Skip to main content

The Use of Multifocal Electroretinograms and Multifocal Visual Evoked Potentials in Optic Nerve Disorders

  • Chapter
  • First Online:
Optic Nerve Disorders

Abstract

The multifocal electroretinogram (mfERG) and multifocal visual evoked potential (mfVEP) techniques allow for the simultaneous recording of local responses from many regions of the visual field. This chapter provides an introduction to these techniques and focuses, in particular, on the use of these techniques to rule out retinal causes of visual abnormalities and to diagnose optic nerve disorders. The mfERG and mfVEP techniques are not useful in the following clinical situations: (1) the standard full-field ERG and VEP tests provide adequate data; (2) the defect is in the far periphery; (3) the problem likely involves the rod system; or (4) the patient cannot fixate reliably. However, in patients with steady fixation and localized visual field defects, the mfERG and mfVEP are helpful in diagnosing optic nerve disorders when interpreted with the patient’s visual field and/or OCT imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holopigian K, Hood DC. Electrophysiology. Ophthalmol Clin North Am. 2003;16(2):237–51.

    Article  PubMed  Google Scholar 

  2. Sutter EE, Tran D. The field topography of ERG components in man – I. The photopic luminance response. Vision Res. 1992;32(3):433–46.

    Article  CAS  PubMed  Google Scholar 

  3. Hood DC. Assessing retinal function with the multifocal technique. Prog Retin Eye Res. 2000;19(5):607–46.

    Article  CAS  PubMed  Google Scholar 

  4. Hood DC, Bach M, Brigell M, Keating D, Kondo M, Lyons JS, et al. ISCEV standard for clinical multifocal electroretinography (mfERG) (2011 edition). Doc Ophthalmol. 2012;2012(124):1–13.

    Article  Google Scholar 

  5. Keating D, Parks S, Malloch C, Evans A. A comparison of CRT and digital stimulus delivery methods in the multifocal ERG. Doc Ophthalmol. 2001;102(2):95–114.

    Article  CAS  PubMed  Google Scholar 

  6. Sutter E. The interpretation of multifocal binary kernels. Doc Ophthalmol. 2000;100(2–3):49–75.

    Article  CAS  PubMed  Google Scholar 

  7. Keating D, Parks S, Evans A. Technical aspects of multifocal ERG recording. Doc Ophthalmol. 2000;100(2–3):77–98.

    Article  CAS  PubMed  Google Scholar 

  8. Hood DC, Odel JG, Chen CS, Winn BJ. The multifocal electroretinogram. J Neuroophthalmol. 2003;23(3):225–35.

    Article  PubMed  Google Scholar 

  9. Hood DC. Electrophysiologic imaging of retinal and optic nerve damage: the multifocal technique. Ophthalmol Clin North Am. 2004;17(1):69–88.

    Article  PubMed  Google Scholar 

  10. Hood DC, Holopigian K, Greenstein V, Seiple W, Li J, Sutter EE, et al. Assessment of local retinal function in patients with retinitis pigmentosa using the multi-focal ERG technique. Vision Res. 1998;38(1):163–79.

    Article  CAS  PubMed  Google Scholar 

  11. Seeliger MW, Kretschmann UH, Apfelstedt-Sylla E, Zrenner E. Implicit time topography of multifocal electroretinograms. Investig Ophthalmol Vis Sci. 1998;39(5):718–23.

    CAS  Google Scholar 

  12. Holopigian K, Seiple W, Greenstein VC, Hood DC, Carr RE. Local cone and rod system function in patients with retinitis pigmentosa. Investig Ophthalmol Vis Sci. 2001;42(3):779–88.

    CAS  Google Scholar 

  13. Wolsley CJ, Silvestri G, O'Neill J, Saunders KJ, Anderson RS. The association between multifocal electroretinogram and OCT retinal thickness in retinitis pigmentosa patients with good visual acuity. Eye. 2009;23(7):1524–31.

    Article  CAS  PubMed  Google Scholar 

  14. Holopigian K, Seiple W, Greenstein VC, Hood DC, Carr RE. Local cone and rod system function in progressive cone dystrophy. Investig Ophthalmol Vis Sci. 2002;43(7):2364–73.

    Google Scholar 

  15. Greenstein VC, Holopigian K, Hood DC, Seiple W, Carr RE. The nature and extent of retinal dysfunction associated with diabetic macular edema. Investig Ophthalmol Vis Sci. 2000;41(11):3643–54.

    CAS  Google Scholar 

  16. Fortune B, Schneck ME, Adams AJ. Multifocal electroretinogram delays reveal local retinal dysfunction in early diabetic retinopathy. Investig Ophthalmol Vis Sci. 1999;40(11):2638–51.

    CAS  Google Scholar 

  17. Han Y, Bearse Jr MA, Schneck ME, Barez S, Jacobsen CH, Adams AJ. Multifocal electroretinogram delays predict sites of subsequent diabetic retinopathy. Investig Ophthalmol Vis Sci. 2004;45(3):948–54.

    Article  Google Scholar 

  18. Piao CH, Kondo M, Tanikawa A, Terasaki H, Miyake Y. Multifocal electroretinogram in occult macular dystrophy. Investig Ophthalmol Vis Sci. 2000;41(2):513–7.

    CAS  Google Scholar 

  19. Hood DC, Li J. A technique for measuring individual multifocal ERG records. In: Yager D, editor. Non-invasive assessment of the visual system, vol. 11. Washington, DC: Optical Society of America; 1997. p. 33–41.

    Google Scholar 

  20. Hood DC, Greenstein VC, Holopigian K, Bauer R, Firoz B, Liebmann JM, et al. An attempt to detect glaucomatous damage to the inner retina with the multifocal ERG. Investig Ophthalmol Vis Sci. 2000;41(6):1570–9.

    CAS  Google Scholar 

  21. Hood DC, Frishman LJ, Saszik S, Viswanathan S. Retinal origins of the primate multifocal ERG: implications for the human response. Investig Ophthalmol Vis Sci. 2002;43(5):1673–85.

    Google Scholar 

  22. Hood DC, Zhang X. Multifocal ERG and VEP responses and visual fields: comparing disease-related changes. Doc Ophthalmol. 2000;100(2–3):115–37.

    Article  CAS  PubMed  Google Scholar 

  23. Kretschmann U, Seeliger MW, Ruether K, Usui T, Apfelstedt-Sylla E, Zrenner E. Multifocal electroretinography in patients with Stargardt’s macular dystrophy. Br J Ophthalmol. 1998;82(3):267–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Dale EA, Hood DC, Greenstein VC, Odel JG. A comparison of multifocal ERG and frequency domain OCT changes in patients with abnormalities of the retina. Doc Ophthalmol. 2010;120(2):175–86.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Talamini CL, Raza AS, Dale EA, Greenstein VC, Odel JG, Hood DC. Abnormal multifocal ERG findings in patients with normal-appearing retinal anatomy. Doc Ophthalmol. 2011;123(3):187–92.

    Article  PubMed  Google Scholar 

  26. Chan HH, Ng YF, Chu PH. Applications of the multifocal electroretinogram in the detection of glaucoma. Clin Exp Optom. 2011;94(3):247–58.

    Article  PubMed  Google Scholar 

  27. Sutter EE, Bearse Jr MA. The optic nerve head component of the human ERG. Vision Res. 1999;39(3):419–36.

    Article  CAS  PubMed  Google Scholar 

  28. Hood DC, Bearse Jr MA, Sutter EE, Viswanathan S, Frishman LJ. The optic nerve head component of the monkey's (Macacamulatta) multifocal electroretinogram (mERG). Vision Res. 2001;41(16):2029–41.

    Article  CAS  PubMed  Google Scholar 

  29. Hasegawa S, Takagi M, Usui T, Takada R, Abe H. Waveform changes of the first-order multifocal electroretinogram in patients with glaucoma. Investig Ophthalmol Vis Sci. 2000;41(6):1597–603.

    CAS  Google Scholar 

  30. Fortune B, Johnson CA, Cioffi GA. The topographic relationship between multifocal electroretinographic and behavioral perimetric measures of function in glaucoma. Optom Vis Sci. 2001;78(4):206–14.

    Article  CAS  PubMed  Google Scholar 

  31. Palmowski AM, Allgayer R, Heinemann-Vemaleken B. The multifocal ERG in open angle glaucoma – a comparison of high and low contrast recordings in high- and low-tension open angle glaucoma. Doc Ophthalmol. 2000;101(1):35–49.

    Article  CAS  PubMed  Google Scholar 

  32. Shimada Y, Li Y, Bearse Jr MA, Sutter EE, Fung W. Assessment of early retinal changes in diabetes using a new multifocal ERG protocol. Br J Ophthalmol. 2001;85(4):414–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Fortune B, Bearse Jr MA, Cioffi GA, Johnson CA. Selective loss of an oscillatory component from temporal retinal multifocal ERG responses in glaucoma. Investig Ophthalmol Vis Sci. 2002;43(8):2638–47.

    Google Scholar 

  34. Rodrigues AR, Filho MS, Silveira LC, Kremers J. Spatial distribution of on- and off-responses determined with the multifocal ERG. Doc Ophthalmol. 2010;120(2):145–58.

    Article  PubMed  Google Scholar 

  35. Palmowski AM, Allgayer R, Heinemann-Vernaleken B, Ruprecht KW. Multifocal electroretinogram with a multiflash stimulation technique in open-angle glaucoma. Ophthalmic Res. 2002;34(2):83–9.

    Article  CAS  PubMed  Google Scholar 

  36. Palmowski-Wolfe AM, Allgayer RJ, Vernaleken B, Schötzau A, Ruprecht KW. Slow-stimulated multifocal ERG in high- and normal-tension glaucoma. Doc Ophthalmol. 2006 May;112(3):157–68.

    Google Scholar 

  37. Halliday AM, McDonald WI, Mushin J. Delayed visual evoked response in optic neuritis. Lancet. 1972;1(7758):982–5.

    Article  CAS  PubMed  Google Scholar 

  38. Halliday AM, McDonald WI, Mushin J. Visual evoked response in diagnosis of multiple sclerosis. Br Med J. 1973;4(5893):661–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Halliday AM, Michael WF. Changes in pattern-evoked responses in man associated with the vertical and horizontal meridians of the visual field. J Physiol. 1970;208(2):499–513.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Michael WF, Halliday AM. Differences between the occipital distribution of upper and lower field pattern-evoked responses in man. Brain Res. 1971;32(2):311–24.

    Article  CAS  PubMed  Google Scholar 

  41. Fortune B, Hood DC. Conventional pattern-reversal VEPs are not equivalent to summed multifocal VEPs. Investig Ophthalmol Vis Sci. 2003;44(3):1364–75.

    Article  Google Scholar 

  42. Odom JV, Bach M, Barber C, Brigell M, Marmor MF, Tormene AP, et al. Visual evoked potentials standard (2004). Doc Ophthalmol. 2004;108(2):115–23.

    Article  PubMed  Google Scholar 

  43. Baseler HA, Sutter EE, Klein SA, Carney T. The topography of visual evoked response properties across the visual field. Electroencephalogr Clin Neurophysiol. 1994;90(1):65–81.

    Article  CAS  PubMed  Google Scholar 

  44. Baseler HA, Sutter EE. M and P components of the VEP and their visual field distribution. Vision Res. 1997;37(6):675–90.

    Article  CAS  PubMed  Google Scholar 

  45. James AC, Ruseckaite R, Maddess T. Effect of temporal sparseness and dichoptic presentation on multifocal visual evoked potentials. Vis Neurosci. 2005;22(1):45–54.

    Article  PubMed  Google Scholar 

  46. Hood DC, Zhang X, Greenstein VC, Kangovi S, Odel JG, Liebmann JM, et al. An interocular comparison of the multifocal VEP: a possible technique for detecting local damage to the optic nerve. Investig Ophthalmol Vis Sci. 2000;41(6):1580–7.

    CAS  Google Scholar 

  47. Klistorner A, Graham SL. Objective perimetry in glaucoma. Ophthalmology. 2000;107(12):2283–99.

    Article  CAS  PubMed  Google Scholar 

  48. Hood DC, Greenstein VC. Multifocal VEP and ganglion cell damage: applications and limitations for the study of glaucoma. Prog Retin Eye Res. 2003;22(2):201–51.

    Article  PubMed  Google Scholar 

  49. Hood DC, Odel JG, Winn BJ. The multifocal visual evoked potential. J Neuroophthalmol. 2003;23(4):279–89.

    Article  PubMed  Google Scholar 

  50. Hood DC, Zhang X, Hong JE, Chen CS. Quantifying the benefits of additional channels of multifocal VEP recording. Doc Ophthalmol. 2002;104(3):303–20.

    Article  PubMed  Google Scholar 

  51. Zhang X, Hood DC, Chen CS, Hong JE. A signal-to-noise analysis of multifocal VEP responses: an objective definition for poor records. Doc Ophthalmol. 2002;104(3):287–302.

    Article  PubMed  Google Scholar 

  52. Hood DC, Greenstein VC, Odel JG, Zhang X, Ritch R, Liebmann JM, et al. Visual field defects and multifocal visual evoked potentials: evidence of a linear relationship. Arch Ophthalmol. 2002;120(12):1672–81.

    Article  PubMed  Google Scholar 

  53. Graham SL, Klistorner AI, Grigg JR, Billson FA. Objective VEP perimetry in glaucoma: asymmetry analysis to identify early deficits. J Glaucoma. 2000;9(1):10–9.

    Article  CAS  PubMed  Google Scholar 

  54. Goldberg I, Graham SL, Klistorner AI. Multifocal objective perimetry in the detection of glaucomatous field loss. Am J Ophthalmol. 2002;133(1):29–39.

    Article  PubMed  Google Scholar 

  55. Hood DC, Ohri N, Yang EB, Rodarte C, Zhang X, Fortune B, et al. Determining abnormal latencies of multifocal visual evoked potentials: a monocular analysis. Doc Ophthalmol. 2004;109(2):189–99.

    Article  PubMed  Google Scholar 

  56. Hood DC, Zhang X, Rodarte C, Yang EB, Ohri N, Fortune B, et al. Determining abnormal interocular latencies of multifocal visual evoked potentials. Doc Ophthalmol. 2004;109(2):177–87.

    Article  PubMed  Google Scholar 

  57. Sriram P, Klistorner A, Arvind H, Graham SL. Reproducibility of multifocal VEP latency using different stimulus presentations. Doc Ophthalmol. 2012;125(1):43–9.

    Article  PubMed  Google Scholar 

  58. Klistorner AI, Graham SL, Grigg JR, Billson FA. Multifocal topographic visual evoked potential: improving objective detection of local visual field defects. Investig Ophthalmol Vis Sci. 1998;39(6):937–50.

    CAS  Google Scholar 

  59. Slotnick SD, Klein SA, Carney T, Sutter E, Dastmalchi S. Using multi-stimulus VEP source localization to obtain a retinotopic map of human primary visual cortex. Clin Neurophysiol. 1999;110(10):1793–800.

    Article  CAS  PubMed  Google Scholar 

  60. Zhang X, Hood DC. A principal component analysis of multifocal pattern reversal VEP. J Vis. 2004;4(1):32–43.

    Article  PubMed  Google Scholar 

  61. Hood DC, Odel JG, Zhang X. Tracking the recovery of local optic nerve function after optic neuritis: a multifocal VEP study. Investig Ophthalmol Vis Sci. 2000;41(12):4032–8.

    CAS  Google Scholar 

  62. Kardon RH, Givre SJ, Wall M, Hood DC. Comparison of threshold and multifocal-VEP perimetry in recovered optic neuritis. In: Perimetry update 2000: proceedings of the XVII International Perimetric Society Meeting. New York, NY: Kugler; 2001.

    Google Scholar 

  63. Fraser C, Klistorner A, Graham S, Garrick R, Billson F, Grigg J. Multifocal visual evoked potential latency analysis: predicting progression to multiple sclerosis. Arch Neurol. 2006;63:847–50.

    Article  PubMed  Google Scholar 

  64. Grover LK, Hood DC, Ghadiali Q, Grippo TM, Wenick AS, Greenstein VC, et al. A comparison of multifocal and conventional visual evoked potential techniques in patients with optic neuritis/multiple sclerosis. Doc Ophthalmol. 2008;117:121–8.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Klistorner A, Fraser C, Garrick R, Graham S, Arvind H. Correlation between full-field and multifocal VEPs in optic neuritis. Doc Ophthalmol. 2008;116:19–27.

    Article  PubMed  Google Scholar 

  66. Laron M, Cheng H, Zhang B, et al. Comparison of multifocal visual evoked potential, standard automated perimetry and optical coherence tomography in assessing visual pathway in multiple sclerosis patients. Mult Scler. 2010;16:412–26.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Yang EB, Hood DC, Rodarte C, Zhang X, Odel JG, Behrens MM. Improvement in conduction velocity after optic neuritis measured with the multifocal VEP. Investig Ophthalmol Vis Sci. 2007;48(2):692–8.

    Article  Google Scholar 

  68. Miele DL, Odel JG, Behrens MM, Zhang X, Hood DC. Functional bitemporalquadrantopia and the multifocal visual evoked potential. J Neuroophthalmol. 2000;20(3):159–62.

    Article  CAS  PubMed  Google Scholar 

  69. Graham SL, Klistorner AI, Goldberg I. Clinical application of objective perimetry using multifocal visual evoked potentials in glaucoma practice. Arch Ophthalmol. 2005;123(6):729–39.

    Article  PubMed  Google Scholar 

  70. De Moraes CG, Liebmann JM, Ritch R, Hood DC. Clinical use of multifocal visual-evoked potentials in a glaucoma practice: a prospective study. Doc Ophthalmol. 2012;125(1):1–9.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Thienprasiddhi P, Greenstein VC, Chu DH, Xu L, Liebmann JM, Ritch R, et al. Detecting early functional damage in glaucoma suspect and ocular hypertensive patients with the multifocal VEP technique. J Glaucoma. 2006;15(4):321–7.

    Article  PubMed  Google Scholar 

  72. Hood DC, Thienprasiddhi P, Greenstein VC, Winn BJ, Ohri N, Liebmann JM, et al. Detecting early to mild glaucomatous damage: a comparison of the multifocal VEP and automated perimetry. Investig Ophthalmol Vis Sci. 2004;45(2):492–8.

    Article  Google Scholar 

  73. De Moraes CG, Liebmann JM, Ritch R, Hood DC. Understanding disparities among diagnostic technologies in glaucoma. Arch Ophthalmol. 2012;130(7):833–40.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Marmor MF, Holder GE, Seeliger MW, Yamamoto S. Standard for clinical electroretinography (2004 update). Doc Ophthalmol. 2004;108(2):107–14.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald C. Hood B.A., M.Sc., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hood, D.C., Holopigian, K. (2014). The Use of Multifocal Electroretinograms and Multifocal Visual Evoked Potentials in Optic Nerve Disorders. In: Chan, J. (eds) Optic Nerve Disorders. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0691-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0691-4_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0690-7

  • Online ISBN: 978-1-4614-0691-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics