Skip to main content

Investigating RNAs Involved in Translational Control by NMR and SAXS

  • Chapter
  • First Online:
Biophysical approaches to translational control of gene expression

Part of the book series: Biophysics for the Life Sciences ((BIOPHYS,volume 1))

  • 1357 Accesses

Abstract

Nuclear magnetic resonance (NMR) spectroscopy and small angle X-ray scattering (SAXS) are solution-based methods that can be used to analyze and determine molecular structure. Here, we review the use of NMR and SAXS for the structural analysis of RNA molecules, with a focus on RNAs involved in translational control. Practical considerations, experimental requirements, and data analysis are discussed. We also review a recently developed hybrid approach that combines NMR and SAXS. The hybrid NMR-SAXS approach shows great promise for expanding the scope of biophysical studies on biological molecules in solution. Finally, we review examples of these methods applied to RNA systems such as programmed ribosomal frameshift sites, internal ribosome entry sites, ribosome-binding structural elements, RNA thermometers, and riboswitches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akke M, Fiala R, Jiang F, Patel D, Palmer AG (1997) Base dynamics in a UUCG tetraloop RNA hairpin characterized by 15N spin relaxation: correlations with structure and stability. RNA 3:702–709

    CAS  PubMed  Google Scholar 

  • Alexander S (2009) The long and the short of riboswitches. Curr Opin Struct Biol 19:251–259

    Article  CAS  Google Scholar 

  • Al-Hashimi HM, Gosser Y, Gorin A, Hu W, Majumdar A, Patel DJ (2002) Concerted motions in HIV-1 TAR RNA may allow access to bound state conformations: RNA dynamics from NMR residual dipolar couplings. J Mol Biol 315:95–102

    Article  CAS  PubMed  Google Scholar 

  • Ali M, Lipfert J, Seifert S, Herschlag D, Doniach S (2010) The ligand-free state of the TPP riboswitch: a partially folded RNA structure. J Mol Biol 396:153–165

    Article  CAS  PubMed  Google Scholar 

  • Allain FHT, Varani G (1997) How accurately and precisely can RNA structure be determined by NMR? J Mol Biol 267:338–351

    Article  CAS  PubMed  Google Scholar 

  • Andronescu M, Zhang ZC, Condon A (2005) Secondary structure prediction of interacting RNA molecules. J Mol Biol 345:987–1001

    Article  CAS  PubMed  Google Scholar 

  • Bai Y, Das R, Millett IS, Herschlag D, Doniach S (2005) Probing counterion modulated repulsion and attraction between nucleic acid duplexes in solution. Proc Natl Acad Sci U S A 102:1035–1040

    Article  CAS  PubMed  Google Scholar 

  • Bailor MH, Musselman C, Hansen AL, Gulati K, Patel DJ, Al-Hashimi HM (2007) Characterizing the relative orientation and dynamics of RNA A-form helices using NMR residual dipolar couplings. Nat Protoc 2:1536–1546

    Article  CAS  PubMed  Google Scholar 

  • Bailor MH, Sun X, Al-Hashimi HM (2010) Topology links RNA secondary structure with global conformation, dynamics, and adaptation. Science 327:202–206

    Article  CAS  PubMed  Google Scholar 

  • Baird NJ, Ferré-D’Amaré AR (2010) Idiosyncratically tuned switching behavior of riboswitch aptamer domains revealed by comparative small-angle X-ray scattering analysis. RNA 16:598–609

    Article  CAS  PubMed  Google Scholar 

  • Baird NJ, Westhof E, Qin H, Pan T, Sosnick TR (2005) Structure of a folding intermediate reveals the interplay between core and peripheral elements in RNA folding. J Mol Biol 352:712–722

    Article  CAS  PubMed  Google Scholar 

  • Baird NJ, Kulshina N, Ferré D’Amaré AR (2010) Riboswitch function: flipping the switch or tuning the dimmer? RNA Biol 7:328–332

    Article  CAS  PubMed  Google Scholar 

  • Balvay L, Soto Rifo R, Ricci EP, Decimo D, Ohlmann T (2009) Structural and functional diversity of viral IRESes. Biochim Biophys Acta 1789:542–557

    Article  CAS  PubMed  Google Scholar 

  • Ban N, Nissen P, Hansen J, Moore PB, Steitz TA (2000) The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289:905–920

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed  Google Scholar 

  • Batey RT, Kieft JS (2007) Improved native affinity purification of RNA. RNA 13:1384–1389

    Article  CAS  PubMed  Google Scholar 

  • Bax A, Kontaxis G, Tjandra N (2001) Dipolar couplings in macromolecular structure determination. Methods Enzymol 339:127–174

    Article  CAS  PubMed  Google Scholar 

  • Bernado P, Mylonas E, Petoukhov MV, Blackledge M, Svergun DI (2007) Structural characterization of flexible proteins using small-angle X-ray scattering. J Am Chem Soc 129:5656–5664

    Article  CAS  PubMed  Google Scholar 

  • Bernstein NK, Hammel M, Mani RS, Weinfeld M, Pelikan M, Tainer JA, Glover JN (2009) Mechanism of DNA substrate recognition by the mammalian DNA repair enzyme, polynucleotide kinase. Nucleic Acids Res 37:6161–6173

