Skip to main content
Log in

Rapid and profound potentiation of Apo2L/TRAIL-mediated cytotoxicity and apoptosis in thoracic cancer cells by the histone deacetylase inhibitor Trichostatin A: the essential role of the mitochondria-mediated caspase activation cascade

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Apo2L/TRAIL is actively investigated as a novel targeted agent to directly induce apoptosis of susceptible cancer cells. Apo2L/TRAIL-refractory cells can be sensitized to the cytotoxic effect of this ligand by cytotoxic chemotherapeutics. The aim of this study was to evaluate the in vitro tumoricidal activity of the Apo2L/TRAIL + Trichostatin A in cultured thoracic cancer cells and to elucidate the molecular basis of the synergistic cytotoxicity of this combination. Concurrent exposure of cultured cancer cells to sublethal concentrations of Apo2L/TRAIL and Trichostatin A resulted in profound enhancement of Apo2L/TRAIL-mediated cytotoxicity in all cell lines regardless of their intrinsic susceptibility to this ligand. This combination was not toxic to primary normal cells. While Apo2L/TRAIL alone or Trichostatin A alone mediated < 20% cell death, 60 to 90% of cancer cells were apoptotic following treatment with TSA + Apo2L/TRAIL combinations. Complete translocation of Bax from the cytosol to the mitochondria compartment was mainly observed in combination-treated cells and this was correlated with robust elevation of caspase 9 proteolytic activity indicative of activation of the mitochondria apoptogenic effect. Profound TSA + Apo2L/TRAIL–mediated cytotoxicity and apoptosis were completely abrogated by either Bcl2 over-expression or by the selective caspase 9 inhibitor, highlighting the essential role of mitochondria-dependent apoptosis signaling cascade in this process. Moreover, increased caspase 8 activity observed in cells treated with the TSA + Apo2L/TRAIL combination was completely suppressed by Bcl-2 over-expression or by the selective caspase 9 inhibitor indicating that the elevated caspase 8 activity in combination-treated cells was secondary to a mitochondria-mediated amplification feedback loop of caspase activation. These finding form the basis for further development of HDAC inhibitors + Apo2L/TRAIL combination as novel targeted therapy for thoracic malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

TSA:

Trichostatin A

TRAIL:

TNF-related apoptosis inducing ligand

NSCLC:

non-small cell lung cancer

EsC:

esophageal cancer

MPM:

malignant pleural mesothelioma

HDACI:

Histone deacetylase inhibitor

TUNEL:

terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling

MTT:

(4,5-dimethylthiazo-2-yl)-2,5-diphenyl tetrazolium bromide

Apaf-1:

apoptotic protease activating factor 1

SMAC/DIABLO:

second mitochondria-derived activator

AIF:

apoptosis inducing factor

GFP:

green fluorescence protein

RIP:

receptor interacting protein

FLIP:

FLICE inhibitory protein

References

  1. Ashkenazi A, Pai RC, Fong S et al (1999) Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 104:155–62

    Article  CAS  PubMed  Google Scholar 

  2. Pukac L, Kanakaraj P, Humphreys R et al (2005) HGS-ETR1, a fully human TRAIL-receptor 1 monoclonal antibody, induces cell death in multiple tumour types in vitro and in vivo. Br J Cancer 92:1430–441

    Article  CAS  PubMed  Google Scholar 

  3. Ogasawara J, Watanabe-Fukunaga R, Adachi M et al (1993) Lethal effect of the anti-Fas antibody in mice. Nature 364:806–09

    Article  CAS  PubMed  Google Scholar 

  4. Chen Z, Zhang X, Li M et al (2004) Simultaneously targeting epidermal growth factor receptor tyrosine kinase and cyclooxygenase-2, an efficient approach to inhibition of squamous cell carcinoma of the head and neck. Clin Cancer Res 10:5930–939

    Article  CAS  PubMed  Google Scholar 

  5. Lawrence D, Shahrokh Z, Marsters S et al (2001) Differential hepatocyte toxicity of recombinant Apo2L/TRAIL versions. Nat Med 7:383–85

    Article  CAS  PubMed  Google Scholar 

  6. Kelley SK, Harris LA, Xie D et al (2001) Preclinical studies to predict the disposition of Apo2L/tumor necrosis factor-related apoptosis-inducing ligand in humans: characterization of in vivo efficacy, pharmacokinetics, and safety. J Pharmacol Exp Ther 299:31–8

    CAS  PubMed  Google Scholar 

  7. LeBlanc HN, Ashkenazi A (2003) Apo2L/TRAIL and its death and decoy receptors. Cell Death Differ 10:66–5

    Article  CAS  PubMed  Google Scholar 

  8. Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A (1996) Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem 271:12687–2690

    Article  CAS  PubMed  Google Scholar 

  9. Ashkenazi A, Dixit VM (1999) Apoptosis control by death and decoy receptors. Curr Opin Cell Biol 11:255–60

    Article  CAS  PubMed  Google Scholar 

  10. Nicholson DW (1999) Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ 6:1028–042

    Article  CAS  PubMed  Google Scholar 

  11. Salvesen GS, Dixit VM (1999) Caspase activation: the induced-proximity model. Proc Natl Acad Sci USA 96:10964–0967

    Article  CAS  PubMed  Google Scholar 

  12. Boatright KM, Renatus M, Scott FL et al (2003) A unified model for apical caspase activation. Mol Cell 11:529–41

    Article  CAS  PubMed  Google Scholar 

  13. Kroemer G, Dallaporta B, Resche-Rigon M (1998) The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol 60:619–42

    Article  CAS  PubMed  Google Scholar 

  14. van Loo G, Saelens X, van Gurp M, MacFarlane M, Martin SJ, Vandenabeele P (2002) The role of mitochondrial factors in apoptosis: a Russian roulette with more than one bullet. Cell Death Differ 9:1031–042

    Article  CAS  PubMed  Google Scholar 

  15. Korsmeyer SJ, Wei MC, Saito M, Weiler S, Oh KJ, Schlesinger PH (2000) Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ 7:1166–173

    Article  CAS  PubMed  Google Scholar 

  16. Scorrano L, Korsmeyer SJ (2003) Mechanisms of cytochromecrelease by proapoptotic BCL-2 family members. Biochem Biophys Res Commun 304:437–44

    Article  CAS  PubMed  Google Scholar 

  17. Ruffolo SC, Breckenridge DG, Nguyen M et al (2000) BID-dependent and BID-independent pathways for BAX insertion into mitochondria. Cell Death Differ 7:1101–108

    Article  CAS  PubMed  Google Scholar 

  18. Scaffidi C, Fulda S, Srinivasan A et al (1998) Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17:1675–687

    Article  CAS  PubMed  Google Scholar 

  19. Saelens X, Festjens N, Vande WL, van Gurp M, van Loo G, Vandenabeele P (2004) Toxic proteins released from mitochondria in cell death. Oncogene 23:2861–874

    Article  CAS  PubMed  Google Scholar 

  20. Fulda S, Meyer E, Debatin KM (2002) Inhibition of TRAIL-induced apoptosis by Bcl-2 overexpression. Oncogene 21:2283–294

    Article  CAS  PubMed  Google Scholar 

  21. Almasan A, Ashkenazi A (2003) Apo2L/TRAIL: apoptosis signaling, biology, and potential for cancer therapy. Cytokine Growth Factor Rev 14:337–48

    Article  CAS  PubMed  Google Scholar 

  22. Ozoren N, el Deiry WS (2002) Defining characteristics of Types I and II apoptotic cells in response to TRAIL. Neoplasia 4:551–57

    Article  PubMed  Google Scholar 

  23. Zhang L, Fang B (2005) Mechanisms of resistance to TRAIL-induced apoptosis in cancer. Cancer Gene Ther 12:228–37

    Article  CAS  PubMed  Google Scholar 

  24. Muhlethaler-Mottet A, Bourloud KB, Auderset K, Joseph JM, Gross N (2004) Drug-mediated sensitization to TRAIL-induced apoptosis in caspase-8-complemented neuroblastoma cells proceeds via activation of intrinsic and extrinsic pathways and caspase-dependent cleavage of XIAP, Bcl-xL and RIP. Oncogene 23:5415–425

    Article  PubMed  Google Scholar 

  25. Lacour S, Micheau O, Hammann A et al (2003) Chemotherapy enhances TNF-related apoptosis-inducing ligand DISC assembly in HT29 human colon cancer cells. Oncogene 22:1807–816

    Article  CAS  PubMed  Google Scholar 

  26. Kondo K, Yamasaki S, Sugie T et al (2006) Cisplatin-dependent upregulation of death receptors 4 and 5 augments induction of apoptosis by TNF-related apoptosis-inducing ligand against esophageal squamous cell carcinoma. Int J Cancer 118:230–42

    Google Scholar 

  27. Evdokiou A, Bouralexis S, Atkins GJ et al (2002) Chemotherapeutic agents sensitize osteogenic sarcoma cells, but not normal human bone cells, to Apo2L/TRAIL-induced apoptosis. Int J Cancer 99:491–04

    Article  CAS  PubMed  Google Scholar 

  28. Liu W, Bodle E, Chen JY, Gao M, Rosen GD, Broaddus VC (2001) Tumor necrosis factor-related apoptosis-inducing ligand and chemotherapy cooperate to induce apoptosis in mesothelioma cell lines. Am J Respir Cell Mol Biol 25:111–18

    CAS  PubMed  Google Scholar 

  29. Zhou Q, Fukushima P, DeGraff W et al (2000) Radiation and the Apo2L/TRAIL apoptotic pathway preferentially inhibit the colonization of premalignant human breast cells overexpressing cyclin D1. Cancer Res 60:2611–615

    CAS  PubMed  Google Scholar 

  30. Shankar S, Srivastava RK (2004) Enhancement of therapeutic potential of TRAIL by cancer chemotherapy and irradiation: mechanisms and clinical implications. Drug Resist Updat 7:139–56

    Article  CAS  PubMed  Google Scholar 

  31. Sayers TJ, Brooks AD, Koh CY et al (2003) The proteasome inhibitor PS-341 sensitizes neoplastic cells to TRAIL-mediated apoptosis by reducing levels of c-FLIP. Blood 102:303–10

    Article  CAS  PubMed  Google Scholar 

  32. Inoue S, MacFarlane M, Harper N, Wheat LM, Dyer MJ, Cohen GM (2004) Histone deacetylase inhibitors potentiate TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in lymphoid malignancies. Cell Death Differ 11(Suppl 2):S193–S206

    PubMed  Google Scholar 

  33. Guo F, Sigua C, Tao J et al (2004) Cotreatment with histone deacetylase inhibitor LAQ824 enhances Apo-2L/tumor necrosis factor-related apoptosis inducing ligand-induced death inducing signaling complex activity and apoptosis of human acute leukemia cells. Cancer Res 64:2580–589

    Article  CAS  PubMed  Google Scholar 

  34. Fulda S, Debatin KM (2005) Resveratrol-mediated sensitisation to TRAIL-induced apoptosis depends on death receptor and mitochondrial signalling. Eur J Cancer 41:786–98

    Article  CAS  PubMed  Google Scholar 

  35. Ravi R, Bedi A (2002) Requirement of BAX for TRAIL/Apo2L-induced apoptosis of colorectal cancers: synergism with sulindac-mediated inhibition of Bcl-x(L). Cancer Res 62:1583–587

    CAS  PubMed  Google Scholar 

  36. LeBlanc H, Lawrence D, Varfolomeev E et al (2002) Tumor-cell resistance to death receptor–induced apoptosis through mutational inactivation of the proapoptotic Bcl-2 homolog Bax. Nat Med 8:274–81

    Article  CAS  PubMed  Google Scholar 

  37. Yu X, Guo ZS, Marcu MG et al (2002) Modulation of p53, ErbB1, ErbB2, and Raf-1 expression in lung cancer cells by depsipeptide FR901228. J Natl Cancer Inst 94:504–13

    CAS  PubMed  Google Scholar 

  38. Ruefli AA, Ausserlechner MJ, Bernhard D et al (2001) The histone deacetylase inhibitor and chemotherapeutic agent suberoylanilide hydroxamic acid (SAHA) induces a cell-death pathway characterized by cleavage of Bid and production of reactive oxygen species. Proc Natl Acad Sci USA 98:10833–0838

    Article  CAS  Google Scholar 

  39. Marks PA, Jiang X (2005) Histone Deacetylase Inhibitors in Programmed Cell Death and Cancer Therapy. Cell Cycle 4:49–1

    Google Scholar 

  40. Zhang XD, Gillespie SK, Borrow JM, Hersey P (2004) The histone deacetylase inhibitor suberic bishydroxamate regulates the expression of multiple apoptotic mediators and induces mitochondria-dependent apoptosis of melanoma cells. Mol Cancer Ther 3:425–35

    CAS  PubMed  Google Scholar 

  41. Garcia-Morales P, Gomez-Martinez A, Carrato A et al (2005) Histone deacetylase inhibitors induced caspase-independent apoptosis in human pancreatic adenocarcinoma cell lines. Mol Cancer Ther 4:1222–230

    Article  CAS  PubMed  Google Scholar 

  42. Doi S, Soda H, Oka M et al (2004) The histone deacetylase inhibitor FR901228 induces caspase-dependent apoptosis via the mitochondrial pathway in small cell lung cancer cells. Mol Cancer Ther 3:1397–402

    CAS  PubMed  Google Scholar 

  43. Fandy TE, Shankar S, Ross DD, Sausville E, Srivastava RK (2005) Interactive effects of HDAC inhibitors and TRAIL on apoptosis are associated with changes in mitochondrial functions and expressions of cell cycle regulatory genes in multiple myeloma. Neoplasia 7:646–57

    Article  CAS  PubMed  Google Scholar 

  44. Charo J, Finkelstein SE, Grewal N, Restifo NP, Robbins PF, Rosenberg SA (2005) Bcl-2 overexpression enhances tumor-specific T-cell survival. Cancer Res 65:2001–008

    Article  CAS  PubMed  Google Scholar 

  45. Rosato RR, Almenara JA, Dai Y, Grant S (2003) Simultaneous activation of the intrinsic and extrinsic pathways by histone deacetylase (HDAC) inhibitors and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) synergistically induces mitochondrial damage and apoptosis in human leukemia cells. Mol Cancer Ther 2:1273–284

    CAS  PubMed  Google Scholar 

  46. Maxhimer JB, Reddy RM, Zuo J, Cole GW, Schrump DS, Nguyen DM (2005) Induction of apoptosis of lung and esophageal cancer cells treated with the combination of histone deacetylase inhibitor (trichostatin A) and protein kinasecinhibitor (calphostin C). J Thorac Cardiovasc Surg 129:53–3

    Article  CAS  PubMed  Google Scholar 

  47. Mayo MW, Denlinger CE, Broad RM et al (2003) Ineffectiveness of histone deacetylase inhibitors to induce apoptosis involves the transcriptional activation of NF-kappa B through the Akt pathway. J Biol Chem 278:18980–8989

    Article  CAS  PubMed  Google Scholar 

  48. Rosato RR, Grant S (2004) Histone deacetylase inhibitors in clinical development. Expert Opin Investig Drugs 13:21–8

    Article  CAS  PubMed  Google Scholar 

  49. Schrump DS, Nguyen DM (2005) Targeting the epigenome for the treatment and prevention of lung cancer. Semin Oncol Ref Type: In Press

  50. Jaboin J, Wild J, Hamidi H et al (2002) MS-27–275, an inhibitor of histone deacetylase, has marked in vitro and in vivo antitumor activity against pediatric solid tumors. Cancer Res 62:6108–115

    CAS  PubMed  Google Scholar 

  51. Shao Y, Gao Z, Marks PA, Jiang X (2004) Apoptotic and autophagic cell death induced by histone deacetylase inhibitors. Proc Natl Acad Sci USA 101:18030–8035

    Article  CAS  PubMed  Google Scholar 

  52. Schrump DS, Nguyen DM, Kunst TE et al (2002) Phase I study of sequential deoxyazacytidine/depsipeptide infusion in patients with malignancies involving lungs or pleura. Clin Lung Cancer 4:186–92

    Article  CAS  PubMed  Google Scholar 

  53. Kelly WK, Richon VM, O’Connor O et al (2003) Phase I clinical trial of histone deacetylase inhibitor: suberoylanilide hydroxamic acid administered intravenously. Clin Cancer Res 9:3578–588

    CAS  PubMed  Google Scholar 

  54. Piekarz R, Bates S (2004) A review of depsipeptide and other histone deacetylase inhibitors in clinical trials. Curr Pharm Des 10:2289–298

    Article  CAS  PubMed  Google Scholar 

  55. Neuzil J, Swettenham E, Gellert N (2004) Sensitization of mesothelioma to TRAIL apoptosis by inhibition of histone deacetylase: role of Bcl-xL down-regulation. Biochem Biophys Res Commun 314:186–91

    Article  CAS  PubMed  Google Scholar 

  56. Zhang XD, Gillespie SK, Borrow JM, Hersey P (2003) The histone deacetylase inhibitor suberic bishydroxamate: a potential sensitizer of melanoma to TNF-related apoptosis-inducing ligand (TRAIL) induced apoptosis. Biochem Pharmacol 66:1537–545

    Article  CAS  PubMed  Google Scholar 

  57. Kim YH, Park JW, Lee JY, Kwon TK (2004) Sodium butyrate sensitizes TRAIL-mediated apoptosis by induction of transcription from the DR5 gene promoter through Sp1 sites in colon cancer cells. Carcinogenesis 25:1813–820

    Article  PubMed  Google Scholar 

  58. Nakata S, Yoshida T, Horinaka M, Shiraishi T, Wakada M, Sakai T (2004) Histone deacetylase inhibitors upregulate death receptor 5/TRAIL-R2 and sensitize apoptosis induced by TRAIL/APO2-L in human malignant tumor cells. Oncogene 23:6261–271

    Article  CAS  PubMed  Google Scholar 

  59. Chopin V, Slomianny C, Hondermarck H, Le BX (2004) Synergistic induction of apoptosis in breast cancer cells by cotreatment with butyrate and TNF-alpha, TRAIL, or anti-Fas agonist antibody involves enhancement of death receptors’ signaling and requires P21(waf1). Exp Cell Res 298:560–73

    Article  CAS  PubMed  Google Scholar 

  60. Inoue H, Shiraki K, Ohmori S et al (2002) Histone deacetylase inhibitors sensitize human colonic adenocarcinoma cell lines to TNF-related apoptosis inducing ligand-mediated apoptosis. Int J Mol Med 9:521–25

    CAS  PubMed  Google Scholar 

  61. Vanoosten RL, Moore JM, Ludwig AT, Griffith TS (2005) Depsipeptide (FR901228) enhances the cytotoxic activity of TRAIL by redistributing TRAIL receptor to membrane lipid rafts. Mol Ther 11:542–52

    Article  CAS  PubMed  Google Scholar 

  62. Singh TR, Shankar S, Srivastava RK (2005) HDAC inhibitors enhance the apoptosis-inducing potential of TRAIL in breast carcinoma. Oncogene

  63. Wajant H, Haas E, Schwenzer R et al (2000) Inhibition of death receptor-mediated gene induction by a cycloheximide-sensitive factor occurs at the level of or upstream of Fas-associated death domain protein (FADD). J Biol Chem 275:24357–4366

    Article  CAS  PubMed  Google Scholar 

  64. Maulik G, Kijima T, Ma PC et al (2002) Modulation of the c-Met/hepatocyte growth factor pathway in small cell lung cancer. Clin Cancer Res 8:620–27

    CAS  PubMed  Google Scholar 

  65. Arizono Y, Yoshikawa H, Naganuma H, Hamada Y, Nakajima Y, Tasaka K (2003) A mechanism of resistance to TRAIL/Apo2L-induced apoptosis of newly established glioma cell line and sensitisation to TRAIL by genotoxic agents. Br J Cancer 88:298–06

    Article  CAS  PubMed  Google Scholar 

  66. Slee EA, Harte MT, Kluck RM et al (1999) Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J Cell Biol 144:281–92

    Article  CAS  PubMed  Google Scholar 

  67. Rundall BK, Denlinger CE, Jones DR (2004) Combined histone deacetylase and NF-kappaB inhibition sensitizes non-small cell lung cancer to cell death. Surgery 136:416–25

    Article  PubMed  Google Scholar 

  68. Martinon F, Holler N, Richard C, Tschopp J (2000) Activation of a pro-apoptotic amplification loop through inhibition of NF-kappaB-dependent survival signals by caspase-mediated inactivation of RIP. FEBS Lett 468:134–36

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dao M. Nguyen.

Additional information

R.M. Reddy and W.-S. Yeow contributed equally to this work.

This research was supported by the Intramural Research Program of the National Cancer Institute, NIH.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reddy, R.M., Yeow, WS., Chua, A. et al. Rapid and profound potentiation of Apo2L/TRAIL-mediated cytotoxicity and apoptosis in thoracic cancer cells by the histone deacetylase inhibitor Trichostatin A: the essential role of the mitochondria-mediated caspase activation cascade. Apoptosis 12, 55–71 (2007). https://doi.org/10.1007/s10495-006-0484-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-0484-z

Keywords

Navigation