47(1):241–7.

    Article  PubMed  CAS  Google Scholar 

  • Underwood H. Pineal melatonin rhythms in the lizard Anolis carolinensis: effects of light and temperature cycles. J Comp Physiol A. 1985;157(1):57–65.

    Article  PubMed  CAS  Google Scholar 

  • Vigh B, Manzano MJ, Zadori A, Frank CL, Lukats A, Rohlich P, et al. Nonvisual photoreceptors of the deep brain, pineal organs and retina. Histol Histopathol. 2002;17(2):555–90.

    PubMed  CAS  Google Scholar 

  • Wada S, Kawano-Yamashita E, Koyanagi M, Terakita A. Expression of UV-sensitive parapinopsin in the iguana parietal eyes and its implication in UV-sensitivity in vertebrate pineal-related organs. PLoS One. 2012;7(6):e39003.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yamashita T, Ohuchi H, Tomonari S, Ikeda K, Sakai K, Shichida Y. Opn5 is a UV-sensitive bistable pigment that couples with Gi subtype of G protein. Proc Natl Acad Sci U S A. 2010;107(51): 22084–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yau KW, Hardie RC. Phototransduction motifs and variations. Cell. 2009;139(2):246–64.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yoshikawa T, Okano T, Oishi T, Fukada Y. A deep brain photoreceptive molecule in the toad hypothalamus. FEBS Lett. 1998;424(1–2):69–72.

    Article  PubMed  Google Scholar 

  • Zhukovsky EA, Oprian DD. Effect of carboxylic acid side chains on the absorption maximum of visual pigments. Science. 1989;246(4932):928–30.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants-in-aid for Scientific Research from the Japanese Ministry of Education, Science, Sports, and Culture (to A.T., E.K.-Y. and M.K.). E.K.-Y. is supported by Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihisa Terakita Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kawano-Yamashita, E., Koyanagi, M., Terakita, A. (2014). The Evolution and Diversity of Pineal and Parapineal Photopigments. In: Hunt, D., Hankins, M., Collin, S., Marshall, N. (eds) Evolution of Visual and Non-visual Pigments. Springer Series in Vision Research, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4355-1_1

Download citation

Publish with us

Policies and ethics