    Article  CAS  PubMed  Google Scholar 

  • Blad H, Reiter NJ, Abildgaard F, Markley JL, Butcher SE (2005) Dynamics and metal ion binding in the U6 RNA intramolecular stem-loop as analyzed by NMR. J Mol Biol 353:540–555

    Article  CAS  PubMed  Google Scholar 

  • Brierley I (1995) Ribosomal frameshifting on viral RNAs. J Gen Virol 76:1885–1892

    Article  CAS  PubMed  Google Scholar 

  • Buck J, Noeske J, Wöhnert J, Schwalbe H (2010) Dissecting the influence of Mg2+ on 3D architecture and ligand-binding of the guanine-sensing riboswitch aptamer domain. Nucleic Acids Res 38:4143–4153

    Article  CAS  PubMed  Google Scholar 

  • Butcher SE, Pyle AM (2011) The molecular interactions that stabilize RNA tertiary structure: RNA motifs, patterns, and networks. Acc Chem Res 44(12):1302–1311

    Article  CAS  PubMed  Google Scholar 

  • Carter AP, Clemons WM, Brodersen DE, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V (2000) Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407:340–348

    Article  CAS  PubMed  Google Scholar 

  • Casiano-Negroni A, Sun X, Al-Hashimi HM (2007) Probing Na+-induced changes in the HIV-1 TAR conformational dynamics using NMR residual dipolar couplings: new insights into the role of counterions and electrostatic interactions in adaptive recognition. Biochemistry 46:6525–6535

    Article  CAS  PubMed  Google Scholar 

  • Chen SJ (2008) RNA folding: conformational statistics, folding kinetics, and ion electrostatics. Annu Rev Biophys 37:197–214

    Article  CAS  PubMed  Google Scholar 

  • Clos LJ 2nd, Butcher SE, Wang YX (2011) NMR spectroscopy for investigating larger nucleic acids. In Advances in Biomedical Spectroscopy: Biomolecular NMR spectroscopy, ed. Dingley, AJ, Pascal SM. IOS Press, Amsterdam, Netherlands, Vol. 3, pp 229–248

    Google Scholar 

  • Cornish P, Giedroc D, Hennig M (2006) Dissecting non-canonical interactions in frameshift-­stimulating mRNA pseudoknots. J Biomol NMR 35:209–223

    Article  CAS  PubMed  Google Scholar 

  • Cullen BR (1986) Trans-activation of human immunodeficiency virus occurs via a bimodal mechanism. Cell 46:973–982

    Article  CAS  PubMed  Google Scholar 

  • D’Souza V, Dey A, Habib D, Summers MF (2004) NMR structure of the 101-nucleotide core encapsidation signal of the Moloney murine leukemia virus. J Mol Biol 337:427–442

    Article  PubMed  CAS  Google Scholar 

  • Das R, Kwok LW, Millett IS, Bai Y, Mills TT, Jacob J, Maskel GS, Seifert S, Mochrie SG, Thiyagarajan P et al (2003) The fastest global events in RNA folding: electrostatic relaxation and tertiary collapse of the tetrahymena ribozyme. J Mol Biol 332:311–319

    Article  CAS  PubMed  Google Scholar 

  • Davis JH, Tonelli M, Scott LG, Jaeger L, Williamson JR, Butcher SE (2005) RNA helical packing in solution: NMR structure of a 30 kDa GAAA tetraloop-receptor complex. J Mol Biol 351:371–382

    Article  CAS  PubMed  Google Scholar 

  • Davis JH, Foster TR, Tonelli M, Butcher SE (2007) Role of metal ions in the tetraloop-receptor complex as analyzed by NMR. RNA 13:76–86

    Article  CAS  PubMed  Google Scholar 

  • Dayie KT, Brodsky AS, Williamson JR (2002) Base flexibility in HIV-2 TAR RNA mapped by solution 15N, 13C NMR relaxation. J Mol Biol 317:263–278

    Article  CAS  PubMed  Google Scholar 

  • Debye P (1915) Zerstreuung von Röntgenstrahlen. Ann Phys 351:809–823

    Article  Google Scholar 

  • Dethoff EA, Hansen AL, Musselman C, Watt ED, Andricioaei I, Al-Hashimi HM (2008) Characterizing complex dynamics in the transactivation response element apical loop and motional correlations with the bulge by NMR, molecular dynamics, and mutagenesis. Biophys J 95:3906–3915

    Article  CAS  PubMed  Google Scholar 

  • Dethoff EA, Hansen AL, Zhang Q, Al-Hashimi HM (2009) Variable helix elongation as a tool to modulate RNA alignment and motional couplings. J Magn Reson 202:117–121

    Article  PubMed  CAS  Google Scholar 

  • Dingley AJ, Grzesiek S (1998) Direct observation of hydrogen bonds in nucleic acid base pairs by internucleotide (2)J(NN) couplings. J Am Chem Soc 120:8293–8297

    Article  CAS  Google Scholar 

  • Duchardt E, Schwalbe H (2005) Residue specific ribose and nucleobase dynamics of the cUUCGg RNA tetraloop motif by MNMR 13C relaxation. J Biomol NMR 32:295–308

    Article  CAS  PubMed  Google Scholar 

  • Duchardt-Ferner E, Ferner J, Wöhnert J (2011) Rapid Identification of noncanonical RNA structure elements by direct detection of OH⋅⋅⋅O=P, NH⋅⋅⋅O=P, and NH2⋅⋅⋅O=P hydrogen bonds in solution NMR spectroscopy. Angew Chem Int Ed 50:7927–7930

    Article  CAS  Google Scholar 

  • Dulude D, Baril M, Brakier-Gingras L (2002) Characterization of the frameshift stimulatory signal controlling a programmed −1 ribosomal frameshift in the human immunodeficiency virus type 1. Nucleic Acids Res 30:5094–5102

    Article  CAS  PubMed  Google Scholar 

  • Dulude D, Berchiche YA, Gendron K, Brakier-Gingras L, Heveker N (2006) Decreasing the frameshift efficiency translates into an equivalent reduction of the replication of the human immunodeficiency virus type 1. Virology 345:127–136

    Article  CAS  PubMed  Google Scholar 

  • Edwards TE, Klein DJ, Ferré-D’Amaré AR (2007) Riboswitches: small-molecule recognition by gene regulatory RNAs. Curr Opin Struct Biol 17:273–279

    Article  CAS  PubMed  Google Scholar 

  • ENCODE Project Consortium (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447:799–816

    Article  CAS  Google Scholar 

  • Fang X, Littrell K, Yang XJ, Henderson SJ, Siefert S, Thiyagarajan P, Pan T, Sosnick TR (2000) Mg2+-dependent compaction and folding of yeast tRNAPhe and the catalytic domain of the B. subtilis RNase P RNA determined by small-angle X-ray scattering. Biochemistry 39:11107–11113

    Article  CAS  PubMed  Google Scholar 

  • Farabaugh PJ (1996) Programmed translational frameshifting. Microbiol Rev 60:103–134

    CAS  PubMed  Google Scholar 

  • Fernández C, Wider G (2003) TROSY in NMR studies of the structure and function of large biological macromolecules. Curr Opin Struct Biol 13:570–580

    Article  PubMed  CAS  Google Scholar 

  • Forster F, Webb B, Krukenberg KA, Tsuruta H, Agard DA, Sali A (2008) Integration of small-angle X-ray scattering data into structural modeling of proteins and their assemblies. J Mol Biol 382:1089–1106

    Article  CAS  PubMed  Google Scholar 

  • Frank AT, Stelzer AC, Al-Hashimi HM, Andricioaei I (2009) Constructing RNA dynamical ensembles by combining MD and motionally decoupled NMR RDCs: new insights into RNA dynamics and adaptive ligand recognition. Nucleic Acids Res 37:3670–3679

    Article  CAS  PubMed  Google Scholar 

  • Franke D, Svergun DI (2009) DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering. J Appl Crystallogr 42:342–346

    Article  CAS  Google Scholar 

  • Frankel AD (1992) Activation of HIV transcription by Tat. Curr Opin Genet Dev 2:293–298

    Article  CAS  PubMed  Google Scholar 

  • Furtig B, Buck J, Manoharan V, Bermel W, Jaschke A, Wenter P, Pitsch S, Schwalbe H (2007) Time-resolved NMR studies of RNA folding. Biopolymers 86:360–383

    Article  PubMed  CAS  Google Scholar 

  • Gaudin C, Mazauric M-H, Traikia M, Guittet E, Yoshizawa S, Fourmy D (2005) Structure of the RNA signal essential for translational frameshifting in HIV-1. J Mol Biol 349:1024–1035

    Article  CAS  PubMed  Google Scholar 

  • Getz M, Sun X, Casiano-Negroni A, Zhang Q, Al-Hashimi HM (2007) NMR studies of RNA dynamics and structural plasticity using NMR residual dipolar couplings. Biopolymers 86:384–402

    Article  CAS  PubMed  Google Scholar 

  • Giedroc DP, Cornish PV (2009) Frameshifting RNA pseudoknots: structure and mechanism. Virus Res 139:193–208

    Article  CAS  PubMed  Google Scholar 

  • Gluehmann M, Zarivach R, Bashan A, Harms J, Schluenzen F, Bartels H, Agmon I, Rosenblum G, Pioletti M, Auerbach T et al (2001) Ribosomal crystallography: from poorly diffracting microcrystals to high-resolution structures. Methods 25:292–302

    Article  CAS  PubMed  Google Scholar 

  • Grishaev A, Ying J, Canny MD, Pardi A, Bax A (2008a) Solution structure of tRNAVal from refinement of homology model against residual dipolar coupling and SAXS data. J Biomol NMR 42:99–109

    Article  CAS  PubMed  Google Scholar 

  • Grishaev A, Tugarinov V, Kay LE, Trewhella J, Bax A (2008b) Refined solution structure of the 82-kDa enzyme malate synthase G from joint NMR and synchrotron SAXS restraints. J Biomol NMR 40:95–106

    Article  CAS  PubMed  Google Scholar 

  • Hall KB (2008) RNA in motion. Curr Opin Chem Biol 12:612–618

    Article  CAS  PubMed  Google Scholar 

  • Hall KB, Tang C (1998) 13C relaxation and dynamics of the purine bases in the iron responsive element RNA hairpin. Biochemistry 37:9323–9332

    Article  CAS  PubMed  Google Scholar 

  • Haller A, Soulière MF, Micura R (2011) The dynamic nature of RNA as key to understanding riboswitch mechanisms. Acc Chem Res 44(12):1339–1348

    Article  CAS  PubMed  Google Scholar 

  • Hansen AL, Al-Hashimi HM (2006) Insight into the CSA tensors of nucleobase carbons in RNA polynucleotides from solution measurements of residual CSA: towards new long-range orientational constraints. J Magn Reson 179:299–307

    Article  CAS  PubMed  Google Scholar 

  • Hansen MR, Mueller L, Pardi A (1998) Tunable alignment of macromolecules by filamentous phage yields dipolar coupling interactions. Nat Struct Mol Biol 5:1065–1074

    Article  CAS  Google Scholar 

  • Hart JM, Kennedy SD, Mathews DH, Turner DH (2008) NMR-assisted prediction of RNA secondary structure: identification of a probable pseudoknot in the coding region of an R2 retrotransposon. J Am Chem Soc 130:10233–10239

    Article  CAS  PubMed  Google Scholar 

  • Henkin TM (2008) Riboswitch RNAs: using RNA to sense cellular metabolism. Genes Dev 22:3383–3390

    Article  CAS  PubMed  Google Scholar 

  • Hennig M, Williamson JR, Brodsky AS, Battiste JL (2001) Recent advances in RNA structure determination by NMR. In: Beaucage SL et al (eds) Current protocols in nucleic acid chemistry. Wiley, New York, Chapter 7, Unit 7.7

    Google Scholar 

  • Hermann T, Patel DJ (2000) RNA bulges as architectural and recognition motifs. Structure 8:R47–R54

    Article  CAS  PubMed  Google Scholar 

  • Heus HA, Pardi A (1991) Novel proton NMR assignment procedure for RNA duplexes. J Am Chem Soc 113:4360–4361

    Article  CAS  Google Scholar 

  • Johnson JE, Hoogstraten CG (2008) Extensive backbone dynamics in the GCAA RNA tetraloop analyzed using 13C NMR spin relaxation and specific isotope labeling. J Am Chem Soc 130:16757–16769

    Article  CAS  PubMed  Google Scholar 

  • Jonikas MA, Radmer RJ, Laederach A, Das R, Pearlman S, Herschlag D, Altman RB (2009) Coarse-grained modeling of large RNA molecules with knowledge-based potentials and structural filters. RNA 15:189–199

    Article  CAS  PubMed  Google Scholar 

  • Juan V, Wilson C (1999) RNA secondary structure prediction based on free energy and phylogenetic analysis. J Mol Biol 289:935–947

    Article  CAS  PubMed  Google Scholar 

  • Keene JD (2007) RNA regulons: coordination of post-transcriptional events. Nat Rev Genet 8:533–543

    Article  CAS  PubMed  Google Scholar 

  • Kieft JS, Zhou K, Jubin R, Doudna JA (2001) Mechanism of ribosome recruitment by hepatitis C IRES RNA. RNA 7:194–206

    Article  CAS  PubMed  Google Scholar 

  • Kierzek E, Kierzek R, Turner DH, Catrina IE (2006) Facilitating RNA structure prediction with microarrays. Biochemistry 45:581–593

    Article  CAS  PubMed  Google Scholar 

  • Kloiber K, Spitzer R, Tollinger M, Konrat R, Kreutz C (2011) Probing RNA dynamics via longitudinal exchange and CPMG relaxation dispersion NMR spectroscopy using a sensitive 13C-methyl label. Nucleic Acids Res 39:4340–4351

    Article  CAS  PubMed  Google Scholar 

  • Koch MHJ, Vachette P, Svergun DI (2003) Small-angle scattering: a view on the properties, structures and structural changes of biological macromolecules in solution. Q Rev Biophys 36:147–227

    Article  CAS  PubMed  Google Scholar 

  • Konarev PV, Volkov VV, Sokolova AV, Koch MHJ, Svergun DI (2003) PRIMUS: a windows PC-based system for small-angle scattering data analysis. J Appl Crystallogr 36:1277–1282

    Article  CAS  Google Scholar 

  • Kulshina N, Baird NJ, Ferre-D’Amare AR (2009) Recognition of the bacterial second messenger cyclic diguanylate by its cognate riboswitch. Nat Struct Mol Biol 16:1212–1217

    Article  CAS  PubMed  Google Scholar 

  • Latham MP, Zimmermann GR, Pardi A (2009) NMR chemical exchange as a probe for ligand-binding kinetics in a theophylline-binding RNA aptamer. J Am Chem Soc 131:5052–5053

    Article  CAS  PubMed  Google Scholar 

  • Lee M-K, Gal M, Frydman L, Varani G (2010) Real-time multidimensional NMR follows RNA folding with second resolution. Proc Natl Acad Sci 107:9192–9197

    Article  CAS  PubMed  Google Scholar 

  • Lemay J-F, Desnoyers G, Blouin S, Heppell B, Bastet L, St-Pierre P, Massé E, Lafontaine DA (2011) Comparative study between transcriptionally- and translationally-acting adenine riboswitches reveals key differences in riboswitch regulatory mechanisms. PLoS Genet 7:e1001278

    Article  CAS  PubMed  Google Scholar 

  • Li PTX, Vieregg J, Tinoco I (2008) How RNA unfolds and refolds. Annu Rev Biochem 77:77–100

    Article  CAS  PubMed  Google Scholar 

  • Lipari G, Szabo A (1982) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 2. Analysis of experimental results. J Am Chem Soc 104:4559–4570

    Article  CAS  Google Scholar 

  • Lipfert J, Sim AY, Herschlag D, Doniach S (2010) Dissecting electrostatic screening, specific ion binding, and ligand binding in an energetic model for glycine riboswitch folding. RNA 16:708–719

    Article  CAS  PubMed  Google Scholar 

  • Liphardt J, Napthine S, Kontos H, Brierley I (1999) Evidence for an RNA pseudoknot loop-helix interaction essential for efficient −1 ribosomal frameshifting. J Mol Biol 288:321–335

    Article  CAS  PubMed  Google Scholar 

  • Lu K, Miyazaki Y, Summers MF (2010) Isotope labeling strategies for NMR studies of RNA. J Biomol NMR 46:113–125

    Article  CAS  PubMed  Google Scholar 

  • Lu K, Heng X, Garyu L, Monti S, Garcia EL, Kharytonchyk S, Dorjsuren B, Kulandaivel G, Jones S, Hiremath A et al (2011) NMR detection of structures in the HIV-1 5′-leader RNA that regulate genome packaging. Science 334:242–245

    Article  CAS  PubMed  Google Scholar 

  • Lukavsky PJ, Puglisi JD (2004) Large-scale preparation and purification of polyacrylamide-free RNA oligonucleotides. RNA 10:889–893

    Article  CAS  PubMed  Google Scholar 

  • Lukavsky PJ, Puglisi JD (2005) Structure determination of large biological RNAs. Methods Enzymol 394:399–416

    Article  CAS  PubMed  Google Scholar 

  • Lukavsky PJ, Kim I, Otto GA, Puglisi JD (2003) Structure of HCV IRES domain II determined by NMR. Nat Struct Biol 10:1033–1038

    Article  CAS  PubMed  Google Scholar 

  • Luo Y, Eldho NV, Sintim HO, Dayie TK (2011) RNAs synthesized using photocleavable biotinylated nucleotides have dramatically improved catalytic efficiency. Nucleic Acids Res 39(19):8559–8571

    Article  CAS  PubMed  Google Scholar 

  • Mackerell AD Jr, Nilsson L (2008) Molecular dynamics simulations of nucleic acid-protein complexes. Curr Opin Struct Biol 18:194–199

    Article  CAS  PubMed  Google Scholar 

  • Marcheschi RJ, Staple DW, Butcher SE (2007) Programmed ribosomal frameshifting in SIV is induced by a highly structured RNA stem-loop. J Mol Biol 373:652–663

    Article  CAS  PubMed  Google Scholar 

  • Marcheschi RJ, Mouzakis KD, Butcher S (2009) Selection and characterization of small molecules that bind the HIV-1 frameshift site RNA. ACS Chem Biol 4(10):844–854

    Article  CAS  PubMed  Google Scholar 

  • Mathews DH, Sabina J, Zuker M, Turner DH (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288:911–940

    Article  CAS  PubMed  Google Scholar 

  • Mathews DH, Disney MD, Childs JL, Schroeder SJ, Zuker M, Turner DH (2004) Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci U S A 101:7287–7292

    Article  CAS  PubMed  Google Scholar 

  • Mathews DH, Moss WN, Turner DH (2010) Folding and finding RNA secondary structure. Cold Spring Harb Perspect Biol 2(12):A003665

    Article  CAS  PubMed  Google Scholar 

  • Milligan JF, Uhlenbeck OC (1989) Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol 180:51–62

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki Y, Irobalieva RN, Tolbert BS, Smalls-Mantey A, Iyalla K, Loeliger K, D’Souza V, Khant H, Schmid MF, Garcia EL et al (2010) Structure of a conserved retroviral RNA packaging element by NMR spectroscopy and cryo-electron tomography. J Mol Biol 404:751–772

    Article  CAS  PubMed  Google Scholar 

  • Muesing MA, Smith DH, Capon DJ (1987) Regulation of mRNA accumulation by a human immunodeficiency virus trans-activator protein. Cell 48:691–701

    Article  CAS  PubMed  Google Scholar 

  • Musselman C, Zhang Q, Al-Hashimi H, Andricioaei I (2010) Referencing strategy for the direct comparison of nuclear magnetic resonance and molecular dynamics motional parameters in RNA. J Phys Chem B 114:929–939

    Article  CAS  PubMed  Google Scholar 

  • Nikonowicz EP, Pardi A (1993) An efficient procedure for assignment of the proton, carbon and nitrogen resonances in 13C/15N labeled nucleic acids. J Mol Biol 232:1141–1156

    Article  CAS  PubMed  Google Scholar 

  • Nikonowicz EP, Sirr A, Legault P, Jucker FM, Baer LM, Pardi A (1992) Preparation of 13C and 15N labelled RNAs for heteronuclear multi-dimensional NMR studies. Nucleic Acids Res 20:4507–4513

    Article  CAS  PubMed  Google Scholar 

  • Noeske J, Buck J, Fürtig B, Nasiri HR, Schwalbe H, Wöhnert J (2007a) Interplay of ‘induced fit’ and preorganization in the ligand induced folding of the aptamer domain of the guanine binding riboswitch. Nucleic Acids Res 35:572–583

    Article  CAS  PubMed  Google Scholar 

  • Noeske J, Schwalbe H, Wöhnert J (2007b) Metal-ion binding and metal-ion induced folding of the adenine-sensing riboswitch aptamer domain. Nucleic Acids Res 35:5262–5273

    Article  CAS  PubMed  Google Scholar 

  • Nozinovic S, Richter C, Rinnenthal J, Fürtig B, Duchardt-Ferner E, Weigand JE, Schwalbe H (2010a) Quantitative 2D and 3D Γ-HCP experiments for the determination of the angles α and ζ in the phosphodiester backbone of oligonucleotides. J Am Chem Soc 132:10318–10329

    Article  CAS  PubMed  Google Scholar 

  • Nozinovic S, Fürtig B, Jonker HRA, Richter C, Schwalbe H (2010b) High-resolution NMR structure of an RNA model system: the 14-mer cUUCGg tetraloop hairpin RNA. Nucleic Acids Res 38:683–694

    Article  CAS  PubMed  Google Scholar 

  • Ottink OM, Rampersad SM, Tessari M, Zaman GJR, Heus HA, Wijmenga SS (2007) Ligand-induced folding of the guanine-sensing riboswitch is controlled by a combined predetermined-induced fit mechanism. RNA 13:2202–2212

    Article  CAS  PubMed  Google Scholar 

  • Parisien M, Major F (2008) The MC-fold and MC-Sym pipeline infers RNA structure from sequence data. Nature 452:51–55

    Article  CAS  PubMed  Google Scholar 

  • Paulsen RB, Seth PP, Swayze EE, Griffey RH, Skalicky JJ, Cheatham TE III, Davis DR (2010) Inhibitor-induced structural change in the HCV IRES domain IIa RNA. Proc Natl Acad Sci U S A 107:7263–7268

    Article  CAS  PubMed  Google Scholar 

  • Pelikan M, Hura GL, Hammel M (2009) Structure and flexibility within proteins as identified through small angle X-ray scattering. Gen Physiol Biophys 28:174–189

    Article  CAS  PubMed  Google Scholar 

  • Pennell S, Manktelow E, Flatt A, Kelly G, Smerdon SJ, Brierley I (2008) The stimulatory RNA of the Visna-Maedi retrovirus ribosomal frameshifting signal is an unusual pseudoknot with an interstem element. RNA 14:1366–1377

    Article  CAS  PubMed  Google Scholar 

  • Pereira MJ, Behera V, Walter NG (2010) Nondenaturing purification of co-transcriptionally folded RNA avoids common folding heterogeneity. PLoS One 5:e12953

    Article  PubMed  CAS  Google Scholar 

  • Pervushin K, Riek R, Wider G, Wuthrich K (1997) Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci U S A 94:12366–12371

    Article  CAS  PubMed  Google Scholar 

  • Peterson RD, Theimer CA, Wu H, Feigon J (2004) New applications of 2D filtered/edited NOESY for assignment and structure elucidation of RNA and RNA-protein complexes. J Biomol NMR 28:59–67

    Article  CAS  PubMed  Google Scholar 

  • Pioletti M, Schlunzen F, Harms J, Zarivach R, Gluhmann M, Avila H, Bashan A, Bartels H, Auerbach T, Jacobi C et al (2001) Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3. EMBO J 20:1829–1839

    Article  CAS  PubMed  Google Scholar 

  • Pitt SW, Majumdar A, Serganov A, Patel DJ, Al-Hashimi HM (2004) Argininamide binding arrests global motions in HIV-1 TAR RNA: comparison with Mg2+-induced conformational stabilization. J Mol Biol 338:7–16

    Article  CAS  PubMed  Google Scholar 

  • Pollack L (2011) Time resolved SAXS and RNA folding. Biopolymers 95:543–549

    Article  CAS  PubMed  Google Scholar 

  • Prestegard JH, Al-Hashimi HM, Tolman JR (2000) NMR structures of biomolecules using field oriented media and residual dipolar couplings. Q Rev Biophys 33:371–424

    Article  CAS  PubMed  Google Scholar 

  • Putnam CD, Hammel M, Hura GL, Tainer JA (2007) X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Q Rev Biophys 40:191–285

    Article  CAS  PubMed  Google Scholar 

  • Rambo RP, Tainer JA (2010a) Improving small-angle X-ray scattering data for structural analyses of the RNA world. RNA 16:638–646

    Article  CAS  PubMed  Google Scholar 

  • Rambo RP, Tainer JA (2010b) Bridging the solution divide: comprehensive structural analyses of dynamic RNA, DNA, and protein assemblies by small-angle X-ray scattering. Curr Opin Struct Biol 20:128–137

    Article  CAS  PubMed  Google Scholar 

  • Rinnenthal J, Klinkert B, Narberhaus F, Schwalbe H (2010) Direct observation of the temperature-induced melting process of the Salmonella fourU RNA thermometer at base-pair resolution. Nucleic Acids Res 38:3834–3847

    Article  CAS  PubMed  Google Scholar 

  • Rinnenthal J, Buck J, Ferner J, Wacker A, Furtig B, Schwalbe H (2011) Mapping the landscape of RNA dynamics with NMR spectroscopy. Acc Chem Res 44(12):1292–1301

    Article  CAS  PubMed  Google Scholar 

  • Roh JH, Guo L, Kilburn JD, Briber RM, Irving T, Woodson SA (2010) Multistage collapse of a bacterial ribozyme observed by time-resolved small-angle X-ray scattering. J Am Chem Soc 132:10148–10154

    Article  CAS  PubMed  Google Scholar 

  • Roy R, Hohng S, Ha T (2008) A practical guide to single-molecule FRET. Nat Methods 5:507–516

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Schanda P, Kupče Ē, Brutscher B (2005) SOFAST-HMQC experiments for recording two-dimensional deteronuclear correlation spectra of proteins within a few seconds. J Biomol NMR 33:199–211

    Article  CAS  PubMed  Google Scholar 

  • Schneidman-Duhovny D, Hammel M, Sali A (2010) FoXS: a web server for rapid computation and fitting of SAXS profiles. Nucleic Acids Res 38:W540–W544

    Article  CAS  PubMed  Google Scholar 

  • Sclavi B, Sullivan M, Chance MR, Brenowitz M, Woodson SA (1998) RNA folding at millisecond intervals by synchrotron hydroxyl radical footprinting. Science 279:1940–1943

    Article  CAS  PubMed  Google Scholar 

  • Scott LG, Hennig M (2008) RNA structure determination by NMR. Methods Mol Biol 452:29–61

    Article  CAS  PubMed  Google Scholar 

  • Scott LG, Tolbert TJ, Williamson JR (2000) Preparation of specifically 2H- and 13C-labeled ribonucleotides. Methods Enzymol 317:18–38

    Article  CAS  PubMed  Google Scholar 

  • Selmer M, Dunham CM, Murphy FVT, Weixlbaumer A, Petry S, Kelley AC, Weir JR, Ramakrishnan V (2006) Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313:1935–1942

    Article  CAS  PubMed  Google Scholar 

  • Serganov A, Patel DJ (2007) Ribozymes, riboswitches and beyond: regulation of gene expression without proteins. Nat Rev Genet 8:776–790

    Article  CAS  PubMed  Google Scholar 

  • Seth PP, Miyaji A, Jefferson EA, Sannes-Lowery KA, Osgood SA, Propp SS, Ranken R, Massire C, Sampath R, Ecker DJ et al (2005) SAR by MS: discovery of a new class of RNA-binding small molecules for the hepatitis C virus: internal ribosome entry site IIA subdomain. J Med Chem 48:7099–7102

    Article  CAS  PubMed  Google Scholar 

  • Shajani Z, Varani G (2005) 13C NMR relaxation studies of RNA base and ribose nuclei reveal a complex pattern of motions in the RNA binding site for human U1A protein. J Mol Biol 349:699–715

    Article  CAS  PubMed  Google Scholar 

  • Shajani Z, Varani G (2007) NMR studies of dynamics in RNA and DNA by 13C relaxation. Biopolymers 86:348–359

    Article  CAS  PubMed  Google Scholar 

  • Shatsky IN, Dmitriev SE, Terenin IM, Andreev DE (2010) Cap- and IRES-independent scanning mechanism of translation initiation as an alternative to the concept of cellular IRESs. Mol Cells 30:285–293

    Article  CAS  PubMed  Google Scholar 

  • Shcherbakova I, Mitra S, Beer RH, Brenowitz M (2006) Fast Fenton footprinting: a laboratory-based method for the time-resolved analysis of DNA, RNA and proteins. Nucleic Acids Res 34:e48

    Article  PubMed  CAS  Google Scholar 

  • Shen LX, Tinoco I Jr (1995) The structure of an RNA pseudoknot that causes efficient frameshifting in mouse mammary tumor virus. J Mol Biol 247:963–978

    Article  CAS  PubMed  Google Scholar 

  • Sklenář V, Dieckmann T, Butcher SE, Feigon J (1998) Optimization of triple-resonance HCN experiments for application to larger RNA oligonucleotides. J Magn Reson 130:119–124

    Article  PubMed  Google Scholar 

  • Spahn CM, Kieft JS, Grassucci RA, Penczek PA, Zhou K, Doudna JA, Frank J (2001) Hepatitis C virus IRES RNA-induced changes in the conformation of the 40s ribosomal subunit. Science 291:1959–1962

    Article  CAS  PubMed  Google Scholar 

  • Staple DW, Butcher SE (2005a) Solution structure and thermodynamic investigation of the HIV-1 frameshift inducing element. J Mol Biol 349:1011–1023

    Article  CAS  PubMed  Google Scholar 

  • Staple DW, Butcher SE (2005b) Pseudoknots: RNA structures with diverse functions. PLoS Biol 3:e213

    Article  PubMed  CAS  Google Scholar 

  • Stoddard CD, Montange RK, Hennelly SP, Rambo RP, Sanbonmatsu KY, Batey RT (2010) Free state conformational sampling of the SAM-I riboswitch aptamer domain. Structure 18:787–797

    Article  CAS  PubMed  Google Scholar 

  • Svergun DI (1992) Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J Appl Crystallogr 25:495–503

    Article  Google Scholar 

  • Svergun DI (1999) Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys J 76:2879–2886

    Article  CAS  PubMed  Google Scholar 

  • Svergun DI, Barberato C, Koch MHJ (1995) CRYSOL—a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. J Appl Crystallogr 28:768–773

    Article  CAS  Google Scholar 

  • Talini G, Branciamore S, Gallori E (2011) Ribozymes: flexible molecular devices at work. Biochimie 93(11):1998–2005

    Article  CAS  PubMed  Google Scholar 

  • Theis C, Reeder J, Giegerich R (2008) KnotInFrame: prediction of −1 ribosomal frameshift events. Nucleic Acids Res 36:6013–6020

    Article  CAS  PubMed  Google Scholar 

  • Tolman JR (2001) Dipolar couplings as a probe of molecular dynamics and structure in solution. Curr Opin Struct Biol 11:532–539

    Article  CAS  PubMed  Google Scholar 

  • Tolman JR, Ruan K (2006) NMR residual dipolar couplings as probes of biomolecular dynamics. Chem Rev 106:1720–1736

    Article  CAS  PubMed  Google Scholar 

  • Tzakos AG, Grace CR, Lukavsky PJ, Riek R (2006) NMR techniques for very large proteins and rnas in solution. Annu Rev Biophys Biomol Struct 35:319–342

    Article  CAS  PubMed  Google Scholar 

  • Voehler MW, Collier G, Young JK, Stone MP, Germann MW (2006) Performance of cryogenic probes as a function of ionic strength and sample tube geometry. J Magn Reson 183:102–109

    Article  CAS  PubMed  Google Scholar 

  • Volkov VV, Svergun DI (2003) Uniqueness of ab-initio shape determination in small-angle scattering. J Appl Crystallogr 36:860–864

    Article  CAS  Google Scholar 

  • Walter NG (2001) Structural dynamics of catalytic RNA highlighted by fluorescence resonance energy transfer. Methods 25:19–30

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wills NM, Du Z, Rangan A, Atkins JF, Gesteland RF, Hoffman DW (2002) Comparative studies of frameshifting and nonframeshifting RNA pseudoknots: a mutational and NMR investigation of pseudoknots derived from the bacteriophage T2 gene 32 mRNA and the retroviral gag-pro frameshift site. RNA 8:981–996

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Zuo X, Yu P, Xu H, Starich MR, Tiede DM, Shapiro BA, Schwieters CD, Wang YX (2009) A method for helical RNA global structure determination in solution using small-angle x-ray scattering and NMR measurements. J Mol Biol 393:717–734

    Article  CAS  PubMed  Google Scholar 

  • Wang YX, Zuo X, Wang J, Yu P, Butcher SE (2010) Rapid global structure determination of large RNA and RNA complexes using NMR and small-angle X-ray scattering. Methods 52:180–191

    Article  CAS  PubMed  Google Scholar 

  • Weeks KM (2010) Advances in RNA structure analysis by chemical probing. Curr Opin Struct Biol 20:295–304

    Article  CAS  PubMed  Google Scholar 

  • Weeks KM, Mauger DM (2011) Exploring RNA structural codes with SHAPE chemistry. Acc Chem Res 44:1280–1291

    Article  CAS  PubMed  Google Scholar 

  • Woodson SA, Koculi E (2009) Analysis of RNA folding by native polyacrylamide gel electrophoresis. Methods Enzymol 469:189–208

    Article  CAS  PubMed  Google Scholar 

  • Wyatt JR, Chastain M, Puglisi JD (1991) Synthesis and purification of large amounts of RNA oligonucleotides. Biotechniques 11:764–769

    CAS  PubMed  Google Scholar 

  • Yang S, Parisien M, Major F, Roux B (2010) RNA structure determination using SAXS data. J Phys Chem B 114:10039–10048

    Article  CAS  PubMed  Google Scholar 

  • Yusupov MM, Yusupova GZ, Baucom A, Lieberman K, Earnest TN, Cate JHD, Noller HF (2001) Crystal structure of the ribosome at 5.5 A resolution. Science 292:883–896

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Al-Hashimi HM (2009) Domain-elongation NMR spectroscopy yields new insights into RNA dynamics and adaptive recognition. RNA 15:1941–1948

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Sun X, Watt ED, Al-Hashimi HM (2006) Resolving the motional modes that code for RNA adaptation. Science 311:653–656

    Article  CAS  PubMed  Google Scholar 

  • Zhao P (2011) The 2009 Nobel Prize in chemistry: Thomas A. Steitz and the structure of the ribosome. Yale J Biol Med 84:125–129

    CAS  PubMed  Google Scholar 

  • Zhao R, Rueda D (2009) RNA folding dynamics by single-molecule fluorescence resonance energy transfer. Methods 49:112–117

    Article  CAS  PubMed  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  CAS  PubMed  Google Scholar 

  • Zuo X, Wang J, Foster TR, Schwieters CD, Tiede DM, Butcher SE, Wang YX (2008) Global molecular structure and interfaces: refining an RNA:RNA complex structure using solution X-ray scattering data. J Am Chem Soc 130:3292–3293

    Article  CAS  PubMed  Google Scholar 

  • Zuo X, Wang J, Yu P, Eyler D, Xu H, Starich MR, Tiede DM, Simon AE, Kasprzak W, Schwieters CD et al (2010) Solution structure of the cap-independent translational enhancer and ribosome-binding element in the 3′ UTR of turnip crinkle virus. Proc Natl Acad Sci U S A 107:1385–1390

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel E. Butcher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mouzakis, K.D., Burke, J.E., Butcher, S.E. (2012). Investigating RNAs Involved in Translational Control by NMR and SAXS. In: Dinman, J. (eds) Biophysical approaches to translational control of gene expression. Biophysics for the Life Sciences, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3991-2_8

Download citation

Publish with us

Policies and ethics