Skip to main content

Advertisement

Log in

A comparison of multifocal ERG and frequency domain OCT changes in patients with abnormalities of the retina

  • Original research article
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

To compare the ability of the multifocal electroretinogram (mfERG) and frequency domain optical coherence tomography (fdOCT) to detect retinal abnormalities. A total of 198 eyes (100 patients) were referred by neuro-ophthalmologists to rule out a retinal etiology of visual impairment. All patients were evaluated with static automated perimetry (SAP) (Humphrey Visual Field Analyzer; Zeiss Meditec), mfERG (Veris, EDI) and fdOCT (3D-OCT 1000, Topcon). The mfERG was performed with 103 scaled hexagons and procedures conforming to ISCEV standards (Hood DC et al. (2008) Doc Ophthalmol 116(1):1–11). The fdOCT imaging included horizontal and vertical line scans through the fovea. Local mfERG and fdOCT abnormalities were compared to local regions of visual field sensitivity loss measured with SAP and categorized as normal/inconclusive or abnormal. 146 eyes were categorized as normal retina on both fdOCT and mfERG. The retina of 52 eyes (36 patients) was categorized as abnormal based upon mfERG and/or fdOCT. Of this group, 25 eyes (20 patients) were abnormal on both tests. However, 20 eyes (13 patients) were abnormal on mfERG, while the fdOCT was normal/inconclusive; and 7 eyes (7 patients) had normal or inconclusive mfERG, but abnormal fdOCT. Considerable disagreement exists between these two methods for detection of retinal abnormalities. The mfERG tends to miss small local abnormalities that are detectable on the fdOCT. On the other hand, the fdOCT can appear normal in the face of clearly abnormal mfERG and SAP results. While improved imaging and analysis may show fdOCT abnormalities in some cases, in others early damage may not appear on structural tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sutter EE, Tran D (1992) The full field topography of ERG components in man—I. The photopic luminance response. Vision Res 32(3):433–446

    Article  CAS  PubMed  Google Scholar 

  2. Hood DC (2000) Assessing retinal function with the multifocal technique. Prog Retin Eye Res 19(5):607–646

    Article  CAS  PubMed  Google Scholar 

  3. Hood DC, Bach M, Brigell M, Keating D, Kondo M, Lyons JS, Palmowski-Wolfe AM (2008) ISCEV guidelines for clinical multifocal electroretinography (2007 edition). Doc Ophthalmol 116(1):1–11

    Article  PubMed  Google Scholar 

  4. Hood DC, Frishman LJ, Saszik S, Viswanathan S (2002) Retinal origins of the primate multifocal ERG: implications for the human response. Invest Ophthalmol Vis Sci 43(5):1673–1685

    PubMed  Google Scholar 

  5. Shimada Y, Horiguchi M (2003) Stray light-induced multifocal electroretinograms. Invest Ophthalmol Vis Sci 44(3):1245–1251

    Article  PubMed  Google Scholar 

  6. Wirth A, Zetterstrom B (1954) Effect of area and intensity on the size and shape of the electroretinogram; exclusion of stray light effects. Br J Ophthalmol 38(5):257–265

    Article  CAS  PubMed  Google Scholar 

  7. Boynton RM (1953) Stray light and the human electroretinogram. J Opt Soc Am 43(6):442–449

    Article  CAS  PubMed  Google Scholar 

  8. Bearse MA, Sutter EE (1996) Imaging localized retinal dysfunction with the multifocal electroretinogram. J Opt Soc Am A Opt Image Sci Vis 13(3):634–640

    Article  PubMed  Google Scholar 

  9. Sakata LM, Deleon-Ortega J, Sakata V, Girkin CA (2009) Optical coherence tomography of the retina and optic nerve–a review. Clin Experiment Ophthalmol 37(1):90–99

    Article  PubMed  Google Scholar 

  10. Lim JI, Tan O, Fawzi AA, Hopkins JJ, Gil-Flamer JH, Huang D (2008) A pilot study of Fourier-domain optical coherence tomography of retinal dystrophy patients. Am J Ophthalmol 146(3):417–426

    Article  PubMed  Google Scholar 

  11. Wirtitsch MG, Ergun E, Hermann B, Unterhuber A, Stur M, Scholda C, Sattmann H, Ko TH, Fujimoto JG, Drexler W (2005) Ultrahigh resolution optical coherence tomography in macular dystrophy. Am J Ophthalmol 140(6):976–983

    Article  PubMed  Google Scholar 

  12. Hughes EH, Siow YC, Hunyor AP (2009) Acute macular neuroretinopathy: anatomic localisation of the lesion with high-resolution OCT. Eye 23(11):2132–2134

    Article  CAS  PubMed  Google Scholar 

  13. Feigl B, Haas A (2000) Optical coherence tomography (OCT) in acute macular neuroretinopathy. Acta Ophthalmol Scand 78(6):714–716

    Article  CAS  PubMed  Google Scholar 

  14. Chan WM, Liu DT, Tong JP, Law RW, Lam DS (2005) Longitudinal findings of acute macular neuroretinopathy with multifocal electroretinogram and optical coherence tomography. Clin Experiment Ophthalmol 33(4):439–442

    Article  PubMed  Google Scholar 

  15. Turgot B, Turkcuoglu P, Serder Koca S, Aydemir O (2009) Detection of the regression on hydroxychloroquine retinopathy in optical coherence tomography. Clin Rheumatol 28(5):607–609

    Article  Google Scholar 

  16. Rodriguez-Padilla JA, Hedges TR III, Monson B, Srinivansan V, Wojtkowski M, Reichel E, Duker JS, Schuman JS, Fujimoto JG (2007) High-speed ultra-high-resolution optical coherence tomography findings in hydroxychloroquine retinopathy. Arch Ophthalmol 125(6):775–780

    Article  PubMed  Google Scholar 

  17. Kellner U, Kellner S, Weinitz S (2008) Chloroquine retinopathy: lipofuscin- and melanin-related fundus autofluorescence, optical coherence tomography and multifocal electroretinography. Doc Ophthalmol 116(2):119–123

    Article  PubMed  Google Scholar 

  18. Kellner S, Weinitz S, Kellner U (2009) Spectral domain optical coherence tomography detects early stages of chloroquine retinopathy similar to multifocal electroretinography, fundus autofluorescence and near-infrared autofluorescence. Br J Ophthalmol 93(11):1444–1447

    Article  CAS  PubMed  Google Scholar 

  19. Gerth C, Zawadzki RJ, Choi SS, Keltner JL, Park SS, Werner JS (2007) Visualization of lipofuscin accumulation in Stargardt macular dystrophy by high-resolution Fourier-domain optical coherence tomography. Arch Ophthalmol 125(4):575

    Article  PubMed  Google Scholar 

  20. Ergun E, Hermann B, Wirtitsch M, Unterhuber A, Ko TH, Sattmann H, Scholda C, Fujimoto JG, Stur M, Drexler W (2005) Assessment of central visual function in Stargardt’s disease/fundus flavimaculatus with ultrahigh-resolution optical coherence tomography. Invest Ophthalmol Vis Sci 46(1):310–316

    Article  PubMed  Google Scholar 

  21. Furino C, Boscia F, Cardascia N, Sborgia L, Sborgia C (2008) Fundus autofluorescence, optical coherence tomography and visual acuity in adult-onset foveomacular dystrophy. Ophthalmologica 222(4):240–244

    Article  PubMed  Google Scholar 

  22. Petropoulos IK, Desmangles PM, Matter MA (2008) Spectral optical coherence tomography findings in adult-onset foveomacular vitelliform dystrophy. Klin Monatsbl Augenheilkd 255(5):488–490

    Article  Google Scholar 

  23. Saito W, Yamamoto S, Hayashi M, Ogata K (2003) Morphological and functional analyses of adult onset vitelliform macular dystrophy. Br J Ophthalmol 87(6):758–762

    Article  CAS  PubMed  Google Scholar 

  24. Benhamou N, Souied EH, Zolf R, Coscas F, Coscas G, Soubrane G (2003) Adult-onset foveomacular vitelliform dystrophy: a study by optical coherence tomography. Am J Ophthalmol 135(3):362–367

    Article  PubMed  Google Scholar 

  25. Pierro L, Tremolada G, Introini U, Calori G, Brancato R (2002) Optical coherence tomography findings in adult-onset foveomacular vitelliform dystrophy. Am J Ophthalmol 134(5):675–680

    Article  PubMed  Google Scholar 

  26. Hood DC, Wladis EJ, Shady S, Holopigian K, Li J, Seiple W (1998) Multifocal rod electroretinograms. Invest Ophthalmol Vis Sci 39(7):1152–1162

    CAS  PubMed  Google Scholar 

  27. Mohamed Q, Harper CA (2007) Acute optical coherence tomographic findings in cancer-associated retinopathy. Arch Ophthalmol 125(8):1132–1133

    Article  PubMed  Google Scholar 

  28. Do P, Ferrucci S (2006) Adult-onset foveomacular vitelliform dystrophy. Optometry 77(4):156–166

    PubMed  Google Scholar 

  29. Gass JDM (1974) A clinicopathologic study of a peculiar foveomacular dystrophy. Trans Am Ophthalmol Soc 72:139–156

    CAS  PubMed  Google Scholar 

  30. Hood DC, Odel JG, Chen CS, Winn BJ (2003) The multifocal electroretinogram. J Neuroophthalmol 23(3):225–235

    PubMed  Google Scholar 

  31. Gomes NL, Greenstein VC, Carlson JN, Tsang SH, Smith RT, Carr RE, Hood DC, Chang S (2009) A comparison of fundus autofluorescence and retinal structure in patients with Stargardt disease. Invest Ophthalmol Vis Sci 50(8):3953–3959

    Article  PubMed  Google Scholar 

  32. Greenstein VC, Carlson JN, Wang M, Tsang SH, Smith RT, Carr RE, Hood DC (2009) A comparison of retinal structure and visual function in foveal and preferred retinal location regions of patients with Stargardt disease. Poster presented at the annual meeting of the Association for research in vision and ophthalmology (ARVO), Fort Lauderdale, Florida, 3–7 May 2009

  33. Rangaswamy NV, Hood DC, Birch DG, Locke KG (2009) A comparison of visual field sensitivity to photoreceptor thickness in retinitis pigmentosa (RP). Poster presented at the annual meeting of the Association for research in vision and ophthalmology (ARVO), Fort Lauderdale, Florida, 3–7 May 2009

  34. Hood DC, Lin CE, Lazow MA, Locke KG, Zhang X, Birch DG (2009) Thickness of receptor and post-receptor retinal layers in patients with retinitis pigmentosa measured with frequency-domain optical coherence tomography. Invest Ophthalmol Vis Sci 50(5):2328–2336

    Article  PubMed  Google Scholar 

  35. Jacobson SG, Cideciyan AV, Aleman TS, Sumaroka A, Windsor EA, Schwartz SB, Heon E, Stone EM (2008) Photoreceptor layer topography in children with leber congenital amaurosis caused by RPE65 mutations. Invest Ophthalmol Vis Sci 49(10):4573–4577

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Drs. Behrens, Bortz, Forman, Kostina-O’Neil, Lesser and Moazami for patient referrals. This study was supported by funds from EY09076 and 02115.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald C. Hood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dale, E.A., Hood, D.C., Greenstein, V.C. et al. A comparison of multifocal ERG and frequency domain OCT changes in patients with abnormalities of the retina. Doc Ophthalmol 120, 175–186 (2010). https://doi.org/10.1007/s10633-009-9210-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-009-9210-9

Keywords

Navigation