Skip to main content

Mass Spectrometry-Driven Proteomics: An Introduction

  • Protocol
  • First Online:
Gel-Free Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 753))

Abstract

Proteins are reckoned to be the key actors in a living organism. By studying proteins, one engages into deciphering a complex series of events occurring during a protein’s life span. This starts at the creation of a protein, which is tightly controlled on both a transcriptional (Williams and Tyler, 2007, Curr Opin Genet Dev 17, 88–93) and a translational level (Van Der Kelen et al., 2009, Crit Rev Biochem Mol Biol 44, 143–168). During translation, a primary strand of amino acids undergoes a complex folding process in order to obtain a native three-dimensional protein structure (Gross et al., 2003, Cell 115, 739–750). Proteins take on a plethora of functions, such as complex formation, receptor activity, and signal transduction, which ultimately adds up to a cellular phenotype. Consequently, protein analysis is of major interest in molecular biology and involves annotating their presence and localization, as well as their modification state and biochemical context. To accomplish this, many methods have been developed over the last decades, and their general principles and important recent advances in large-scale protein analysis or proteomics are discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    UniProtKB/Swiss-Prot release 57.9.

  2. 2.

    The HUPO Proteomics Standards Initiative (PSI) defines community standards for data representation in proteomics to facilitate data comparison, exchange, and verification. http://www.psidev.info/

References

  1. Williams, S.K. & Tyler, J.K. (2007) Transcriptional regulation by chromatin disassembly and reassembly. Curr Opin Genet Dev 17, 88–93.

    Article  PubMed  CAS  Google Scholar 

  2. Van Der Kelen, K., Beyaert, R., Inzé, D. & De Veylder, L. (2009) Translational control of eukaryotic gene expression. Crit Rev Biochem Mol Biol 44, 143–168.

    Article  CAS  Google Scholar 

  3. Gross, J.D. et al. (2003) Ribosome loading onto the mRNA cap is driven by conformational coupling between eIF4G and eIF4E. Cell 115, 739–750.

    Article  PubMed  CAS  Google Scholar 

  4. Edman, P. (1950) Method for determination of the amino acid sequence in peptides. Acta Chem Scand 4, 283–293.

    Article  CAS  Google Scholar 

  5. Niall, H. (1973) Automated Edman degradation: the protein sequenator. Methods Enzymol 27, 942–1010.

    Article  PubMed  CAS  Google Scholar 

  6. de Godoy, L.M.F. et al. (2006) Status of complete proteome analysis by mass spectrometry: SILAC labeled yeast as a model system. Genome Biol 7, R50.

    Article  PubMed  CAS  Google Scholar 

  7. Svensson, H. (1961) Isoelectric fractionation, analysis, and characterization of ampholytes in natural pH gradients. Acta Chem Scand 15, 325.

    Article  CAS  Google Scholar 

  8. Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  9. O‘Farrell, P.H. (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250, 4007–4021.

    PubMed  Google Scholar 

  10. Klose, J. (1975) Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. Hum Genet 26, 231–243.

    CAS  Google Scholar 

  11. Lauber, W.M. et al. (2001) Mass spectrometry compatibility of two-dimensional gel protein stains. Electrophoresis 22, 906–918.

    Article  PubMed  CAS  Google Scholar 

  12. Vandekerckhove, J., Bauw, G., Puype, M., Van Damme, J. & Van Montagu, M. (1985) Protein-blotting on Polybrene-coated glass-fiber sheets. A basis for acid hydrolysis and gas-phase sequencing of picomole quantities of protein previously separated on sodium dodecyl sulfate/polyacrylamide gel. Eur J Biochem 152, 9–19.

    Article  PubMed  CAS  Google Scholar 

  13. Pappin, D.J., Hojrup, P. & Bleasby, A.J. (1993) Rapid identification of proteins by peptide-mass fingerprinting. Curr Biol 3, 327–332.

    Article  PubMed  CAS  Google Scholar 

  14. Felinger, A. (2008) Molecular dynamic theories in chromatography. J Chromatogr A 1184, 20–41.

    Article  PubMed  CAS  Google Scholar 

  15. Imoto, T. & Yamada, H. (1983) Peptide separation by reversed-phase high-performance liquid chromatography. Mol Cell Biochem 51, 111–121.

    Article  PubMed  CAS  Google Scholar 

  16. Tanaka, K., Waki, H., Ido, Y., Akita, S. & Yoshida, Y. (1988) Protein and polymer analyses up to m/z 100,000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2, 151–153.

    Article  CAS  Google Scholar 

  17. Karas, M. & Hillenkamp, F. (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60, 2299–2301.

    Article  PubMed  CAS  Google Scholar 

  18. Zenobi, R. & Knochenmuss, R. (1998) Ion formation in MALDI mass spectrometry. Mass Spectrom Rev 17, 337–366.

    Article  CAS  Google Scholar 

  19. Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F. & Whitehouse, C.M. (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246, 64–71.

    Article  PubMed  CAS  Google Scholar 

  20. Taylor, G. (1964) Disintegration of water drops in an electric field. Proc R Soc Lond A 280, 383–397.

    Article  Google Scholar 

  21. Rayleigh, L. (1882) Further observations upon liquid jets. Proc R Soc Lond 34, 130–145.

    Article  Google Scholar 

  22. Rietschel, B. et al. (2009) The benefit of combining nLC-MALDI-Orbitrap MS data with nLC-MALDI-TOF/TOF data for proteomic analyses employing elastase. J Proteome Res 8, 5317–5324.

    Article  PubMed  CAS  Google Scholar 

  23. Paul, W. & Steinwedel, H. (1953) Ein neues Massenspektrometer ohne Magnetfeld. Zeitschrift Naturforschung Teil A 8, 448–448.

    Google Scholar 

  24. March, R. (2009) Quadrupole ion traps. Mass Spectrom Rev 28, 961–989.

    Article  PubMed  CAS  Google Scholar 

  25. Makarov, A. et al. (2006) Performance evaluation of a hybrid linear ion trap/orbitrap mass spectrometer. Anal Chem 78, 2113–2120.

    Article  PubMed  CAS  Google Scholar 

  26. Makarov, A. (2000) Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis. Anal Chem 72, 1156–1162.

    Article  PubMed  CAS  Google Scholar 

  27. Mclafferty, F.W. (1994) High-resolution tandem FT mass spectrometry above 10 kDa. Acc Chem Res 27, 379–386.

    Article  CAS  Google Scholar 

  28. Kameyama, A. (2006) Glycomics using mass spectrometry. Trends Glycosci Glycotechnol 18, 323–341.

    Article  CAS  Google Scholar 

  29. Villén, J., Beausoleil, S.A. & Gygi, S.P. (2008) Evaluation of the utility of neutral-loss-dependent MS3 strategies in large-scale phosphorylation analysis. Proteomics 8, 4444.

    Article  PubMed  CAS  Google Scholar 

  30. Olsen, J. et al. (2009) A dual pressure linear ion trap – Orbitrap instrument with very high sequencing speed. Mol Cell Proteomics 8, 2759–2769.

    Article  PubMed  CAS  Google Scholar 

  31. Wiza, J. (1979) Microchannel plate detectors. Nucl Instrum Methods 162, 587–601.

    Article  CAS  Google Scholar 

  32. Farnsworth, P. (1934) Electron multiplier. US Patent 1,969,399.

    Google Scholar 

  33. Roepstorff, P. & Fohlman, J. (1984) Letter to the editors. Biol Mass Spectrom 11, 601.

    Article  CAS  Google Scholar 

  34. Wells, J. & McLuckey, S. (2005) Collision-induced dissociation (CID) of peptides and proteins. Methods Enzymol 402, 148–185.

    Article  PubMed  CAS  Google Scholar 

  35. Falick, A., Hines, W., Medzihradszky, K., Baldwin, M. & Gibson, B. (1993) Low-mass ions produced from peptides by high-energy collision-induced dissociation in tandem mass spectrometry. J Am Soc Mass Spectrom 4, 882–893.

    Article  CAS  Google Scholar 

  36. Huang, Y. et al. (2008) A data-mining scheme for identifying peptide structural motifs responsible for different MS/MS fragmentation intensity patterns. J Proteome Res 7, 70–79.

    Article  PubMed  CAS  Google Scholar 

  37. DeGnore, J. & Qin, J. (1998) Fragmentation of phosphopeptides in an ion trap mass spectrometer. J Am Soc Mass Spectrom 9, 1175–1188.

    Article  PubMed  CAS  Google Scholar 

  38. Syka, J., Coon, J. & Schroeder, M. (2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci 101, 9528–9533.

    Article  PubMed  CAS  Google Scholar 

  39. Zubarev, R., Kelleher, N. & McLafferty, F. (1998) Electron capture dissociation of multiply charged protein cations. A nonergodic process. J Am Chem Soc 120, 3265–3266.

    Article  CAS  Google Scholar 

  40. Molina, H., Horn, D.M., Tang, N., Mathivanan, S. & Pandey, A. (2007) Global proteomic profiling of phosphopeptides using electron transfer dissociation tandem mass spectrometry. Proc Natl Acad Sci USA 104, 2199–2204.

    Article  PubMed  CAS  Google Scholar 

  41. Chi, A. et al. (2007) Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry. Proc Natl Acad Sci USA 104, 2193–2198.

    Article  PubMed  CAS  Google Scholar 

  42. Kondrat, R.W., Mcclusky, G.A. & Cooks, R.G. (1978) Multiple reaction monitoring in mass spectrometry/mass spectrometry for direct analysis of complex mixtures. Anal Chem 50, 2017–2021.

    Article  CAS  Google Scholar 

  43. Stahl-Zeng, J. et al. (2007) High sensitivity detection of plasma proteins by multiple reaction monitoring of N-glycosites. Mol Cell Proteomics 6, 1809–1817.

    Article  PubMed  CAS  Google Scholar 

  44. Picotti, P., Bodenmiller, B., Mueller, L.N., Domon, B. & Aebersold, R. (2009) Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics. Cell 138, 795–806.

    Article  PubMed  CAS  Google Scholar 

  45. Lange, V., Picotti, P., Domon, B. & Aebersold, R. (2008) Selected reaction monitoring for quantitative proteomics: a tutorial. Mol Syst Biol 4, 222.

    Article  PubMed  Google Scholar 

  46. Liu, H., Sadygov, R.G. & Yates, J.R. (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem 76, 4193–4201.

    Article  PubMed  CAS  Google Scholar 

  47. Washburn, M., Wolters, D. & Yates, J. (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19, 242–247.

    Article  PubMed  CAS  Google Scholar 

  48. Link, A. et al. (1999) Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol 17, 676–682.

    Article  PubMed  CAS  Google Scholar 

  49. Peng, J., Elias, J., Thoreen, C., Licklider, L. & Gygi, S. (2003) Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. J Proteome Res 2, 43–50.

    Article  PubMed  CAS  Google Scholar 

  50. Dix, M.M., Simon, G.M. & Cravatt, B.F. (2008) Global mapping of the topography and magnitude of proteolytic events in apoptosis. Cell 134, 679–691.

    Article  PubMed  CAS  Google Scholar 

  51. de Godoy, L.M.F. et al. (2008) Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature 455, 1251–1254.

    Article  PubMed  CAS  Google Scholar 

  52. Ghaemmaghami, S. et al. (2003) Global analysis of protein expression in yeast. Nature 425, 737–741.

    Article  PubMed  CAS  Google Scholar 

  53. Huh, W.-K. et al. (2003) Global analysis of protein localization in budding yeast. Nature 425, 686–691.

    Article  PubMed  CAS  Google Scholar 

  54. Nesvizhskii, A.I. & Aebersold, R. (2005) Interpretation of shotgun proteomic data: the protein inference problem. Mol Cell Proteomics 4, 1419–1440.

    Article  PubMed  CAS  Google Scholar 

  55. Gygi, S.P. et al. (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17, 994–999.

    Article  PubMed  CAS  Google Scholar 

  56. Gevaert, K. et al. (2002) Chromatographic isolation of methionine-containing peptides for gel-free proteome analysis: identification of more than 800 Escherichia coli proteins. Mol Cell Proteomics 1, 896–903.

    Article  PubMed  CAS  Google Scholar 

  57. Gevaert, K. et al. (2007) A la carte proteomics with an emphasis on gel-free techniques. Proteomics 7, 2698–2718.

    Article  PubMed  CAS  Google Scholar 

  58. Gevaert, K. et al. (2003) Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides. Nat Biotechnol 21, 566–569.

    Article  PubMed  CAS  Google Scholar 

  59. Staes, A. et al. (2008) Improved recovery of proteome-informative, protein N-terminal peptides by combined fractional diagonal chromatography (COFRADIC). Proteomics 8, 1362–1370.

    Article  PubMed  CAS  Google Scholar 

  60. Jensen, O. (2006) Interpreting the protein language using proteomics. Nat Rev Mol Cell Biol 7, 391–403.

    Article  PubMed  CAS  Google Scholar 

  61. Enoksson, M. et al. (2007) Identification of proteolytic cleavage sites by quantitative proteomics. J Proteome Res 6, 2850–2858.

    Article  PubMed  CAS  Google Scholar 

  62. Timmer, J.C. et al. (2007) Profiling constitutive proteolytic events in vivo. Biochem J 407, 41–48.

    Article  PubMed  CAS  Google Scholar 

  63. Doucet, A. & Overall, C.M. (2008) Protease proteomics: revealing protease in vivo functions using systems biology approaches. Mol Aspects Med 29, 339–358.

    Article  PubMed  CAS  Google Scholar 

  64. Mahrus, S. et al. (2008) Global sequencing of proteolytic cleavage sites in apoptosis by specific labeling of protein N termini. Cell 134, 866–876.

    Article  PubMed  CAS  Google Scholar 

  65. Andersson, L. & Porath, J. (1986) Isolation of phosphoproteins by immobilized metal (Fe-3+) affinity chromatography. Anal Biochem 154, 250–254.

    Article  PubMed  CAS  Google Scholar 

  66. Bonenfant, D. et al. (2003) Quantitation of changes in protein phosphorylation: a simple method based on stable isotope labeling and mass spectrometry. Proc Natl Acad Sci USA 100, 880–885.

    Article  PubMed  CAS  Google Scholar 

  67. Pinkse, M., Uitto, P., Hilhorst, M., Ooms, B. & Heck, A. (2004) Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-nanoLC-ESI-MS/MS and titanium oxide precolumns. Anal Chem 76, 3935–3943.

    Article  PubMed  CAS  Google Scholar 

  68. Mcnulty, D. & Annan, R. (2008) Hydrophilic interaction chromatography reduces the complexity of the phosphoproteome and improves global phosphopeptide isolation and detection. Mol Cell Proteomics 7, 971.

    Article  PubMed  CAS  Google Scholar 

  69. Beausoleil, S. et al. (2004) Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci USA 101, 12130–12135.

    Article  PubMed  CAS  Google Scholar 

  70. Geng, M., Zhang, X., Bina, M. & Regnier, F. (2001) Proteomics of glycoproteins based on affinity selection of glycopeptides from tryptic digests. J Chromatogr B 752, 293–306.

    Article  CAS  Google Scholar 

  71. Zhang, H., Yan, W. & Aebersold, R. (2004) Chemical probes and tandem mass spectrometry: a strategy for the quantitative analysis of proteomes and subproteomes. Curr Opin Chem Biol 8, 66–75.

    Article  PubMed  CAS  Google Scholar 

  72. Khidekel, N. et al. (2007) Probing the dynamics of O-GlcNAc glycosylation in the brain using quantitative proteomics. Nat Chem Biol 3, 339–348.

    Article  PubMed  CAS  Google Scholar 

  73. Choudhary, C. et al. (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325, 834–840.

    Article  PubMed  CAS  Google Scholar 

  74. Peng, J. et al. (2003) A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 21, 921–926.

    Article  PubMed  CAS  Google Scholar 

  75. Aebersold, R. & Mann, M. (2003) Mass spectrometry-based proteomics. Nature 422, 198–207.

    Article  PubMed  CAS  Google Scholar 

  76. Lahm, H. & Langen, H. (2000) Mass spectrometry: a tool for the identification of proteins separated by gels. Electrophoresis 21, 2105–2114.

    Article  PubMed  CAS  Google Scholar 

  77. Ong, S. et al. (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1, 376–386.

    Article  PubMed  CAS  Google Scholar 

  78. Mann, M. (2006) Functional and quantitative proteomics using SILAC. Nat Rev Mol Cell Biol 7, 952–958.

    Article  PubMed  CAS  Google Scholar 

  79. Krueger, M. et al. (2008) SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell 134, 353–364.

    Article  CAS  Google Scholar 

  80. Krijgsveld, J. et al. (2003) Metabolic labeling of C. elegans and D. melanogaster for quantitative proteomics. Nat Biotechnol 21, 927–931.

    Article  PubMed  CAS  Google Scholar 

  81. Han, D.K., Eng, J., Zhou, H. & Aebersold, R. (2001) Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nat Biotechnol 19, 946–951.

    Article  PubMed  CAS  Google Scholar 

  82. Staes, A. et al. (2004) Global differential non-gel proteomics by quantitative and stable labeling of tryptic peptides with oxygen-18. J Proteome Res 3, 786–791.

    Article  PubMed  CAS  Google Scholar 

  83. Ross, P. et al. (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3, 1154–1169.

    Article  PubMed  CAS  Google Scholar 

  84. Gerber, S., Rush, J., Stemman, O., Kirschner, M. & Gygi, S. (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci USA 100, 6940–6945.

    Article  PubMed  CAS  Google Scholar 

  85. Malmström, J. et al. (2009) Proteome-wide cellular protein concentrations of the human pathogen Leptospira interrogans. Nature 460, 762–765.

    Article  PubMed  CAS  Google Scholar 

  86. Choi, H., Fermin, D. & Nesvizhskii, A. (2008) Significance analysis of spectral count data in label-free shotgun proteomics. Mol Cell Proteomics 7, 2373.

    Article  PubMed  CAS  Google Scholar 

  87. Wiener, M., Sachs, J., Deyanova, E. & Yates, N. (2004) Differential mass spectrometry: a label-free LC-MS method for finding significant differences in complex peptide and protein mixtures. Anal Chem 76, 6085–6096.

    Article  PubMed  CAS  Google Scholar 

  88. Sturm, M. et al. (2008) OpenMS-An open-source software framework for mass spectrometry. BMC Bioinformatics 9, 163.

    Article  PubMed  CAS  Google Scholar 

  89. Cox, J. & Mann, M. (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26, 1367–1372.

    Article  PubMed  CAS  Google Scholar 

  90. Katajamaa, M. & Oresic, M. (2007) Data processing for mass spectrometry-based metabolomics. J Chromatogr A 1158, 318–328.

    Article  PubMed  CAS  Google Scholar 

  91. Mann, M. & Wilm, M. (1994) Error-tolerant identification of peptides in sequence databases by peptide sequence tags. Anal Chem 66, 4390–4399.

    Article  PubMed  CAS  Google Scholar 

  92. Reisinger, F. & Martens, L. (2009) Database on Demand – An online tool for the custom generation of FASTA-formatted sequence databases. Proteomics 9, 4421–4424.

    Article  PubMed  CAS  Google Scholar 

  93. Nesvizhskii, A.I., Vitek, O. & Aebersold, R. (2007) Analysis and validation of proteomic data generated by tandem mass spectrometry. Nat Methods 4, 787–797.

    Article  PubMed  CAS  Google Scholar 

  94. Yates, J.R., Eng, J.K., McCormack, A.L. & Schieltz, D. (1995) Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Anal Chem 67, 1426–1436.

    Article  PubMed  CAS  Google Scholar 

  95. Perkins, D., Pappin, D., Creasy, D. & Cottrell, J. (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567.

    Article  PubMed  CAS  Google Scholar 

  96. Fenyo, D. & Beavis, R. (2003) A method for assessing the statistical significance of mass spectrometry-based protein identifications using general scoring schemes. Anal Chem 75, 768–774.

    Article  PubMed  CAS  Google Scholar 

  97. Colinge, J., Masselot, A., Giron, M., Dessingy, T. & Magnin, J. (2003) OLAV: towards high-throughput tandem mass spectrometry data identification. Proteomics 3, 1454–1463.

    Article  PubMed  CAS  Google Scholar 

  98. Geer, L. et al. (2004) Open mass spectrometry search algorithm. J Proteome Res 3, 958–964.

    Article  PubMed  CAS  Google Scholar 

  99. Frank, A. & Pevzner, P. (2005) PepNovo: de novo peptide sequencing via probabilistic network modeling. Anal Chem 77, 964–973.

    Article  PubMed  CAS  Google Scholar 

  100. Johnson, R. & Taylor, J. (2002) Searching sequence databases via de novo peptide sequencing by tandem mass spectrometry. Mol Biotechnol 22, 301–315.

    Article  PubMed  CAS  Google Scholar 

  101. Elias, J.E. & Gygi, S.P. (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 4, 207–214.

    Article  PubMed  CAS  Google Scholar 

  102. Nesvizhskii, A. et al. (2006) Dynamic spectrum quality assessment and iterative computational analysis of shotgun proteomic data – Toward more efficient identification of post-translational modifications, sequence polymorphisms, and novel peptides. Mol Cell Proteomics 5, 652–670.

    PubMed  CAS  Google Scholar 

  103. Flikka, K., Martens, L., Vandekerckhoe, J., Gevaert, K. & Eidhammer, I. (2006) Improving the reliability and throughput of mass spectrometry-based proteomics by spectrum quality filtering. Proteomics 6, 2086–2094.

    Article  PubMed  CAS  Google Scholar 

  104. Keller, A., Nesvizhskii, A., Kolker, E. & Aebersold, R. (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 74, 5383–5392.

    Article  PubMed  CAS  Google Scholar 

  105. Kall, L., Canterbury, J.D., Weston, J., Noble, W.S. & MacCoss, M.J. (2007) Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nat Methods 4, 923–925.

    Article  PubMed  CAS  Google Scholar 

  106. Wan, Y., Yang, A. & Chen, T. (2006) PepHMM: a hidden Markov model based scoring function for mass spectrometry database search. Anal Chem 78, 432–437.

    Article  PubMed  CAS  Google Scholar 

  107. Helsens, K., Timmerman, E., Vandekerckhove, J., Gevaert, K. & Martens, L. (2008) Peptizer: a tool for assessing false positive peptide identifications and manually validating selected results. Mol Cell Proteomics 7, 2363–2372.

    Google Scholar 

  108. Martens, L. & Hermjakob, H. (2007) Proteomics data validation: why all must provide data. Mol Biosyst 3, 518–522.

    Article  PubMed  CAS  Google Scholar 

  109. Nesvizhskii, A., Keller, A., Kolker, E. & Aebersold, R. (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75, 4646–4658.

    Article  PubMed  CAS  Google Scholar 

  110. Mueller, M., Martens, L. & Apweiler, R. (2007) Annotating the human proteome: beyond establishing a parts list. Biochim Biophys Acta 1774, 175–191.

    PubMed  CAS  Google Scholar 

  111. Shannon, P. et al. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13, 2498–2504.

    Article  PubMed  CAS  Google Scholar 

  112. Maere, S., Heymans, K. & Kuiper, M. (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21, 3448–3449.

    Article  PubMed  CAS  Google Scholar 

  113. Dennis, G. et al. (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4, R60.

    Article  Google Scholar 

  114. Kaplan, N., Vaaknin, A. & Linial, M. (2003) PANDORA: keyword-based analysis of protein sets by integration of annotation sources. Nucleic Acids Res 31, 5617–5626.

    Article  PubMed  CAS  Google Scholar 

  115. Schneider, T.D. & Stephens, R.M. (1990) Sequence logos: a new way to display consensus sequences. Nucleic Acids Res 18, 6097–6100.

    Article  PubMed  CAS  Google Scholar 

  116. Colaert, N., Helsens, K., Martens, L., Vandekerckhove, J. & Gevaert, K. (2009) Improved visualization of protein consensus sequences by iceLogo. Nat Methods 6, 786–787.

    Article  PubMed  CAS  Google Scholar 

  117. Matthiesen, R., Trelle, M., Hojrup, P., Bunkenborg, J. & Jensen, O. (2005) VEMS 3.0: algorithms and computational tools for tandem mass spectrometry based identification of post-translational modifications in proteins. J Proteome Res 4, 2338–2347.

    Article  PubMed  CAS  Google Scholar 

  118. Rauch, A. et al. (2006) Computational Proteomics Analysis System (CPAS): an extensible, open-source analytic system for evaluating and publishing proteomic data and high throughput biological experiments. J Proteome Res 5, 112–121.

    Article  PubMed  CAS  Google Scholar 

  119. Hakkinen, J., Vincic, G., Mansson, O., Warell, K. & Levander, F. (2009) The proteios software environment: an extensible multiuser platform for management and analysis of proteomics data. J Proteome Res 8, 3037–3043.

    Article  PubMed  CAS  Google Scholar 

  120. Hartler, J. et al. (2007) MASPECTRAS: a platform for management and analysis of proteomics LC-MS/MS data. BMC Bioinformatics 8, 197.

    Article  PubMed  CAS  Google Scholar 

  121. Helsens, K. et al. (2010) ms_lims, a simple yet powerful open source LIMS for mass spectrometry-driven proteomics. Proteomics 10, 2560.

    Article  CAS  Google Scholar 

  122. Martens, L. et al. (2005) PRIDE: the proteomics identifications database. Proteomics 5, 3537–3545.

    Article  PubMed  CAS  Google Scholar 

  123. Slotta, D.J., Barrett, T. & Edgar, R. (2009) NCBI Peptidome: a new public repository for mass spectrometry peptide identifications. Nat Biotechnol 27, 600–601.

    Article  PubMed  CAS  Google Scholar 

  124. Desiere, F. et al. (2006) The PeptideAtlas project. Nucleic Acids Res 34, D655–D658.

    Article  PubMed  CAS  Google Scholar 

  125. Craig, R., Cortens, J.P. & Beavis, R.C. (2004) Open source system for analyzing, validating, and storing protein identification data. J Proteome Res 3, 1234–1242.

    Article  PubMed  CAS  Google Scholar 

  126. Klie, S. et al. (2008) Analyzing large-scale proteomics projects with latent semantic indexing. J Proteome Res 7, 182–191.

    Article  PubMed  CAS  Google Scholar 

  127. Mueller, M. et al. (2008) Analysis of the experimental detection of central nervous system-related genes in human brain and cerebrospinal fluid datasets. Proteomics 8, 1138–1148.

    Article  PubMed  CAS  Google Scholar 

  128. Gevaert K, Ghesquière B, et al (2004) Reversible labeling of cysteine-containing peptides allows their specific chromatographic isolation for non-gel proteome studies. Proteomics 4, 897–908.

    Article  PubMed  CAS  Google Scholar 

  129. Gevaert K, Staes A, et al (2005) Global phosphoproteome analysis on human HepG2 hepatocytes using reversed-phase diagonal LC. Proteomics 5, 3589–3599.

    Article  PubMed  CAS  Google Scholar 

  130. Ghesquière B, Van Damme J, et al (2006) Proteome-wide characterization of N-glycosylation events by diagonal chromatography. J Proteome Res 5, 2438–2447.

    Article  PubMed  CAS  Google Scholar 

  131. Hanoulle X, Van Damme J, et al (2006) A new functional, chemical proteomics technology to identify purine nucleotide binding sites in complex proteomes. J Proteome Res 5, 3438–3445.

    Article  PubMed  CAS  Google Scholar 

  132. Ghesquière B, Buyl L, et al (2007) A new approach for mapping sialylated N-glycosites in serum proteomes. J Proteome Res 6, 4304–4312.

    Article  PubMed  CAS  Google Scholar 

  133. Ghesquière B, Colaert N, et al (2009) In vitro and in vivo protein-bound tyrosine nitration characterized by diagonal chromatography. Mol Cell Proteomics 8, 2642–2652.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

K.H. is supported by a Ph.D. grant from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenny Helsens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Helsens, K., Martens, L., Vandekerckhove, J., Gevaert, K. (2011). Mass Spectrometry-Driven Proteomics: An Introduction. In: Gevaert, K., Vandekerckhove, J. (eds) Gel-Free Proteomics. Methods in Molecular Biology, vol 753. Humana Press. https://doi.org/10.1007/978-1-61779-148-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-148-2_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-147-5

  • Online ISBN: 978-1-61779-148-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics