Skip to main content

Tumor-Necrosis-Factor-Related Apoptosis-Inducing Ligand (TRAIL)

  • Chapter
  • First Online:
Anticancer Genes

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 818))

Abstract

The concept to exploit death receptors for cancer therapy is very attractive, since these cell surface receptors have a direct connection to the intracellular cell death machinery. Among the death receptor superfamily, the tumor-necrosis-factor-related apoptosis-inducing ligand (TRAIL) receptor/ligand system is of special interest. TRAIL receptor agonists have recently entered the stage of clinical evaluation for the treatment of human cancers. Further insights into the regulatory mechanisms of TRAIL signaling will help to better understand the determinants of TRAIL sensitivity versus resistance of human cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lockshin RA, Zakeri Z (2007) Cell death in health and disease. J Cell Mol Med 11:1214–1224

    Article  PubMed  Google Scholar 

  2. Fulda S (2009) Tumor resistance to apoptosis. Int J Cancer 124:511–515

    Article  CAS  PubMed  Google Scholar 

  3. Fulda S, Debatin KM (2006) Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25:4798–4811

    Article  CAS  PubMed  Google Scholar 

  4. Gerspach J et al (2009) Death ligands designed to kill: development and application of targeted cancer therapeutics based on proapoptotic TNF family ligands. Results Probl Cell Differ 49:241–273

    Article  CAS  PubMed  Google Scholar 

  5. Ashkenazi A (2008) Directing cancer cells to self-destruct with pro-apoptotic receptor agonists. Nat Rev Drug Discov 7:1001–1012

    Article  CAS  PubMed  Google Scholar 

  6. Taylor RC et al (2008) Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 9:231–241

    Article  CAS  PubMed  Google Scholar 

  7. Ashkenazi A (2008) Targeting the extrinsic apoptosis pathway in cancer. Cytokine Growth Factor Rev 19:325–331

    Article  CAS  PubMed  Google Scholar 

  8. Kroemer G et al (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163

    Article  CAS  PubMed  Google Scholar 

  9. Azijli K et al (2013) Non-canonical kinase signaling by the death ligand TRAIL in cancer cells: discord in the death receptor family. Cell Death Differ 20:858–868

    Google Scholar 

  10. Pennarun B et al (2010) Playing the DISC: turning on TRAIL death receptor-mediated apoptosis in cancer. Biochim Biophys Acta 1805:123–140

    CAS  PubMed  Google Scholar 

  11. Ehrhardt H et al (2003) TRAIL induced survival and proliferation in cancer cells resistant towards TRAIL-induced apoptosis mediated by NF-kappaB. Oncogene 22:3842–3852

    Article  CAS  PubMed  Google Scholar 

  12. Trauzold A et al (2006) TRAIL promotes metastasis of human pancreatic ductal adenocarcinoma. Oncogene 25:7434–7439

    Article  CAS  PubMed  Google Scholar 

  13. Dechant MJ et al (2004) Mutation analysis of the apoptotic “death-receptors” and the adaptors TRADD and FADD/MORT-1 in osteosarcoma tumor samples and osteosarcoma cell lines. Int J Cancer 109:661–667

    Article  CAS  PubMed  Google Scholar 

  14. Pai SI et al (1998) Rare loss-of-function mutation of a death receptor gene in head and neck cancer. Cancer Res 58:3513–3518

    CAS  PubMed  Google Scholar 

  15. Elias A et al (2009) Epigenetic silencing of death receptor 4 mediates tumor necrosis factor-related apoptosis-inducing ligand resistance in gliomas. Clin Cancer Res 15:5457–5465

    Article  CAS  PubMed  Google Scholar 

  16. Horak P et al (2005) Contribution of epigenetic silencing of tumor necrosis factor-related apoptosis inducing ligand receptor 1 (DR4) to TRAIL resistance and ovarian cancer. Mol Cancer Res 3:335–343

    Article  CAS  PubMed  Google Scholar 

  17. Jin Z et al (2004) Deficient tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor transport to the cell surface in human colon cancer cells selected for resistance to TRAIL-induced apoptosis. J Biol Chem 279:35829–35839

    Article  CAS  PubMed  Google Scholar 

  18. Chamuleau ME et al (2011) High TRAIL-R3 expression on leukemic blasts is associated with poor outcome and induces apoptosis-resistance which can be overcome by targeting TRAIL-R2. Leuk Res 35:741–749

    Article  CAS  PubMed  Google Scholar 

  19. Lalaoui N et al (2011) TRAIL-R4 promotes tumor growth and resistance to apoptosis in cervical carcinoma HeLa cells through AKT. PLoS One 6:e19679

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Meng RD et al (2000) The TRAIL decoy receptor TRUNDD (DcR2, TRAIL-R4) is induced by adenovirus-p53 overexpression and can delay TRAIL-, p53-, and KILLER/DR5-dependent colon cancer apoptosis. Mol Ther J Am Soc Gene Ther 1:130–144

    Article  CAS  Google Scholar 

  21. Merino D et al (2006) Differential inhibition of TRAIL-mediated DR5-DISC formation by decoy receptors 1 and 2. Mol Cell Biol 26:7046–7055

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Wagner KW et al (2007) Death-receptor O-glycosylation controls tumor-cell sensitivity to the proapoptotic ligand Apo2L/TRAIL. Nat Med 13:1070–1077

    Article  CAS  PubMed  Google Scholar 

  23. Hao C et al (2001) Induction and intracellular regulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) mediated apotosis in human malignant glioma cells. Cancer Res 61:1162–1170

    CAS  PubMed  Google Scholar 

  24. Fulda S (2013) Targeting c-FLICE-like inhibitory protein (CFLAR) in cancer. Expert Opin Ther Targets 17:195–201

    Article  CAS  PubMed  Google Scholar 

  25. Fulda S et al (2000) Metabolic inhibitors sensitize for CD95 (APO-1/Fas)-induced apoptosis by down-regulating Fas-associated death domain-like interleukin 1-converting enzyme inhibitory protein expression. Cancer Res 60:3947–3956

    CAS  PubMed  Google Scholar 

  26. Garofalo M et al (2007) Selective inhibition of PED protein expression sensitizes B-cell chronic lymphocytic leukaemia cells to TRAIL-induced apoptosis. Int J Cancer 120:1215–1222

    Article  CAS  PubMed  Google Scholar 

  27. Haag C et al (2011) Identification of c-FLIP(L) and c-FLIP(S) as critical regulators of death receptor-induced apoptosis in pancreatic cancer cells. Gut 60:225–237

    Article  CAS  PubMed  Google Scholar 

  28. Longley DB et al (2006) c-FLIP inhibits chemotherapy-induced colorectal cancer cell death. Oncogene 25:838–848

    Article  CAS  PubMed  Google Scholar 

  29. Xiao C et al (2002) Tumor necrosis factor-related apoptosis-inducing ligand-induced death-inducing signaling complex and its modulation by c-FLIP and PED/PEA-15 in glioma cells. J Biol Chem 277:25020–25025

    Article  CAS  PubMed  Google Scholar 

  30. Zanca C et al (2008) PED is overexpressed and mediates TRAIL resistance in human non-small cell lung cancer. J Cell Mol Med 12:2416–2426

    Article  CAS  PubMed  Google Scholar 

  31. Fulda S (2009) Caspase-8 in cancer biology and therapy. Cancer Lett 281:128–133

    Article  CAS  PubMed  Google Scholar 

  32. Eggert A et al (2001) Resistance to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in neuroblastoma cells correlates with a loss of caspase-8 expression. Cancer Res 61:1314–1319

    CAS  PubMed  Google Scholar 

  33. Fulda S, Debatin KM (2006) 5-Aza-2′-deoxycytidine and IFN-gamma cooperate to sensitize for TRAIL-induced apoptosis by upregulating caspase-8. Oncogene 25:5125–5133

    Article  CAS  PubMed  Google Scholar 

  34. Fulda S et al (2001) Sensitization for death receptor- or drug-induced apoptosis by re-expression of caspase-8 through demethylation or gene transfer. Oncogene 20:5865–5877

    Article  CAS  PubMed  Google Scholar 

  35. Fulda S et al (2006) Loss of caspase-8 expression does not correlate with MYCN amplification, aggressive disease, or prognosis in neuroblastoma. Cancer Res 66:10016–10023

    Article  CAS  PubMed  Google Scholar 

  36. Grotzer MA et al (2000) Resistance to TRAIL-induced apoptosis in primitive neuroectodermal brain tumor cells correlates with a loss of caspase-8 expression. Oncogene 19:4604–4610

    Article  CAS  PubMed  Google Scholar 

  37. Pingoud-Meier C et al (2003) Loss of caspase-8 protein expression correlates with unfavorable survival outcome in childhood medulloblastoma. Clin Cancer Res 9:6401–6409

    CAS  PubMed  Google Scholar 

  38. Teitz T et al (2000) Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nat Med 6:529–535

    Article  CAS  PubMed  Google Scholar 

  39. Casciano I et al (2004) Expression of the caspase-8 gene in neuroblastoma cells is regulated through an essential interferon-sensitive response element (ISRE). Cell Death Differ 11:131–134

    Article  CAS  PubMed  Google Scholar 

  40. Himeji D et al (2002) Characterization of caspase-8L: a novel isoform of caspase-8 that behaves as an inhibitor of the caspase cascade. Blood 99:4070–4078

    Article  CAS  PubMed  Google Scholar 

  41. Horiuchi T et al (2000) Dominant expression of a novel splice variant of caspase-8 in human peripheral blood lymphocytes. Biochem Biophys Res Commun 272:877–881

    Article  CAS  PubMed  Google Scholar 

  42. Miller MA et al (2006) Caspase 8L, a novel inhibitory isoform of caspase 8, is associated with undifferentiated neuroblastoma. Apoptosis 11:15–24

    Article  CAS  PubMed  Google Scholar 

  43. Mohr A et al (2005) Caspase-8L expression protects CD34+ hematopoietic progenitor cells and leukemic cells from CD95-mediated apoptosis. Oncogene 24:2421–2429

    Article  CAS  PubMed  Google Scholar 

  44. Cursi S et al (2006) Src kinase phosphorylates Caspase-8 on Tyr380: a novel mechanism of apoptosis suppression. Embo J 25:1895–1905

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Chuntharapai A et al (2001) Isotype-dependent inhibition of tumor growth in vivo by monoclonal antibodies to death receptor 4. J Immunol 166:4891–4898

    Article  CAS  PubMed  Google Scholar 

  46. Ichikawa K et al (2001) Tumoricidal activity of a novel anti-human DR5 monoclonal antibody without hepatocyte cytotoxicity. Nat Med 7:954–960

    Article  CAS  PubMed  Google Scholar 

  47. Takeda K et al (2004) Induction of tumor-specific T cell immunity by anti-DR5 antibody therapy. J Exp Med 199:437–448

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Lin T et al (2002) Long-term tumor-free survival from treatment with the GFP-TRAIL fusion gene expressed from the hTERT promoter in breast cancer cells. Oncogene 21:8020–8028

    Article  CAS  PubMed  Google Scholar 

  49. Mohr A et al (2010) Targeting of XIAP combined with systemic mesenchymal stem cell-mediated delivery of sTRAIL ligand inhibits metastatic growth of pancreatic carcinoma cells. Stem Cells 28:2109–2120

    Article  CAS  PubMed  Google Scholar 

  50. Mohr A et al (2008) Mesenchymal stem cells expressing TRAIL lead to tumour growth inhibition in an experimental lung cancer model. J Cell Mol Med 12:2628–2643

    Article  CAS  PubMed  Google Scholar 

  51. Humphreys RC, Halpern W (2008) Trail receptors: targets for cancer therapy. Adv Exp Med Biol 615:127–158

    Article  CAS  PubMed  Google Scholar 

  52. Lacour S et al (2003) Chemotherapy enhances TNF-related apoptosis-inducing ligand DISC assembly in HT29 human colon cancer cells. Oncogene 22:1807–1816

    Article  CAS  PubMed  Google Scholar 

  53. Morizot A et al (2011) Chemotherapy overcomes TRAIL-R4-mediated TRAIL resistance at the DISC level. Cell Death Differ 18:700–711

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Nagane M et al (2000) Increased death receptor 5 expression by chemotherapeutic agents in human gliomas causes synergistic cytotoxicity with tumor necrosis factor-related apoptosis-inducing ligand in vitro and in vivo. Cancer Res 60:847–853

    CAS  PubMed  Google Scholar 

  55. Sheikh MS et al (1998) P53-dependent and -independent regulation of the death receptor KILLER/DR5 gene expression in response to genotoxic stress and tumor necrosis factor alpha. Cancer Res 58:1593–1598

    CAS  PubMed  Google Scholar 

  56. Sheikh MS et al (1999) The antiapoptotic decoy receptor TRID/TRAIL-R3 is a p53-regulated DNA damage-inducible gene that is overexpressed in primary tumors of the gastrointestinal tract. Oncogene 18:4153–4159

    Article  CAS  PubMed  Google Scholar 

  57. Singh TR et al (2003) Synergistic interactions of chemotherapeutic drugs and tumor necrosis factor-related apoptosis-inducing ligand/Apo-2 ligand on apoptosis and on regression of breast carcinoma in vivo. Cancer Res 63:5390–5400

    CAS  PubMed  Google Scholar 

  58. Wang S, El-Deiry WS (2003) Requirement of p53 targets in chemosensitization of colonic carcinoma to death ligand therapy. Proc Natl Acad Sci U S A 100:15095–15100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Liu X et al (2007) The proteasome inhibitor PS-341 (bortezomib) up-regulates DR5 expression leading to induction of apoptosis and enhancement of TRAIL-induced apoptosis despite up-regulation of c-FLIP and survivin expression in human NSCLC cells. Cancer Res 67:4981–4988

    Article  CAS  PubMed  Google Scholar 

  60. Nagy K et al (2006) Proteasome inhibitors sensitize colon carcinoma cells to TRAIL-induced apoptosis via enhanced release of Smac/DIABLO from the mitochondria. Pathol Oncol Res 12:133–142

    Article  CAS  PubMed  Google Scholar 

  61. Naumann I et al (2011) Bortezomib primes neuroblastoma cells for TRAIL-induced apoptosis by linking the death receptor to the mitochondrial pathway. Clin Cancer Res 17:3204–3218

    Article  CAS  PubMed  Google Scholar 

  62. Nikrad M et al (2005) The proteasome inhibitor bortezomib sensitizes cells to killing by death receptor ligand TRAIL via BH3-only proteins Bik and Bim. Mol Cancer Ther 4:443–449

    CAS  PubMed  Google Scholar 

  63. Rohn TA et al (2001) CCNU-dependent potentiation of TRAIL/Apo2L-induced apoptosis in human glioma cells is p53-independent but may involve enhanced cytochrome c release. Oncogene 20:4128–4137

    Article  CAS  PubMed  Google Scholar 

  64. Sayers TJ et al (2003) The proteasome inhibitor PS-341 sensitizes neoplastic cells to TRAIL-mediated apoptosis by reducing levels of c-FLIP. Blood 102:303–310

    Article  CAS  PubMed  Google Scholar 

  65. Shanker A et al (2008) Treating metastatic solid tumors with bortezomib and a tumor necrosis factor-related apoptosis-inducing ligand receptor agonist antibody. J Natl Cancer Inst 100:649–662

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Unterkircher T et al (2011) Bortezomib primes glioblastoma, including glioblastoma stem cells, for TRAIL by increasing tBid stability and mitochondrial apoptosis. Clin Cancer Res 17:4019–4030

    Article  CAS  PubMed  Google Scholar 

  67. Muhlethaler-Mottet A et al (2006) Histone deacetylase inhibitors strongly sensitise neuroblastoma cells to TRAIL-induced apoptosis by a caspases-dependent increase of the pro- to anti-apoptotic proteins ratio. BMC Cancer 6:214

    Article  PubMed Central  PubMed  Google Scholar 

  68. Nakata S et al (2004) Histone deacetylase inhibitors upregulate death receptor 5/TRAIL-R2 and sensitize apoptosis induced by TRAIL/APO2-L in human malignant tumor cells. Oncogene 23:6261–6271

    Article  CAS  PubMed  Google Scholar 

  69. Neuzil J et al (2004) Sensitization of mesothelioma to TRAIL apoptosis by inhibition of histone deacetylase: role of Bcl-xL down-regulation. Biochem Biophys Res Commun 314:186–191

    Article  CAS  PubMed  Google Scholar 

  70. Pathil A et al (2006) HDAC inhibitor treatment of hepatoma cells induces both TRAIL-independent apoptosis and restoration of sensitivity to TRAIL. Hepatology 43:425–434

    Article  CAS  PubMed  Google Scholar 

  71. Reddy RM et al (2007) Rapid and profound potentiation of Apo2L/TRAIL-mediated cytotoxicity and apoptosis in thoracic cancer cells by the histone deacetylase inhibitor Trichostatin A: the essential role of the mitochondria-mediated caspase activation cascade. Apoptosis 12:55–71

    Article  CAS  PubMed  Google Scholar 

  72. Schuchmann M et al (2006) Histone deacetylase inhibition by valproic acid down-regulates c-FLIP/CASH and sensitizes hepatoma cells towards CD95- and TRAIL receptor-mediated apoptosis and chemotherapy. Oncol Rep 15:227–230

    CAS  PubMed  Google Scholar 

  73. Herbst RS et al (2010) Phase I dose-escalation study of recombinant human Apo2L/TRAIL, a dual proapoptotic receptor agonist, in patients with advanced cancer. J Clin Oncol 28:2839–2846

    Article  CAS  PubMed  Google Scholar 

  74. Soria JC et al (2011) Randomized phase II study of dulanermin in combination with paclitaxel, carboplatin, and bevacizumab in advanced non-small-cell lung cancer. J Clin Oncol 29:4442–4451

    Article  CAS  PubMed  Google Scholar 

  75. Soria JC et al (2010) Phase 1b study of dulanermin (recombinant human Apo2L/TRAIL) in combination with paclitaxel, carboplatin, and bevacizumab in patients with advanced non-squamous non-small-cell lung cancer. J Clin Oncol 28:1527–1533

    Article  CAS  PubMed  Google Scholar 

  76. Baron AD et al (2011) Phase 1b study of drozitumab combined with cetuximab (CET) plus irinotecan (IRI) or with FOLFIRI {+/-} bevacizumab (BV) in previously treated patients (pts) with metastatic colorectal cancer (mCRC). Clin Oncol 29:3581 (Meeting Abstracts)

    Google Scholar 

  77. Camidge DR et al (2010) A phase I safety and pharmacokinetic study of the death receptor 5 agonistic antibody PRO95780 in patients with advanced malignancies. Clin Cancer Res 16:1256–1263

    Article  CAS  PubMed  Google Scholar 

  78. Chawla SP et al (2010) Phase I evaluation of the safety of conatumumab (AMG 655) in combination with AMG 479 in patients (pts) with advanced, refractory solid tumors. J Clin Oncol 28:3102 (Meeting Abstracts)

    Google Scholar 

  79. Doi T et al (2011) Phase 1 study of conatumumab, a pro-apoptotic death receptor 5 agonist antibody, in Japanese patients with advanced solid tumors. Cancer Chemother Pharmacol 68:733–741

    Article  CAS  PubMed  Google Scholar 

  80. Forero-Torres A et al (2010) Phase I trial of weekly tigatuzumab, an agonistic humanized monoclonal antibody targeting death receptor 5 (DR5). Cancer Biother Radiopharm 25:13–19

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Greco FA et al (2008) Phase 2 study of mapatumumab, a fully human agonistic monoclonal antibody which targets and activates the TRAIL receptor-1, in patients with advanced non-small cell lung cancer. Lung Cancer 61:82–90

    Article  PubMed  Google Scholar 

  82. Hotte SJ et al (2008) A phase 1 study of mapatumumab (Fully human monoclonal antibody to TRAIL-R1) in patients with advanced solid malignancies. Clin Cancer Res 14:3450–3455

    Article  CAS  PubMed  Google Scholar 

  83. Karapetis CS et al (2010) Phase II study of PRO95780 plus paclitaxel, carboplatin, and bevacizumab (PCB) in non-small cell lung cancer (NSCLC). J Clin Oncol 28:7535 (Meeting Abstracts)

    Google Scholar 

  84. Kindler HL et al (2009) A phase 1b study to evaluate the safety and efficacy of AMG 655 in combination with gemcitabine (G) in patients (pts) with metastatic pancreatic cancer (PC). J Clin Oncol 27:4501 (Meeting Abstracts)

    Google Scholar 

  85. Kindler HL et al (2010) A placebo-controlled, randomized phase 34 II study of conatumumab (C) or AMG 479 (A) or placebo (P) plus gemcitabine (G) in patients (pts) with metastatic pancreatic cancer (mPC). Clin Oncol 28:4035 (Meeting Abstracts)

    Google Scholar 

  86. Leong S et al (2009) Mapatumumab, an antibody targeting TRAIL-R1, in combination with paclitaxel and carboplatin in patients with advanced solid malignancies: results of a phase I and pharmacokinetic study. J Clin Oncol 27:4413–4421

    Article  CAS  PubMed  Google Scholar 

  87. Merchant MS et al (2010) Lexatumumab: results of a phase I trial in pediatric patients with advanced solid tumors. J Clin Oncol 28:9500 (Meeting Abstracts)

    Google Scholar 

  88. Mom CH et al (2009) Mapatumumab, a fully human agonistic monoclonal antibody that targets TRAIL-R1, in combination with gemcitabine and cisplatin: a phase I study. Clin Cancer Res 15:5584–5590

    Article  CAS  PubMed  Google Scholar 

  89. Pawel JV et al (2010) A randomized phase II trial of mapatumumab, a TRAIL-R1 agonist monoclonal antibody, in combination with carboplatin and paclitaxel in patients with advanced NSCLC. J Clin Oncol 28:18s (suppl. abstr. LBA7501)

    Google Scholar 

  90. Paz-Ares L et al (2009) Safety and efficacy of AMG 655 in 33 combination with paclitaxel and carboplatin (PC) in patients with advanced non-small cell lung cancer (NSCLC). J Clin Oncol 27:e19048 (Meeting Abstracts)

    Google Scholar 

  91. Peeters M et al (2010) Phase Ib/II trial of conatumumab and panitumumab (pmab) for the treatment (tx) of metastatic colorectal cancer (mCRC): safety and efficacy, ASCO gastrointestinal cancers symposium, abstract 443

    Google Scholar 

  92. Plummer R et al (2007) Phase 1 and pharmacokinetic study of lexatumumab in patients with advanced cancers. Clin Cancer Res 13:6187–6194

    Article  CAS  PubMed  Google Scholar 

  93. Rocha CSL et al (2011) Phase 1b study of drozitumab combined with first-line FOLFOX plus bevacizumab (BV) in patients (pts) with metastatic colorectal cancer (mCRC). J Clin Oncol 29:546 (Meeting Abstracts)

    Article  Google Scholar 

  94. Saltz L et al (2009) Safety and efficacy of AMG 655 plus modified FOLFOX6 (mFOLFOX6) and bevacizumab (B) for the first-line treatment of patients (pts) with metastatic colorectal cancer (mCRC). J Clin Oncol 27:4079 (Meeting Abstracts)

    Google Scholar 

  95. Sharma S et al (2008) Phase I trial of LBY135, a monoclonal antibody agonist to DR5, alone and in combination with capecitabine in advanced solid tumors. J Clin Oncol 26:3538 (Meeting Abstracts)

    Google Scholar 

  96. Sikic BI et al (2007) A phase 1b study to assess the safety of lexatumumab, a human monoclonal antibody that activates TRAIL-R2, in 32 combination with gemcitabine, pemetrexed, doxorubicin or FOLFIRI. J Clin Oncol 25:14006 (Meeting Abstracts)

    Google Scholar 

  97. Tolcher AW et al (2007) Phase I pharmacokinetic and biologic correlative study of mapatumumab, a fully human monoclonal antibody with agonist activity to tumor necrosis factor-related apoptosis-inducing ligand receptor-1. J Clin Oncol 25:1390–1395

    Article  CAS  PubMed  Google Scholar 

  98. Trarbach T et al (2010) Phase II trial of mapatumumab, a fully human agonistic monoclonal antibody that targets and activates the tumour necrosis factor apoptosis-inducing ligand receptor-1 (TRAIL-R1), in patients with refractory colorectal cancer. Br J Cancer 102:506–512

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Wakelee HA et al (2010) Phase I and pharmacokinetic study of lexatumumab (HGS-ETR2) given every 2 weeks in patients with advanced solid tumors. Ann Oncol 21:376–381

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Younes A et al (2010) A Phase 1b/2 trial of mapatumumab in patients with relapsed/refractory non-Hodgkin’s lymphoma. Br J Cancer 103:1783–1787

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Fulda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Fulda, S. (2014). Tumor-Necrosis-Factor-Related Apoptosis-Inducing Ligand (TRAIL). In: Grimm, S. (eds) Anticancer Genes. Advances in Experimental Medicine and Biology, vol 818. Springer, London. https://doi.org/10.1007/978-1-4471-6458-6_8

Download citation

Publish with us

Policies and ethics