Skip to main content

Identifying Disordered Regions in Proteins by Limited Proteolysis

  • Protocol
  • First Online:
Intrinsically Disordered Protein Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 896))

Abstract

Limited proteolysis experiments can be successfully used to detect sites of disorder in otherwise folded globular proteins. The approach relies on the fact that the proteolysis of a polypeptide substrate requires its binding in an extended conformation at the protease’s active site and thus an enhanced backbone flexibility or local unfolding of the site of proteolytic attack. A striking correlation was found between sites of limited proteolysis and sites of enhanced chain flexibility of the polypeptide chain, this last evaluated by the crystallographically determined B-factor. In numerous cases, it has been shown that limited proteolysis occurs at chain regions characterized by missing electron density and thus being disordered. Therefore, limited proteolysis is a simple and reliable experimental technique that can detect sites of disorder in proteins, thus complementing the results that can be obtained by the use of other physicochemical and computational approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dunker AK, Brown CJ, Lawson JD, Iakoucheva LM, Obradovic Z (2002) Intrinsic disorder and protein function. Biochemistry 41:6573–6582

    Article  PubMed  CAS  Google Scholar 

  2. Tompa P (2002) Intrinsically unstructured proteins. Trends Biochem Sci 27:527–533

    Article  PubMed  CAS  Google Scholar 

  3. Uversky VN (2002) Natively unfolded proteins: a point where biology waits for physics. Protein Sci 11:739–756

    Article  PubMed  CAS  Google Scholar 

  4. Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nature Rev. Mol. Cell Biol. 6:197–208

    Google Scholar 

  5. Dunker AK, Silman I, Uversky VN, Sussman JL (2008) Function and structure of inherently disordered proteins. Curr Opin Struct Biol 18:756–764

    Article  PubMed  CAS  Google Scholar 

  6. Le Gall T, Romero PR, Cortese MS, Uversky VN, Dunker AK (2007) Intrinsic disorder in the Protein Data Bank. J Biomol Struct Dyn 24:325–342

    Article  PubMed  Google Scholar 

  7. Dyson HJ, Wright PE (2004) Unfolded proteins and protein folding studied by NMR. Chem Rev 104:3607–3622

    Article  PubMed  CAS  Google Scholar 

  8. Rossman MG, Liljas A (1974) Recognition of structural domains in globular proteins. J Mol Biol 85:177–181

    Article  PubMed  CAS  Google Scholar 

  9. Ptitsyn OB (1995) Molten globule and protein folding. Adv Protein Chem 47:83–229

    Article  PubMed  CAS  Google Scholar 

  10. Kuwajima K (1989) The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure. Proteins 6:87–103

    Article  PubMed  CAS  Google Scholar 

  11. Arai M, Kuwajima K (2000) Role of the molten globule state in protein folding. Adv Protein Chem 53:209–282

    Article  PubMed  CAS  Google Scholar 

  12. Uversky VN (2011) Intrinsically disordered proteins from A to Z. Int J Biochem Cell Biol 43:1090–1103

    Article  PubMed  CAS  Google Scholar 

  13. Dyson HJ (2011) Expanding the proteome: disordered and alternatively folded proteins. Q Rev Biophys 44:467–518

    Google Scholar 

  14. Uversky VN, Longhi S (eds) (2010) Instrumental analysis of intrinsically disordered proteins: assessing structure and conformation. Wiley, New York

    Book  Google Scholar 

  15. Ferron F, Longhi S, Canard B, Karlin D (2006) A practical overview of protein disorder prediction methods. Proteins 65:1–14

    Article  PubMed  CAS  Google Scholar 

  16. Oldfield CJ, Cheng Y, Cortese MS, Brown CJ, Uversky VN, Dunker AK (2005) Comparing and combining predictors of mostly disordered proteins. Biochemistry 44:1989–2000

    Article  PubMed  CAS  Google Scholar 

  17. Fontana A, Fassina G, Vita C, Dalzoppo D, Zamai M, Zambonin M (1986) Correlation between sites of limited proteolysis and segmental mobility in thermolysin. Biochemistry 25:1847–1851

    Article  PubMed  CAS  Google Scholar 

  18. Fontana A, Polverino de Laureto P, De Filippis V (1993) Molecular aspects of proteolysis of globular proteins. In: Van den Tweel W, Harder A, Buitelaar M (eds) Protein stability and stabilization. Elsevier Science Publications, Amsterdam, pp 101–110

    Google Scholar 

  19. Fontana A, Polverino de Laureto P, De Filippis V, Scaramella E, Zambonin M (1997) Probing the partly folded states of proteins by limited proteolysis. Fold Des 2:R17–R26

    Article  PubMed  CAS  Google Scholar 

  20. Fontana A, Zambonin M, Polverino de Laureto P, De Filippis V, Clementi A, Scaramella E (1997) Probing the conformational state of apomyoglobin by limited proteolysis. J Mol Biol 266:223–230

    Article  PubMed  CAS  Google Scholar 

  21. Fontana A, Polverino de Laureto P, De Filippis V, Scaramella E, Zambonin M (1999) Limited proteolysis in the study of protein conformation. In: Sterchi E, Stöcker W (eds) Proteolytic enzymes: tools and targets. Springer, Heidelberg, pp 253–280

    Google Scholar 

  22. Fontana A, Polverino de Laureto P, Spolaore B, Frare E, Picotti P, Zambonin M (2004) Probing protein structure by limited proteolysis. Acta Biochim Pol 51:299–321

    PubMed  CAS  Google Scholar 

  23. Fontana A, Polverino de Laureto P, Spoloare B, Frare E, Zambonin M (2010) Detecting disordered regions in proteins by limited proteolysis. In: Uversky VN, Longhi S (eds) Instrumental analysis of intrinsically disordered proteins: assessing structure and conformation. Wiley, New York, pp 569–626

    Chapter  Google Scholar 

  24. Linderstrøm-Lang K (1950) Structure and enzymatic breakdown of proteins. Cold Spring Harb Symp Quant Biol 14:117–126

    Article  PubMed  Google Scholar 

  25. Neurath H (1980) Limited proteolysis, protein folding and physiological regulation. In: Jaenicke R (ed) Protein folding. Elsevier/North Holland Biomedical Press, Amsterdam, New York, pp 501–504

    Google Scholar 

  26. Richards FM, Vithayathil PJ (1959) The preparation of subtilisin-modified ribonuclease and the separation of the peptide and protein components. J Biol Chem 234:1459–1464

    PubMed  CAS  Google Scholar 

  27. Vita C, Dalzoppo D, Fontana A (1985) Limited proteolysis of thermolysin by subtilisin: isolation and characterization of a partially active enzyme derivative. Biochemistry 24:1798–1806

    Article  PubMed  CAS  Google Scholar 

  28. Fassina G, Vita C, Dalzoppo D, Zamai M, Zambonin M, Fontana A (1986) Autolysis of thermolysin: isolation and characterization of a folded three-fragment complex. Eur J Biochem 156:221–228

    Article  PubMed  CAS  Google Scholar 

  29. Musi V, Spolaore B, Picotti P, Zambonin M, De Filippis V, Fontana A (2004) Nicked apomyoglobin: a noncovalent complex of two polypeptide fragments comprising the entire polypeptide chains. Biochemistry 33:455–456

    Google Scholar 

  30. Spolaore B, Polverino de Laureto P, Zambonin M, Fontana A (2004) Limited proteolysis of human growth hormone at low pH: isolation, characterization and complementation of the two biologically relevant fragments 1–44 and 45–191. Biochemistry 43:6576–6586

    Article  PubMed  CAS  Google Scholar 

  31. Picotti P, Marabotti A, Negro A, Musi V, Spolaore B, Zambonin M, Fontana A (2004) Modulation of the structural integrity of helix F in apomyoglobin by single amino acid replacements. Protein Sci 13:1572–1585

    Article  PubMed  CAS  Google Scholar 

  32. Novotny J, Bruccoleri RE (1987) Correlation among sites of limited proteolysis, enzyme accessibility and segmental mobility. FEBS Lett 211:185–189

    Article  PubMed  CAS  Google Scholar 

  33. Hubbard SJ, Campbell SF, Thornton JM (1991) Molecular recognition. Conformational analysis of limited proteolytic sites and serine proteinase protein inhibitors. J Mol Biol 220:507–530

    Article  PubMed  CAS  Google Scholar 

  34. Hubbard SJ, Eisenmenger F, Thornton JM (1994) Modeling studies of the change in conformation required for cleavage of limited proteolytic sites. Protein Sci 3:757–768

    Article  PubMed  CAS  Google Scholar 

  35. Hubbard SJ (1998) The structural aspects of limited proteolysis of native proteins. Biochim Biophys Acta 1382:191–206

    Article  PubMed  CAS  Google Scholar 

  36. Ringe D, Petsko GA (1985) Mapping protein dynamics by X-ray diffraction. Prog Biophys Mol Biol 45:197–235

    Article  PubMed  CAS  Google Scholar 

  37. Sternberg MJE, Grace DEP, Phillips DC (1979) Dynamic information from protein crystallography: an analysis of temperature factors from refinement of the hen egg-white lysozyme. J Mol Biol 130:231–253

    Article  PubMed  CAS  Google Scholar 

  38. Kundu S, Melton SJ, Sorensen DC, Phillips GN Jr (2002) Dynamics of proteins in crystals: comparison of experiment with simple models. Biophys J 83:723–732

    Article  PubMed  CAS  Google Scholar 

  39. Radivojac P, Obradovic Z, Smith DK, Zhu G, Vucetic S, Brown CJ, Lawson JD, Dunker AK (2004) Protein flexibility and intrinsic disorder. Protein Sci 13:71–80

    Google Scholar 

  40. Tyndall JDA, Fairlie DP (1999) Conformational homogeneity in molecular recognition by proteolytic enzymes. J Mol Recognit 12:363–370

    Article  PubMed  CAS  Google Scholar 

  41. Tyndall JDA, Nall T, Fairlie DP (2005) Proteases universally recognize beta strands in their active site. Chem Rev 105:973–999

    Article  PubMed  CAS  Google Scholar 

  42. Schechter I, Berger A (1967) On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun 27:157–162

    Article  PubMed  CAS  Google Scholar 

  43. Burkhard P, Dominici P, Borri-Voltattorni C, Jansonius JN, Malashkevich VN (2001) Structural insight into Parkinson’s disease treatment from drug-inhibited DOPA decarboxylase. Nat Struct Biol 8:963–967

    Article  PubMed  CAS  Google Scholar 

  44. Bossa F, Borri-Voltattorni C (1991) Pig kidney 3,4-dihydroxyphenylalanine (dopa) decarboxylase: primary structure and relationships to other amino acid decarboxylases. Eur J Biochem 201:385–391

    Article  PubMed  Google Scholar 

  45. Fisher AJ, Thompson TB, Thoden JB, Baldwin TO, Rayment I (1996) The 1.5 Å resolution crystal structure of bacterial luciferase in low salt conditions. J Biol Chem 271:21956–21968

    Article  PubMed  CAS  Google Scholar 

  46. Apuy JL, Park ZY, Swartz PD, Dangott LJ, Russell DH, Baldwin TO (2001) Pulsed-alkylation mass spectrometry for the study of protein folding and dynamics: development and application to the study of a folding/unfolding intermediate of bacterial luciferase. Biochemistry 40:15153–15163

    Article  PubMed  CAS  Google Scholar 

  47. Bennett MJ, Choe S, Eisenberg D (1994) Refined structure of dimeric diphtheria toxin at 2.0 Å resolution. Protein Sci 3:1444–1463

    Article  PubMed  CAS  Google Scholar 

  48. Moskaug JO, Sletten K, Sandvig K, Olsnes S (1989) Translocation of diphtheria toxin A-fragment to the cytosol: role of the site of inter-fragment cleavage. J Biol Chem 264:15709–15713

    PubMed  CAS  Google Scholar 

  49. Xia ZX, Mathews FS (1990) Molecular structure of flavocytochrome b2 at 2.4 Å resolution. J Mol Biol 212:837–863

    Article  PubMed  CAS  Google Scholar 

  50. Ghrir R, Lederer F (1981) Study of a zone highly sensitive to proteases in flavocytochrome b2 from Saccharomyces cerevisiae. Eur J Biochem 120:279–287

    Article  PubMed  CAS  Google Scholar 

  51. Umhau S, Pollegioni L, Molla G, Diederichs K, Welte W, Pilone MS, Ghisla S (2000) The X-ray structure of d-amino acid oxidase at very high resolution identifies the chemical mechanism of flavin-dependent substrate dehydrogenation. Proc Natl Acad Sci USA 97:12463–12468

    Article  PubMed  CAS  Google Scholar 

  52. Campaner S, Pollegioni L, Ross BD, Pilone MS (1998) Limited proteolysis and site-directed mutagenesis reveal the origin of microheterogeneity in Rhodotorula gracilis d-amino acid oxidase. Biochem J 330:615–621

    PubMed  CAS  Google Scholar 

  53. Meador WE, Means AR, Quiocho FA (1993) Modulation of calmodulin plasticity in molecular recognition on the basis of X-ray structures. Science 262:1718–1721

    Article  PubMed  CAS  Google Scholar 

  54. Draibikowski W, Brzeska H, Venyaminov SY (1982) Tryptic fragments of calmodulin. J Biol Chem 257:11584–11590

    Google Scholar 

  55. Loll PJ, Lattman EE (1989) The crystal structure of the ternary complex of staphylococcal nuclease, Ca2+, and the inhibitor pdTp, refined at 1.65 Å. Proteins 5:183–201

    Article  PubMed  CAS  Google Scholar 

  56. Taniuchi H, Anfinsen CB (1968) Steps in the formation of active derivatives of staphylococcal nuclease during trypsin digestion. J Biol Chem 243:4778–4786

    PubMed  CAS  Google Scholar 

  57. Juers DH, Hakda S, Matthews BW, Huber RE (2003) Structural basis for the altered activity of Gly794 variants of Escherichia coli β-galactosidase. Biochemistry 42:13505–13511

    Article  PubMed  CAS  Google Scholar 

  58. Edwards LA, Tian MR, Huber RE, Fowler AV (1988) The use of limited proteolysis to probe interdomain and active site regions of β-galactosidase (Escherichia coli). J Biol Chem 263:1848–1854

    PubMed  CAS  Google Scholar 

  59. Matsuda K, Mizuguchi K, Nishioka T, Kato H, Go N, Oda J (1996) Crystal structure of glutathione synthetase at optimal pH: domain architecture and structural similarity with other proteins. Protein Eng 9:1083–1092

    Article  PubMed  CAS  Google Scholar 

  60. Tanaka T, Kato H, Nishioka T, Oda J (1992) Mutational and proteolytic studies on a flexible loop in glutathione synthetase from Escherichia coli B: the loop and arginine 233 are critical for the catalytic reaction. Biochemistry 31:2259–2265

    Article  PubMed  CAS  Google Scholar 

  61. Oakley AJ, Lo Bello M, Ricci G, Federici G, Parker MW (1998) Evidence for an induced-fit mechanism operating in pi class glutathione transferases. Biochemistry 37:9912–9917

    Article  PubMed  CAS  Google Scholar 

  62. Martini F, Aceto A, Sacchetta P, Bucciarelli T, Dragani B, Di Ilio C (1993) Investigation of intra-domain and inter-domain interactions of glutathione transferase P1-1 by limited chymotryptic cleavage. Eur J Biochem 218:845–851

    Article  PubMed  CAS  Google Scholar 

  63. Lo Bello M, Pastore A, Petruzzelli R, Parker MW, Wilce MC, Federici G, Ricci G (1993) Conformational states of human placental glutathione transferase as probed by limited proteolysis. Biochem Biophys Res Commun 194:804–810

    Article  PubMed  CAS  Google Scholar 

  64. Wlodawer A, Minor W, Dauter Z, Jaskolski M (2007) Protein crystallography for non-crystallographers, or how to get the best (but not more) from published macromolecular structures. FEBS J 275:1–21

    Article  PubMed  Google Scholar 

  65. Schägger H, von Jagow G (1987) Tricine sodium dodecyl sulfate polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 kDa to 100 kDa. Anal Biochem 166:368–379

    Article  PubMed  Google Scholar 

  66. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207

    Article  PubMed  CAS  Google Scholar 

  67. Domon B, Aebersold R (2006) Mass spectrometry and protein analysis. Science 312:212–217

    Article  PubMed  CAS  Google Scholar 

  68. Cravatt BF, Simon GM, Yates JR 3rd (2007) The biological impact of mass-spectrometry-based proteomics. Nature 450:991–1000

    Article  PubMed  CAS  Google Scholar 

  69. Yates JR, Ruse CI, Nakorchevsky A (2009) Proteomics by mass spectrometry: approaches, advances, and applications. Annu Rev Biomed Eng 11:49–79

    Article  PubMed  CAS  Google Scholar 

  70. Helsens K, Martens L, Vandekerckhove J, Gevaert K (2011) Mass spectrometry-driven proteomics: an introduction. Methods Mol Biol 753:1–27

    Article  PubMed  CAS  Google Scholar 

  71. Gheyi T, Rodgers L, Romero R, Sauder JM, Burley SK (2010) Mass spectrometry guided in situ proteolysis to obtain crystals for X-ray structure determination. J Am Soc Mass Spectrom 21:1795–1801

    Article  PubMed  CAS  Google Scholar 

  72. Sajnani G, Pastrana MA, Dynin I, Onisko B, Requena JR (2008) Scrapie prion protein structural constraints obtained by limited proteolysis and mass spectrometry. J Mol Biol 382:88–98

    Article  PubMed  CAS  Google Scholar 

  73. Gao X, Bain K, Bonanno JB, Buchanan M, Henderson D, Lorimer D, Marsh C, Reynes JA, Sauder JM, Schwinn K, Thai C, Burley SK (2005) High-throughput limited proteolysis/mass spectrometry for protein domain elucidation. J Struct Funct Genomics 6:129–134

    Article  PubMed  CAS  Google Scholar 

  74. Koth CM, Orlicky SM, Larson SM, Edwards AM (2003) Use of limited proteolysis to identify protein domains suitable for structural analysis. Methods Enzymol 368:77–84

    Article  PubMed  CAS  Google Scholar 

  75. Wernimont A, Edwards A (2009) In situ proteolysis to generate crystals for structure determination: an update. PLoS One 4:e5094

    Article  PubMed  Google Scholar 

  76. Mann M, Kelleher NL (2008) Precision proteomics: the case for high resolution and high mass accuracy. Proc Natl Acad Sci USA 105:18132–18138

    Article  PubMed  CAS  Google Scholar 

  77. Perry RH, Cooks RG, Noll RJ (2008) Orbitrap mass spectrometry: instrumentation, ion motion and applications. Mass Spectrom Rev 27:661–699

    Article  PubMed  CAS  Google Scholar 

  78. Makarov A, Scigelova M (2010) Coupling liquid chromatography to Orbitrap mass spectrometry. J Chromatogr A 1217:3938–3945

    Article  PubMed  CAS  Google Scholar 

  79. Eliezer D, Wright PE (1996) Is apomyoglobin a molten globule? Structural characterization by NMR. J Mol Biol 263:531–538

    Article  PubMed  CAS  Google Scholar 

  80. Eliezer D, Yao J, Dyson HJ, Wright PE (1998) Structural and dynamic characterization of partially folded states of apomyoglobin and implications for protein folding. Nat Struct Biol 5:148–155

    Article  PubMed  CAS  Google Scholar 

  81. Brooks CL (1992) Characterization of native apomyoglobin by molecular dynamics simulation. J Mol Biol 227:375–380

    Article  PubMed  CAS  Google Scholar 

  82. Hirst JD, Brooks CL (1995) Molecular dynamics simulations of isolated helices of myoglobin. Biochemistry 34:7614–7621

    Article  PubMed  CAS  Google Scholar 

  83. Tirado-Rives J, Jorgensen WL (1993) Molecular dynamics simulations of the unfolding of apomyoglobin in water. Biochemistry 32:4175–4184

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the University of Padua (ex-60%) and by the Italian Ministry of University and Research (PRIN-2007). The former lab members Paola Picotti and Marcello Zambonin have contributed a great deal to the ideas herewith expressed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Fontana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Fontana, A., de Laureto, P.P., Spolaore, B., Frare, E. (2012). Identifying Disordered Regions in Proteins by Limited Proteolysis. In: Uversky, V., Dunker, A. (eds) Intrinsically Disordered Protein Analysis. Methods in Molecular Biology, vol 896. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3704-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3704-8_20

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3703-1

  • Online ISBN: 978-1-4614-3704-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics