Skip to main content

Death Ligands Designed to Kill: Development and Application of Targeted Cancer Therapeutics Based on Proapoptotic TNF Family Ligands

  • Chapter
  • First Online:
Death Receptors and Cognate Ligands in Cancer

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 49))

Abstract

The identification of molecular markers associated with cancer development or progression, opened a new era in the development of therapeutics. The successful introduction of a few low molecular weight chemicals and recombinant protein therapeutics with targeted actions into clinical practice have raised great expectations to broadly improve cancer therapy with respect to both overall clinical responses and tolerability. Targeting the apoptotic machinery of malignant cells is an attractive concept to combat cancer, which is currently exploited for the proapoptotic members of the TNF ligand family at various stages of preclinical and clinical development. This review summarizes recent progress in this rapidly progressing field of “biologic” therapies targeting the death receptors of TNF, CD95L, and TRAIL by means of its cognate protein ligands, receptor specific antibodies, and gene therapeutic approaches. Preclinical data on newly derived variants and fusion proteins based on these death ligands, designed to act in a tumor restricted manner, thereby preventing a systemic, potentially harmful action, will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ameloot P, Fiers W, De Bleser P, Ware CF, Vandenabeele P, Brouckaert P (2001) Identification of tumor necrosis factor (TNF) amino acids crucial for binding to the murine p75 TNF receptor and construction of receptor-selective mutants. J Biol Chem 276:37426–37430

    CAS  PubMed  Google Scholar 

  • Aoki K, Akyurek LM, San H, Leung K, Parmacek MS, Nabel EG, Nabel GJ (2000) Restricted expression of an adenoviral vector encoding Fas ligand (CD95L) enhances safety for cancer gene therapy. Mol Ther 1:555–565

    CAS  PubMed  Google Scholar 

  • Aoki K, Kurooka M, Chen JJ, Petryniak J, Nabel EG, Nabel GJ (2001) Extracellular matrix interacts with soluble CD95L: retention and enhancement of cytotoxicity. Nat Immunol 2:333–337

    CAS  PubMed  Google Scholar 

  • Arai H, Gordon D, Nabel EG, Nabel GJ (1997) Gene transfer of Fas ligand induces tumor regression in vivo. Proc Natl Acad Sci USA 94:13862–13867

    CAS  PubMed  Google Scholar 

  • Ashkenazi A (2002) Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Cancer 2:420–430

    CAS  PubMed  Google Scholar 

  • Ashkenazi A, Pai RC, Fong S, Leung S, Lawrence DA, Marsters SA, Blackie C, Chang L, McMurtrey AE, Hebert A, DeForge L, Koumenis IL, Lewis D, Harris L, Bussiere J, Koeppen H, Shahrokh Z, Schwall RH (1999) Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 104:155–162

    CAS  PubMed  Google Scholar 

  • Aspalter RM, Eibl MM, Wolf HM (2003) Regulation of TCR-mediated T cell activation by TNF-RII. J Leukoc Biol 74:572–582

    CAS  PubMed  Google Scholar 

  • Aspalter RM, Eibl MM, Wolf HM (2007) Defective T-cell activation caused by impairment of the TNF receptor 2 costimulatory pathway in common variable immunodeficiency. J Allergy Clin Immunol 120:1193–1200

    CAS  PubMed  Google Scholar 

  • Assohou-Luty C, Gerspach J, Siegmund D, Muller N, Huard B, Tiegs G, Pfizenmaier K, Wajant H (2006) A CD40-CD95L fusion protein interferes with CD40L-induced prosurvival signaling and allows membrane CD40L-restricted activation of CD95. J Mol Med 84:785–797

    CAS  PubMed  Google Scholar 

  • Azria D, Larbouret C, Garambois V, Gourgou S, Martineau P, Robert B, Dubois JB, Pelegrin A (2004) A bispecific antibody to enhance radiotherapy by tumor necrosis factor-alpha in human CEA-expressing digestive tumors. Int J Radiat Oncol Biol Phys 58:580–588

    CAS  PubMed  Google Scholar 

  • Balkwill F (2006) TNF-alpha in promotion and progression of cancer. Cancer Metastasis Rev 25:409–416

    CAS  PubMed  Google Scholar 

  • Balza E, Mortara L, Sassi F, Monteghirfo S, Carnemolla B, Castellani P, Neri D, Accolla RS, Zardi L, Borsi L (2006) Targeted delivery of tumor necrosis factor-alpha to tumor vessels induces a therapeutic T cell-mediated immune response that protects the host against syngeneic tumors of different histologic origin. Clin Cancer Res 12:2575–2582

    CAS  PubMed  Google Scholar 

  • Bauer S, Adrian N, Williamson B, Panousis C, Fadle N, Smerd J, Fettah I, Scott AM, Pfreundschuh M, Renner C (2004) Targeted bioactivity of membrane-anchored TNF by an antibody-derived TNF fusion protein. J Immunol 172:3930–3939

    CAS  PubMed  Google Scholar 

  • Bauer S, Adrian N, Fischer E, Kleber S, Stenner F, Wadle A, Fadle N, Zoellner A, Bernhardt R, Knuth A, Old LJ, Renner C (2006) Structure-activity profiles of Ab-derived TNF fusion proteins. J Immunol 177:2423–2430

    CAS  PubMed  Google Scholar 

  • Berg D, Lehne M, Muller N, Siegmund D, Munkel S, Sebald W, Pfizenmaier K, Wajant H (2007) Enforced covalent trimerization increases the activity of the TNF ligand family members TRAIL and CD95L. Cell Death Differ 14:2021–2034

    CAS  PubMed  Google Scholar 

  • Bickenbach KA, Veerapong J, Shao MY, Mauceri HJ, Posner MC, Kron SJ, Weichselbaum RR (2008) Resveratrol is an effective inducer of CArG-driven TNF-alpha gene therapy. Cancer Gene Ther 15:133–139

    CAS  PubMed  Google Scholar 

  • Bodmer JL, Schneider P, Tschopp J (2002) The molecular architecture of the TNF superfamily. Trends Biochem Sci 27:19–26

    CAS  PubMed  Google Scholar 

  • Borsi L, Balza E, Carnemolla B, Sassi F, Castellani P, Berndt A, Kosmehl H, Biro A, Siri A, Orecchia P, Grassi J, Neri D, Zardi L (2003) Selective targeted delivery of TNFalpha to tumor blood vessels. Blood 102:4384–4392

    CAS  PubMed  Google Scholar 

  • Bremer E, Kuijlen J, Samplonius D, Walczak H, de Leij L, Helfrich W (2004) Target cell-restricted and -enhanced apoptosis induction by a scFv:sTRAIL fusion protein with specificity for the pancarcinoma-associated antigen EGP2. Int J Cancer 109:281–290

    CAS  PubMed  Google Scholar 

  • Bremer E, Samplonius DF, Peipp M, van Genne L, Kroesen BJ, Fey GH, Gramatzki M, de Leij LF, Helfrich W (2005a) Target cell-restricted apoptosis induction of acute leukemic T cells by a recombinant tumor necrosis factor-related apoptosis-inducing ligand fusion protein with specificity for human CD7. Cancer Res 65:3380–3388

    CAS  Google Scholar 

  • Bremer E, Samplonius DF, van Genne L, Dijkstra MH, Kroesen BJ, de Leij LF, Helfrich W (2005b) Simultaneous inhibition of epidermal growth factor receptor (EGFR) signaling and enhanced activation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor-mediated apoptosis induction by an scFv:sTRAIL fusion protein with specificity for human EGFR. J Biol Chem 280:10025–10033

    CAS  Google Scholar 

  • Bremer E, ten Cate B, Samplonius DF, de Leij LF, Helfrich W (2006) CD7-restricted activation of Fas-mediated apoptosis: a novel therapeutic approach for acute T-cell leukemia. Blood 107:2863–2870

    CAS  PubMed  Google Scholar 

  • Bremer E, ten Cate B, Samplonius DF, Mueller N, Wajant H, Stel AJ, Chamuleau M, van de Loosdrecht AA, Stieglmaier J, Fey GH, Helfrich W (2008) Superior activity of fusion protein scFvRit:sFasL over cotreatment with rituximab and Fas agonists. Cancer Res 68:597–604

    CAS  PubMed  Google Scholar 

  • Buchsbaum DJ, Zhou T, Lobuglio AF (2006) TRAIL receptor-targeted therapy. Future Oncol 2:493–508

    CAS  PubMed  Google Scholar 

  • Calzascia T, Pellegrini M, Hall H, Sabbagh L, Ono N, Elford AR, Mak TW, Ohashi PS (2007) TNF-alpha is critical for antitumor but not antiviral T cell immunity in mice. J Clin Invest 117:3833–3845

    CAS  PubMed  Google Scholar 

  • Camidge D, Herbst RS, Gordon M, Eckhardt S, Kurzroc R, Durbin B, Ing J, Ling J, Sager J, Mendelson D (2007) A phase I safety and pharmacokinetic study of apomab, a human DR5 agonist antibody, in patients with advanced cancer. J Clin Oncol (ASCO Meeting Abstracts) 25:3582

    Google Scholar 

  • Cao L, Du P, Jiang SH, Jin GH, Huang QL, Hua ZC (2008) Enhancement of antitumor properties of TRAIL by targeted delivery to the tumor neovasculature. Mol Cancer Ther 7:851–861

    CAS  PubMed  Google Scholar 

  • Carlo-Stella C, Lavazza C, Locatelli A, Vigano L, Gianni AM, Gianni L (2007) Targeting TRAIL agonistic receptors for cancer therapy. Clin Cancer Res 13:2313–2317

    CAS  PubMed  Google Scholar 

  • Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B (1975) An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA 72:3666–3670

    CAS  PubMed  Google Scholar 

  • Chandrasekharan UM, Siemionow M, Unsal M, Yang L, Poptic E, Bohn J, Ozer K, Zhou Z, Howe PH, Penn M, DiCorleto PE (2007) Tumor necrosis factor alpha (TNF-alpha) receptor-II is required for TNF-alpha-induced leukocyte-endothelial interaction in vivo. Blood 109:1938–1944

    CAS  PubMed  Google Scholar 

  • Chang JY, Zhang X, Komaki R, Cheung R, Fang B (2006) Tumor-specific apoptotic gene targeting overcomes radiation resistance in esophageal adenocarcinoma. Int J Radiat Oncol Biol Phys 64:1482–1494

    CAS  PubMed  Google Scholar 

  • Chen A, Liu S, Park D, Kang Y, Zheng G (2007) Depleting intratumoral CD4+CD25+ regulatory T cells via FasL protein transfer enhances the therapeutic efficacy of adoptive T cell transfer. Cancer Res 67:1291–1298

    CAS  PubMed  Google Scholar 

  • Costelli P, Aoki P, Zingaro B, Carbo N, Reffo P, Lopez-Soriano FJ, Bonelli G, Argiles JM, Baccino FM (2003) Mice lacking TNFalpha receptors 1 and 2 are resistant to death and fulminant liver injury induced by agonistic anti-Fas antibody. Cell Death Differ 10:997–1004

    CAS  PubMed  Google Scholar 

  • Crippa L, Gasparri A, Sacchi A, Ferrero E, Curnis F, Corti A (2008) Synergistic damage of tumor vessels with ultra low-dose endothelial-monocyte activating polypeptide-II and neovasculature-targeted tumor necrosis factor-alpha. Cancer Res 68:1154–1161

    CAS  PubMed  Google Scholar 

  • Curnis F, Sacchi A, Borgna L, Magni F, Gasparri A, Corti A (2000) Enhancement of tumor necrosis factor alpha antitumor immunotherapeutic properties by targeted delivery to aminopeptidase N (CD13). Nat Biotechnol 18:1185–1190

    CAS  PubMed  Google Scholar 

  • Curnis F, Sacchi A, Corti A (2002) Improving chemotherapeutic drug penetration in tumors by vascular targeting and barrier alteration. J Clin Invest 110:475–482

    CAS  PubMed  Google Scholar 

  • Danese S, Rutella S (2007) The Janus face of CD4+CD25+ regulatory T cells in cancer and autoimmunity. Curr Med Chem 14:649–666

    CAS  PubMed  Google Scholar 

  • Daniel D, Yang B, Lawrence DA, Totpal K, Balter I, Lee WP, Gogineni A, Cole MJ, Yee SF, Ross S, Ashkenazi A (2007) Cooperation of the proapoptotic receptor agonist rhApo2L/TRAIL with the CD20 antibody rituximab against non-Hodgkin lymphoma xenografts. Blood 110:4037–4046

    CAS  PubMed  Google Scholar 

  • Davis JJ, Fang B (2005) Oncolytic virotherapy for cancer treatment: challenges and solutions. J Gene Med 7:1380–1389

    CAS  PubMed  Google Scholar 

  • Dobrzanski MJ, Reome JB, Hollenbaugh JA, Hylind JC, Dutton RW (2004) Effector cell-derived lymphotoxin alpha and Fas ligand, but not perforin, promote Tc1 and Tc2 effector cell-mediated tumor therapy in established pulmonary metastases. Cancer Res 64:406–414

    CAS  PubMed  Google Scholar 

  • Dong F, Wang L, Davis JJ, Hu W, Zhang L, Guo W, Teraishi F, Ji L, Fang B (2006) Eliminating established tumor in nu/nu nude mice by a tumor necrosis factor-alpha-related apoptosis-inducing ligand-armed oncolytic adenovirus. Clin Cancer Res 12:5224–5230

    CAS  PubMed  Google Scholar 

  • Dufes C, Keith WN, Bilsland A, Proutski I, Uchegbu IF, Schatzlein AG (2005) Synthetic anticancer gene medicine exploits intrinsic antitumor activity of cationic vector to cure established tumors. Cancer Res 65:8079–8084

    CAS  PubMed  Google Scholar 

  • Dyer MJ, MacFarlane M, Cohen GM (2007) Barriers to effective TRAIL-targeted therapy of malignancy. J Clin Oncol 25:4505–4506

    PubMed  Google Scholar 

  • Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174

    CAS  PubMed  Google Scholar 

  • Eggermont AM, de Wilt JH, Ten Hagen TL (2003) Current uses of isolated limb perfusion in the clinic and a model system for new strategies. Lancet Oncol 4:429–437

    PubMed  Google Scholar 

  • ElOjeimy S, McKillop JC, El Zawahry AM, Holman DH, Liu X, Schwartz DA, Day TA, Dong JY, Norris JS (2006) FasL gene therapy: a new therapeutic modality for head and neck cancer. Cancer Gene Ther 13:739–745

    CAS  PubMed  Google Scholar 

  • Etter AL, Bassi I, Germain S, Delaloye JF, Tschopp J, Sordat B, Dupuis M (2007) The combination of chemotherapy and intraperitoneal MegaFas Ligand improves treatment of ovarian carcinoma. Gynecol Oncol 107:14–21

    CAS  PubMed  Google Scholar 

  • Farma JM, Puhlmann M, Soriano PA, Cox D, Paciotti GF, Tamarkin L, Alexander HR (2007) Direct evidence for rapid and selective induction of tumor neovascular permeability by tumor necrosis factor and a novel derivative, colloidal gold bound tumor necrosis factor. Int J Cancer 120:2474–2480

    CAS  PubMed  Google Scholar 

  • Finnberg N, Klein-Szanto AJ, El Deiry WS (2008) TRAIL-R deficiency in mice promotes susceptibility to chronic inflammation and tumorigenesis. J Clin Invest 118:111–123

    CAS  PubMed  Google Scholar 

  • Ganten TM, Koschny R, Sykora J, Schulze-Bergkamen H, Buchler P, Haas TL, Schader MB, Untergasser A, Stremmel W, Walczak H (2006) Preclinical differentiation between apparently safe and potentially hepatotoxic applications of TRAIL either alone or in combination with chemotherapeutic drugs. Clin Cancer Res 12:2640–2646

    CAS  PubMed  Google Scholar 

  • Gao JQ, Eto Y, Yoshioka Y, Sekiguchi F, Kurachi S, Morishige T, Yao X, Watanabe H, Asavatanabodee R, Sakurai F, Mizuguchi H, Okada Y, Mukai Y, Tsutsumi Y, Mayumi T, Okada N, Nakagawa S (2007a) Effective tumor targeted gene transfer using PEGylated adenovirus vector via systemic administration. J Control Release 122:102–110

    CAS  Google Scholar 

  • Gao X, Kim KS, Liu D (2007b) Nonviral gene delivery: what we know and what is next. AAPS J 9:E92–E104

    CAS  Google Scholar 

  • Gerber DE (2008) Targeted therapies: a new generation of cancer treatments. Am Fam Physician 77:311–319

    PubMed  Google Scholar 

  • Gerspach J, Muller D, Munkel S, Selchow O, Nemeth J, Noack M, Petrul H, Menrad A, Wajant H, Pfizenmaier K (2006a) Restoration of membrane TNF-like activity by cell surface targeting and matrix metalloproteinase-mediated processing of a TNF prodrug. Cell Death Differ 13:273–284

    CAS  Google Scholar 

  • Gerspach J, Nemeth J, Munkel S, Wajant H, Pfizenmaier K (2006b) Target-selective activation of a TNF prodrug by urokinase-type plasminogen activator (uPA) mediated proteolytic processing at the cell surface. Cancer Immunol Immunother 55:1590–1600

    CAS  Google Scholar 

  • Greaney P, Nahimana A, Lagopoulos L, Etter AL, Aubry D, Attinger A, Beltraminelli N, Huni B, Bassi I, Sordat B, Demotz S, Dupuis M, Duchosal MA (2006) A Fas agonist induces high levels of apoptosis in haematological malignancies. Leuk Res 30:415–426

    CAS  PubMed  Google Scholar 

  • Greco FA, Bonomi P, Crawford J, Kelly K, Oh Y, Halpern W, Lo L, Gallant G, Klein J (2008) Phase 2 study of mapatumumab, a fully human agonistic monoclonal antibody which targets and activates the TRAIL receptor-1, in patients with advanced non-small cell lung cancer. Lung Cancer 61(1):82–90

    PubMed  Google Scholar 

  • Grell M, Douni E, Wajant H, Löhden M, Clauss M, Maxeiner B, Georgopoulos S, Lesslauer W, Kollias G, Pfizenmaier K, Scheurich P (1995) The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor. Cell 83(5):793–802

    CAS  PubMed  Google Scholar 

  • Grosse-Wilde A, Voloshanenko O, Bailey SL, Longton GM, Schaefer U, Csernok AI, Schutz G, Greiner EF, Kemp CJ, Walczak H (2008) TRAIL-R deficiency in mice enhances lymph node metastasis without affecting primary tumor development. J Clin Invest 118:100–110

    CAS  PubMed  Google Scholar 

  • Guillem EB, Sampsel JW (2006) Antitumor-associated antigens IgGs: dual positive and negative potential effects for cancer therapy. Adv Exp Med Biol 587:341–374

    CAS  PubMed  Google Scholar 

  • Guo W, Zhu H, Zhang L, Davis J, Teraishi F, Roth JA, Stephens C, Fueyo J, Jiang H, Conrad C, Fang B (2006) Combination effect of oncolytic adenovirotherapy and TRAIL gene therapy in syngeneic murine breast cancer models. Cancer Gene Ther 13:82–90

    CAS  PubMed  Google Scholar 

  • Halin C, Gafner V, Villani ME, Borsi L, Berndt A, Kosmehl H, Zardi L, Neri D (2003) Synergistic therapeutic effects of a tumor targeting antibody fragment, fused to interleukin 12 and to tumor necrosis factor alpha. Cancer Res 63:3202–3210

    CAS  PubMed  Google Scholar 

  • Hehlgans T, Pfeffer K (2005) The intriguing biology of the tumour necrosis factor/tumour necrosis factor receptor superfamily: players, rules and the games. Immunology 115:1–20

    CAS  PubMed  Google Scholar 

  • Herrmann T, Grosse-Hovest L, Otz T, Krammer PH, Rammensee HG, Jung G (2008) Construction of optimized bispecific antibodies for selective activation of the death receptor CD95. Cancer Res 68:1221–1227

    CAS  PubMed  Google Scholar 

  • Hiramoto K, Inui M, Kamei T, Okumura K, Nakase M, Tagawa T (2006) mHFE7A, a newly identified monoclonal antibody to Fas, induces apoptosis in human melanoma cells in vitro and delays the growth of melanoma xenotransplants. Oncol Rep 15:409–415

    CAS  PubMed  Google Scholar 

  • Holler N, Tardivel A, Kovacsovics-Bankowski M, Hertig S, Gaide O, Martinon F, Tinel A, Deperthes D, Calderara S, Schulthess T, Engel J, Schneider P, Tschopp J (2003) Two adjacent trimeric Fas ligands are required for Fas signaling and formation of a death-inducing signaling complex. Mol Cell Biol 23:1428–1440

    CAS  PubMed  Google Scholar 

  • Hyer ML, Voelkel-Johnson C, Rubinchik S, Dong J, Norris JS (2000) Intracellular Fas ligand expression causes Fas-mediated apoptosis in human prostate cancer cells resistant to monoclonal antibody-induced apoptosis. Mol Ther 2:348–358

    CAS  PubMed  Google Scholar 

  • Hylander BL, Pitoniak R, Penetrante RB, Gibbs JF, Oktay D, Cheng J, Repasky EA (2005) The anti-tumor effect of Apo2L/TRAIL on patient pancreatic adenocarcinomas grown as xenografts in SCID mice. J Transl Med 3:22

    PubMed  Google Scholar 

  • Ichikawa K, Yoshida-Kato H, Ohtsuki M, Ohsumi J, Yamaguchi J, Takahashi S, Tani Y, Watanabe M, Shiraishi A, Nishioka K, Yonehara S, Serizawa N (2000) A novel murine anti-human Fas mAb which mitigates lymphadenopathy without hepatotoxicity. Int Immunol 12:555–562

    CAS  PubMed  Google Scholar 

  • Igney FH, Krammer PH (2005) Tumor counterattack: fact or fiction? Cancer Immunol Immunother 54:1127–1136

    PubMed  Google Scholar 

  • Ito A, Shinkai M, Honda H, Kobayashi T (2001) Heat-inducible TNF-alpha gene therapy combined with hyperthermia using magnetic nanoparticles as a novel tumor-targeted therapy. Cancer Gene Ther 8:649–654

    CAS  PubMed  Google Scholar 

  • Jacob D, Davis J, Zhu H, Zhang L, Teraishi F, Wu S, Marini FC, III, Fang B (2004) Suppressing orthotopic pancreatic tumor growth with a fiber-modified adenovector expressing the TRAIL gene from the human telomerase reverse transcriptase promoter. Clin Cancer Res 10:3535–3541

    CAS  PubMed  Google Scholar 

  • Jacob D, Davis JJ, Zhang L, Zhu H, Teraishi F, Fang B (2005) Suppression of pancreatic tumor growth in the liver by systemic administration of the TRAIL gene driven by the hTERT promoter. Cancer Gene Ther 12:109–115

    CAS  PubMed  Google Scholar 

  • Jee YS, Lee SG, Lee JC, Kim MJ, Lee JJ, Kim DY, Park SW, Sung MW, Heo DS (2002) Reduced expression of coxsackievirus and adenovirus receptor (CAR) in tumor tissue compared to normal epithelium in head and neck squamous cell carcinoma patients. Anticancer Res 22:2629–2634

    CAS  PubMed  Google Scholar 

  • Jiang YY, Liu C, Hong MH, Zhu SJ, Pei YY (2007) Tumor cell targeting of transferrin-PEG-TNF-alpha conjugate via a receptor-mediated delivery system: design, synthesis, and biological evaluation. Bioconjug Chem 18:41–49

    PubMed  Google Scholar 

  • Katz MH, Spivack DE, Takimoto S, Fang B, Burton DW, Moossa AR, Hoffman RM, Bouvet M (2003) Gene therapy of pancreatic cancer with green fluorescent protein and tumor necrosis factor-related apoptosis-inducing ligand fusion gene expression driven by a human telomerase reverse transcriptase promoter. Ann Surg Oncol 10:762–772

    PubMed  Google Scholar 

  • Kelley SK, Ashkenazi A (2004) Targeting death receptors in cancer with Apo2L/TRAIL. Curr Opin Pharmacol 4:333–339

    CAS  PubMed  Google Scholar 

  • Kelley SK, Harris LA, Xie D, DeForge L, Totpal K, Bussiere J, Fox JA (2001) Preclinical studies to predict the disposition of Apo2L/tumor necrosis factor-related apoptosis-inducing ligand in humans: characterization of in vivo efficacy, pharmacokinetics, and safety. J Pharmacol Exp Ther 299:31–38

    CAS  PubMed  Google Scholar 

  • Kim CY, Jeong M, Mushiake H, Kim BM, Kim WB, Ko JP, Kim MH, Kim M, Kim TH, Robbins PD, Billiar TR, Seol DW (2006a) Cancer gene therapy using a novel secretable trimeric TRAIL. Gene Ther 13:330–338

    CAS  Google Scholar 

  • Kim EY, Teh HS (2001) TNF type 2 receptor (p75) lowers the threshold of T cell activation. J Immunol 167:6812–6820

    CAS  PubMed  Google Scholar 

  • Kim EY, Teh HS (2004) Critical role of TNF receptor type-2 (p75) as a costimulator for IL-2 induction and T cell survival: a functional link to CD28. J Immunol 173:4500–4509

    CAS  PubMed  Google Scholar 

  • Kim EY, Priatel JJ, Teh SJ, Teh HS (2006b) TNF receptor type 2 (p75) functions as a costimulator for antigen-driven T cell responses in vivo. J Immunol 176:1026–1035

    CAS  Google Scholar 

  • Kircheis R, Ostermann E, Wolschek MF, Lichtenberger C, Magin-Lachmann C, Wightman L, Kursa M, Wagner E (2002a) Tumor-targeted gene delivery of tumor necrosis factor-alpha induces tumor necrosis and tumor regression without systemic toxicity. Cancer Gene Ther 9:673–680

    CAS  Google Scholar 

  • Kircheis R, Wightman L, Kursa M, Ostermann E, Wagner E (2002b) Tumor-targeted gene delivery: an attractive strategy to use highly active effector molecules in cancer treatment. Gene Ther 9:731–735

    CAS  Google Scholar 

  • Koschny R, Ganten TM, Sykora J, Haas TL, Sprick MR, Kolb A, Stremmel W, Walczak H (2007a) TRAIL/bortezomib cotreatment is potentially hepatotoxic but induces cancer-specific apoptosis within a therapeutic window. Hepatology 45:649–658

    CAS  Google Scholar 

  • Koschny R, Holland H, Sykora J, Haas TL, Sprick MR, Ganten TM, Krupp W, Bauer M, Ahnert P, Meixensberger J, Walczak H (2007b) Bortezomib sensitizes primary human astrocytoma cells of WHO grades I to IV for tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. Clin Cancer Res 13:3403–3412

    CAS  Google Scholar 

  • Koschny R, Walczak H, Ganten TM (2007c) The promise of TRAIL – potential and risks of a novel anticancer therapy. J Mol Med 85:923–935

    CAS  Google Scholar 

  • Kreuz S, Siegmund D, Rumpf JJ, Samel D, Leverkus M, Janssen O, Hacker G, Dittrich-Breiholz O, Kracht M, Scheurich P, Wajant H (2004) NFkappaB activation by Fas is mediated through FADD, caspase-8, and RIP and is inhibited by FLIP. J Cell Biol 166:369–380

    CAS  PubMed  Google Scholar 

  • Krippner-Heidenreich A, Grunwald I, Zimmermann G, Kuhnle M, Gerspach J, Sterns T, Shnyder SD, Gill JH, Mannel DN, Pfizenmaier K, Scheurich P (2008) Single-chain TNF, a TNF derivative with enhanced stability and antitumoral activity. J Immunol 180:8176–8183

    CAS  PubMed  Google Scholar 

  • Kristensen CA, Nozue M, Boucher Y, Jain RK (1996) Reduction of interstitial fluid pressure after TNF-alpha treatment of three human melanoma xenografts. Br J Cancer 74:533–536

    CAS  PubMed  Google Scholar 

  • Kuijlen JM, de Haan BJ, Helfrich W, de Boer JF, Samplonius D, Mooij JJ, de Vos P (2006) The efficacy of alginate encapsulated CHO-K1 single chain-TRAIL producer cells in the treatment of brain tumors. J Neurooncol 78:31–39

    CAS  PubMed  Google Scholar 

  • Kuijlen JM, Mooij JJ, Helfrich W, den Dunnen WF (2007) A single chain (scFv425):sTRAIL fusion protein with specificity for the EGF receptor is effective in vitro but not in an in vivo brain tumor animal model. J Neurooncol DOI 10.1007/s11060-006-9322-4

    Google Scholar 

  • Kursa M, Walker GF, Roessler V, Ogris M, Roedl W, Kircheis R, Wagner E (2003) Novel shielded transferrin-polyethylene glycol-polyethylenimine/DNA complexes for systemic tumor-targeted gene transfer. Bioconjug Chem 14:222–231

    CAS  PubMed  Google Scholar 

  • Larbouret C, Robert B, Linard C, Teulon I, Gourgou S, Bibeau F, Martineau P, Santoro L, Pouget JP, Pelegrin A, Azria D (2007) Radiocurability by targeting tumor necrosis factor-alpha using a bispecific antibody in carcinoembryonic antigen transgenic mice. Int J Radiat Oncol Biol Phys 69:1231–1237

    CAS  PubMed  Google Scholar 

  • Lejeune FJ, Lienard D, Matter M, Ruegg C (2006) Efficiency of recombinant human TNF in human cancer therapy. Cancer Immun 6:6

    PubMed  Google Scholar 

  • Libutti SK, Paciotti GF, Myer L, Haynes R, Gannon WE, Eugeni M, Seidel G, Shutack Y, Yuldasheva N, Tamarkin L (2007) Preliminary results of a phase I clinical trial of CYT-6091: A pegylated colloidal gold-TNF nanomedicine. J Clin Oncol (ASCO Meeting Abstracts) 25:3603

    Google Scholar 

  • Lin T, Gu J, Zhang L, Huang X, Stephens LC, Curley SA, Fang B (2002a) Targeted expression of green fluorescent protein/tumor necrosis factor-related apoptosis-inducing ligand fusion protein from human telomerase reverse transcriptase promoter elicits antitumor activity without toxic effects on primary human hepatocytes. Cancer Res 62:3620–3625

    CAS  Google Scholar 

  • Lin T, Huang X, Gu J, Zhang L, Roth JA, Xiong M, Curley SA, Yu Y, Hunt KK, Fang B (2002b) Long-term tumor-free survival from treatment with the GFP-TRAIL fusion gene expressed from the hTERT promoter in breast cancer cells. Oncogene 21:8020–8028

    CAS  Google Scholar 

  • Liu Y, Cheung LH, Marks JW, Rosenblum MG (2004) Recombinant single-chain antibody fusion construct targeting human melanoma cells and containing tumor necrosis factor. Int J Cancer 108:549–557

    CAS  PubMed  Google Scholar 

  • LoRusso P, Hong D, Heath E, Kurzrock R, Wang D, Hsu M, Goyal L, Wiezorek J, Storgard C, Herbst R (2007) First-in-human study of AMG 655, a pro-apoptotic TRAIL receptor-2 agonist, in adult patients with advanced solid tumors. J Clin Oncol (ASCO Meeting Abstracts) 25:3534

    Google Scholar 

  • MacGill RS, Davis TA, Macko J, Mauceri HJ, Weichselbaum RR, King CR (2007) Local gene delivery of tumor necrosis factor alpha can impact primary tumor growth and metastases through a host-mediated response. Clin Exp Metastasis 24:521–531

    CAS  PubMed  Google Scholar 

  • Marr RA, Addison CL, Snider D, Muller WJ, Gauldie J, Graham FL (1997) Tumour immunotherapy using an adenoviral vector expressing a membrane-bound mutant of murine TNF alpha. Gene Ther 4:1181–1188

    CAS  PubMed  Google Scholar 

  • Menon C, Ghartey A, Canter R, Feldman M, Fraker DL (2006) Tumor necrosis factor-alpha damages tumor blood vessel integrity by targeting VE-cadherin. Ann Surg 244:781–791

    PubMed  Google Scholar 

  • Meurette O, Fontaine A, Rebillard A, Le Moigne G, Lamy T, Lagadic-Gossmann D, Dimanche-Boitrel MT (2006) Cytotoxicity of TRAIL/anticancer drug combinations in human normal cells. Ann N Y Acad Sci 1090:209–216

    CAS  PubMed  Google Scholar 

  • Mezhir JJ, Smith KD, Posner MC, Senzer N, Yamini B, Kufe DW, Weichselbaum RR (2006) Ionizing radiation: a genetic switch for cancer therapy. Cancer Gene Ther 13:1–6

    CAS  PubMed  Google Scholar 

  • Mocellin S, Pilati P, Nitti D (2007) Towards the development of tumor necrosis factor (TNF) sensitizers: making TNF work against cancer. Curr Pharm Des 13:537–551

    CAS  PubMed  Google Scholar 

  • Mortara L, Balza E, Sassi F, Castellani P, Carnemolla B, De Lerma BA, Fossati S, Tosi G, Accolla RS, Borsi L (2007) Therapy-induced antitumor vaccination by targeting tumor necrosis factor alpha to tumor vessels in combination with melphalan. Eur J Immunol 37:3381–3392

    CAS  PubMed  Google Scholar 

  • Murugesan SR, Akiyama M, Einfeld DA, Wickham TJ, King CR (2007) Experimental treatment of ovarian cancers by adenovirus vectors combining receptor targeting and selective expression of tumor necrosis factor. Int J Oncol 31:813–822

    CAS  PubMed  Google Scholar 

  • Muruve DA, Nicolson AG, Manfro RC, Strom TB, Sukhatme VP, Libermann TA (1997) Adenovirus-mediated expression of Fas ligand induces hepatic apoptosis after Systemic administration and apoptosis of ex vivo-infected pancreatic islet allografts and isografts. Hum Gene Ther 8:955–963

    CAS  PubMed  Google Scholar 

  • Nawroth P, Handley D, Matsueda G, De Waal R, Gerlach H, Blohm D, Stern D (1988) Tumor necrosis factor/cachectin-induced intravascular fibrin formation in meth A fibrosarcomas. J Exp Med 168:637–647

    CAS  PubMed  Google Scholar 

  • Nishimura Y, Hirabayashi Y, Matsuzaki Y, Musette P, Ishii A, Nakauchi H, Inoue T, Yonehara S (1997) In vivo analysis of Fas antigen-mediated apoptosis: effects of agonistic anti-mouse Fas mAb on thymus, spleen and liver. Int Immunol 9:307–316

    CAS  PubMed  Google Scholar 

  • Ogasawara J, Watanabe-Fukunaga R, Adachi M, Matsuzawa A, Kasugai T, Kitamura Y, Itoh N, Suda T, Nagata S (1993) Lethal effect of the anti-Fas antibody in mice. Nature 364:806–809

    CAS  PubMed  Google Scholar 

  • Okada Y, Okada N, Mizuguchi H, Hayakawa T, Mayumi T, Mizuno N (2003) An investigation of adverse effects caused by the injection of high-dose TNFalpha-expressing adenovirus vector into established murine melanoma. Gene Ther 10:700–705

    CAS  PubMed  Google Scholar 

  • Paciotti GF, Myer L, Weinreich D, Goia D, Pavel N, McLaughlin RE, Tamarkin L (2004) Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv 11:169–183

    CAS  PubMed  Google Scholar 

  • Park SM, Schickel R, Peter ME (2005) Nonapoptotic functions of FADD-binding death receptors and their signaling molecules. Curr Opin Cell Biol 17:610–616

    CAS  PubMed  Google Scholar 

  • Park SM, Rajapaksha TW, Zhang M, Sattar HA, Fichera A, Ashton-Rickardt PG, Peter ME (2008) CD95 signaling deficient mice with a wild-type hematopoietic system are prone to hepatic neoplasia. Apoptosis 13:41–51

    CAS  PubMed  Google Scholar 

  • Pasut G, Veronese FM (2007) Polymer–drug conjugation, recent achievements and general strategies. Prog Polym Sci 32:933–961

    CAS  Google Scholar 

  • Pfeffer K (2003) Biological functions of tumor necrosis factor cytokines and their receptors. Cytokine Growth Factor Rev 14:185–191

    CAS  PubMed  Google Scholar 

  • Pillay V, Dass CR, Choong PF (2007) The urokinase plasminogen activator receptor as a gene therapy target for cancer. Trends Biotechnol 25:33–39

    CAS  PubMed  Google Scholar 

  • Plummer R, Attard G, Pacey S, Li L, Razak A, Perrett R, Barrett M, Judson I, Kaye S, Fox NL, Halpern W, Corey A, Calvert H, de Bono J (2007) Phase 1 and pharmacokinetic study of lexatumumab in patients with advanced cancers. Clin Cancer Res 13:6187–6194

    CAS  PubMed  Google Scholar 

  • Ranges GE, Bombara MP, Aiyer RA, Rice GG, Palladino MA, Jr (1989) Tumor necrosis factor-alpha as a proliferative signal for an IL-2-dependent T cell line: strict species specificity of action. J Immunol 142:1203–1208

    CAS  PubMed  Google Scholar 

  • Rasmussen H, Rasmussen C, Lempicki M, Durham R, Brough D, King CR, Weichselbaum R (2002) TNFerade Biologic: preclinical toxicology of a novel adenovector with a radiation-inducible promoter, carrying the human tumor necrosis factor alpha gene. Cancer Gene Ther 9:951–957

    CAS  PubMed  Google Scholar 

  • Robert B, Mach JP, Mani JC, Ychou M, Folli S, Artus JC, Pelegrin A (1996) Cytokine targeting in tumors using a bispecific antibody directed against carcinoembryonic antigen and tumor necrosis factor alpha. Cancer Res 56:4758–4765

    CAS  PubMed  Google Scholar 

  • Rubinchik S, Wang D, Yu H, Fan F, Luo M, Norris JS, Dong JY (2001) A complex adenovirus vector that delivers FASL-GFP with combined prostate-specific and tetracycline-regulated expression. Mol Ther 4:416–426

    CAS  PubMed  Google Scholar 

  • Sacchi A, Gasparri A, Curnis F, Bellone M, Corti A (2004) Crucial role for interferon gamma in the synergism between tumor vasculature-targeted tumor necrosis factor alpha (NGR-TNF) and doxorubicin. Cancer Res 64:7150–7155

    CAS  PubMed  Google Scholar 

  • Samel D, Muller D, Gerspach J, Assohou-Luty C, Sass G, Tiegs G, Pfizenmaier K, Wajant H (2003) Generation of a FasL-based proapoptotic fusion protein devoid of systemic toxicity due to cell-surface antigen-restricted Activation. J Biol Chem 278:32077–32082

    CAS  PubMed  Google Scholar 

  • Schenk-Braat EA, van Mierlo MM, Wagemaker G, Bangma CH, Kaptein LC (2007) An inventory of shedding data from clinical gene therapy trials. J Gene Med 9:910–921

    PubMed  Google Scholar 

  • Schneider P, Holler N, Bodmer JL, Hahne M, Frei K, Fontana A, Tschopp J (1998) Conversion of membrane-bound Fas(CD95) ligand to its soluble form is associated with downregulation of its proapoptotic activity and loss of liver toxicity. J Exp Med 187:1205–1213

    CAS  PubMed  Google Scholar 

  • Seki N, Brooks AD, Carter CR, Back TC, Parsoneault EM, Smyth MJ, Wiltrout RH, Sayers TJ (2002) Tumor-specific CTL kill murine renal cancer cells using both perforin and Fas ligand-mediated lysis in vitro, but cause tumor regression in vivo in the absence of perforin. J Immunol 168:3484–3492

    CAS  PubMed  Google Scholar 

  • Seth P (2005) Vector-mediated cancer gene therapy: an overview. Cancer Biol Ther 4:512–517

    CAS  PubMed  Google Scholar 

  • Seynhaeve AL, Hoving S, Schipper D, Vermeulen CE, Wiel-Ambagtsheer G, van Tiel ST, Eggermont AM, Ten Hagen TL (2007) Tumor necrosis factor alpha mediates homogeneous distribution of liposomes in murine melanoma that contributes to a better tumor response. Cancer Res 67:9455–9462

    CAS  PubMed  Google Scholar 

  • Shankar S, Chen X, Srivastava RK (2005) Effects of sequential treatments with chemotherapeutic drugs followed by TRAIL on prostate cancer in vitro and in vivo. Prostate 62:165–186

    CAS  PubMed  Google Scholar 

  • Shankar S, Ganapathy S, Chen Q, Srivastava RK (2008) Curcumin sensitizes TRAIL-resistant xenografts: molecular mechanisms of apoptosis, metastasis and angiogenesis. Mol Cancer 7:16

    PubMed  Google Scholar 

  • Shanker A, Brooks AD, Tristan CA, Wine JW, Elliott PJ, Yagita H, Takeda K, Smyth MJ, Murphy WJ, Sayers TJ (2008) Treating metastatic solid tumors with bortezomib and a tumor necrosis factor-related apoptosis-inducing ligand receptor agonist antibody. J Natl Cancer Inst 100:649–662

    CAS  PubMed  Google Scholar 

  • Shay JW, Bacchetti S (1997) A survey of telomerase activity in human cancer. Eur J Cancer 33:787–791

    CAS  PubMed  Google Scholar 

  • Shibata H, Yoshioka Y, Ikemizu S, Kobayashi K, Yamamoto Y, Mukai Y, Okamoto T, Taniai M, Kawamura M, Abe Y, Nakagawa S, Hayakawa T, Nagata S, Yamagata Y, Mayumi T, Kamada H, Tsutsumi Y (2004) Functionalization of tumor necrosis factor-alpha using phage display technique and PEGylation improves its antitumor therapeutic window. Clin Cancer Res 10:8293–8300

    CAS  PubMed  Google Scholar 

  • Shiraishi T, Suzuyama K, Okamoto H, Mineta T, Tabuchi K, Nakayama K, Shimizu Y, Tohma J, Ogihara T, Naba H, Mochizuki H, Nagata S (2004) Increased cytotoxicity of soluble Fas ligand by fusing isoleucine zipper motif. Biochem Biophys Res Commun 322:197–202

    CAS  PubMed  Google Scholar 

  • Smith MR, Jin F, Joshi I (2007) Bortezomib sensitizes non-Hodgkin's lymphoma cells to apoptosis induced by antibodies to tumor necrosis factor related apoptosis-inducing ligand (TRAIL) receptors TRAIL-R1 and TRAIL-R2. Clin Cancer Res 13:5528s–5534s

    CAS  PubMed  Google Scholar 

  • Stefanidakis M, Koivunen E (2006) Cell-surface association between matrix metalloproteinases and integrins: role of the complexes in leukocyte migration and cancer progression. Blood 108:1441–1450

    CAS  PubMed  Google Scholar 

  • Stieglmaier J, Bremer E, Kellner C, Liebig TM, ten Cate B, Peipp M, Schulze-Koops H, Pfeiffer M, Buhring HJ, Greil J, Oduncu F, Emmerich B, Fey GH, Helfrich W (2008) Selective induction of apoptosis in leukemic B-lymphoid cells by a CD19-specific TRAIL fusion protein. Cancer Immunol Immunother 57:233–246

    PubMed  Google Scholar 

  • Tarrus M, van der Sloot AM, Temming K, Lacombe M, Opdam F, Quax WJ, Molema G, Poelstra K, Kok RJ (2008) RGD-avidin-biotin pretargeting to alpha v beta 3 integrin enhances the proapoptotic activity of TNF alpha related apoptosis inducing ligand (TRAIL). Apoptosis 13:225–235

    CAS  PubMed  Google Scholar 

  • Todaro M, Lombardo Y, Francipane MG, Alea MP, Cammareri P, Iovino F, Di Stefano AB, Di Bernardo C, Agrusa A, Condorelli G, Walczak H, Stassi G (2008) Apoptosis resistance in epithelial tumors is mediated by tumor-cell-derived interleukin-4. Cell Death Differ 15:762–772

    CAS  PubMed  Google Scholar 

  • Tolcher AW, Mita M, Meropol NJ, von Mehren M, Patnaik A, Padavic K, Hill M, Mays T, McCoy T, Fox NL, Halpern W, Corey A, Cohen RB (2007) Phase I pharmacokinetic and biologic correlative study of mapatumumab, a fully human monoclonal antibody with agonist activity to tumor necrosis factor-related apoptosis-inducing ligand receptor-1. J Clin Oncol 25:1390–1395

    CAS  PubMed  Google Scholar 

  • Tsurushima H, Yuan X, Dillehay LE, Leong KW (2007) Radioresponsive tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) gene therapy for malignant brain tumors. Cancer Gene Ther 14:706–716

    CAS  PubMed  Google Scholar 

  • Tsutsumi Y, Kihira T, Tsunoda S, Kubo K, Miyake M, Kanamori T, Nakagawa S, Mayumi T (1994) Intravenous administration of polyethylene glycol-modified tumor necrosis factor-alpha completely regressed solid tumor in Meth-A murine sarcoma model. Jpn J Cancer Res 85:1185–1188

    CAS  PubMed  Google Scholar 

  • Tsutsumi Y, Kihira T, Tsunoda S, Kanamori T, Nakagawa S, Mayumi T (1995) Molecular design of hybrid tumour necrosis factor alpha with polyethylene glycol increases its anti-tumour potency. Br J Cancer 71:963–968

    CAS  PubMed  Google Scholar 

  • Uno T, Takeda K, Kojima Y, Yoshizawa H, Akiba H, Mittler RS, Gejyo F, Okumura K, Yagita H, Smyth MJ (2006) Eradication of established tumors in mice by a combination antibody-based therapy. Nat Med 12:693–698

    CAS  PubMed  Google Scholar 

  • van Mierlo GJ, Scherer HU, Hameetman M, Morgan ME, Flierman R, Huizinga TW, Toes RE (2008) Cutting edge: TNFR-shedding by CD4+CD25+ regulatory T cells inhibits the induction of inflammatory mediators. J Immunol 180:2747–2751

    CAS  PubMed  Google Scholar 

  • Van Molle W, Van Roy M, Van Bogaert T, Dejager L, Van Lint P, Vanlaere I, Sekikawa K, Kollias G, Libert C (2007) Protection of zinc against tumor necrosis factor induced lethal inflammation depends on heat shock protein 70 and allows safe antitumor therapy. Cancer Res 67:7301–7307

    CAS  PubMed  Google Scholar 

  • Van Roy M, Van Lint P, Van L, I, Wielockx B, Wilson C, Lopez-Otin C, Shapiro S, Libert C (2007a) Involvement of specific matrix metalloproteinases during tumor necrosis factor/IFNgamma-based cancer therapy in mice. Mol Cancer Ther 6:2563–2571

    CAS  Google Scholar 

  • Van Roy M, Wielockx B, Baker A, Libert C (2007b) The use of tissue inhibitors of matrix metalloproteinases to increase the efficacy of a tumor necrosis factor/interferon gamma antitumor therapy. Cancer Gene Ther 14:372–379

    CAS  Google Scholar 

  • VanOosten RL, Griffith TS (2007) Activation of tumor-specific CD8+ T Cells after intratumoral Ad5-TRAIL/CpG oligodeoxynucleotide combination therapy. Cancer Res 67:11980–11990

    CAS  PubMed  Google Scholar 

  • Visaria R, Bischof JC, Loren M, Williams B, Ebbini E, Paciotti G, Griffin R (2007) Nanotherapeutics for enhancing thermal therapy of cancer. Int J Hyperthermia 23:501–511

    CAS  PubMed  Google Scholar 

  • Visaria RK, Griffin RJ, Williams BW, Ebbini ES, Paciotti GF, Song CW, Bischof JC (2006) Enhancement of tumor thermal therapy using gold nanoparticle-assisted tumor necrosis factor-alpha delivery. Mol Cancer Ther 5:1014–1020

    CAS  PubMed  Google Scholar 

  • Volkmann X, Fischer U, Bahr MJ, Ott M, Lehner F, MacFarlane M, Cohen GM, Manns MP, Schulze-Osthoff K, Bantel H (2007) Increased hepatotoxicity of tumor necrosis factor-related apoptosis-inducing ligand in diseased human liver. Hepatology 46:1498–1508

    CAS  PubMed  Google Scholar 

  • Wada A, Tada Y, Kawamura K, Takiguchi Y, Tatsumi K, Kuriyama T, Takenouchi T, Wang J, Tagawa M (2007) The effects of FasL on inflammation and tumor survival are dependent on its expression levels. Cancer Gene Ther 14:262–267

    CAS  PubMed  Google Scholar 

  • Wadler S, Yu B, Tan JY, Kaleya R, Rozenblit A, Makower D, Edelman M, Lane M, Hyjek E, Horwitz M (2003) Persistent replication of the modified chimeric adenovirus ONYX-015 in both tumor and stromal cells from a patient with gall bladder carcinoma implants. Clin Cancer Res 9:33–43

    CAS  PubMed  Google Scholar 

  • Wajant H (2004) TRAIL and NFkappaB signaling – a complex relationship. Vitam Horm 67:101–132

    CAS  PubMed  Google Scholar 

  • Wajant H (2006) CD95L/FasL and TRAIL in tumour surveillance and cancer therapy. Cancer Treat Res 130:141–165

    CAS  PubMed  Google Scholar 

  • Wajant H, Moosmayer D, Wuest T, Bartke T, Gerlach E, Schonherr U, Peters N, Scheurich P, Pfizenmaier K (2001) Differential activation of TRAIL-R1 and -2 by soluble and membrane TRAIL allows selective surface antigen-directed activation of TRAIL-R2 by a soluble TRAIL derivative. Oncogene 20:4101–4106

    CAS  PubMed  Google Scholar 

  • Wajant H, Pfizenmaier K, Scheurich P (2003) Tumor necrosis factor signaling. Cell Death Differ 10:45–65

    CAS  PubMed  Google Scholar 

  • Wajant H, Gerspach J, Pfizenmaier K (2005) Tumor therapeutics by design: targeting and activation of death receptors. Cytokine Growth Factor Rev 16:55–76

    CAS  PubMed  Google Scholar 

  • Walther W, Stein U, Fichtner I, Alexander M, Shoemaker RH, Schlag PM (2000) Mdr1 promoter-driven tumor necrosis factor-alpha expression for a chemotherapy-controllable combined in vivo gene therapy and chemotherapy of tumors. Cancer Gene Ther 7:893–900

    CAS  PubMed  Google Scholar 

  • Walther W, Arlt F, Fichtner I, Aumann J, Stein U, Schlag PM (2007) Heat-inducible in vivo gene therapy of colon carcinoma by human mdr1 promoter-regulated tumor necrosis factor-alpha expression. Mol Cancer Ther 6:236–243

    CAS  PubMed  Google Scholar 

  • Wang Y, Huang F, Cai H, Zhong S, Liu X, Tan WS (2008) Potent antitumor effect of TRAIL mediated by a novel adeno-associated viral vector targeting to telomerase activity for human hepatocellular carcinoma. J Gene Med 10:518–526

    PubMed  Google Scholar 

  • Watermann I, Gerspach J, Lehne M, Seufert J, Schneider B, Pfizenmaier K, Wajant H (2007) Activation of CD95L fusion protein prodrugs by tumor-associated proteases. Cell Death Differ 14:765–774

    CAS  PubMed  Google Scholar 

  • Whiteside TL (2007) The role of death receptor ligands in shaping tumor microenvironment. Immunol Invest 36:25–46

    CAS  PubMed  Google Scholar 

  • Wielockx B, Lannoy K, Shapiro SD, Itoh T, Itohara S, Vandekerckhove J, Libert C (2001) Inhibition of matrix metalloproteinases blocks lethal hepatitis and apoptosis induced by tumor necrosis factor and allows safe antitumor therapy. Nat Med 7:1202–1208

    CAS  PubMed  Google Scholar 

  • Wirth T, Kuhnel F, Kubicka S (2005) Telomerase-dependent gene therapy. Curr Mol Med 5:243–251

    CAS  PubMed  Google Scholar 

  • Wu X, He Y, Falo LD, Jr, Hui KM, Huang L (2001) Regression of human mammary adenocarcinoma by systemic administration of a recombinant gene encoding the hFlex-TRAIL fusion protein. Mol Ther 3:368–374

    CAS  PubMed  Google Scholar 

  • Xu Y, Szalai AJ, Zhou T, Zinn KR, Chaudhuri TR, Li X, Koopman WJ, Kimberly RP (2003) Fc gamma Rs modulate cytotoxicity of anti-Fas antibodies: implications for agonistic antibody-based therapeutics. J Immunol 171:562–568

    CAS  PubMed  Google Scholar 

  • Yagita H, Takeda K, Hayakawa Y, Smyth MJ, Okumura K (2004) TRAIL and its receptors as targets for cancer therapy. Cancer Sci 95:777–783

    CAS  PubMed  Google Scholar 

  • Yamamoto Y, Tsutsumi Y, Yoshioka Y, Nishibata T, Kobayashi K, Okamoto T, Mukai Y, Shimizu T, Nakagawa S, Nagata S, Mayumi T (2003) Site-specific PEGylation of a lysine-deficient TNF-alpha with full bioactivity. Nat Biotechnol 21:546–552

    CAS  PubMed  Google Scholar 

  • Yamini B, Yu X, Pytel P, Galanopoulos N, Rawlani V, Veerapong J, Bickenbach K, Weichselbaum RR (2007) Adenovirally delivered tumor necrosis factor-alpha improves the antiglioma efficacy of concomitant radiation and temozolomide therapy. Clin Cancer Res 13:6217–6223

    CAS  PubMed  Google Scholar 

  • Yee L, Fanale M, Dimick K, Calvert S, Robins C, Ing J, Ling J, Novotny W, Ashkenazi A, Burris H (2007) A phase IB safety and pharmacokinetic (PK) study of recombinant human Apo2L/TRAIL in combination with rituximab in patients with low-grade non-Hodgkin lymphoma. J Clin Oncol (ASCO Meeting Abstracts) 25:8078

    Google Scholar 

  • Zerafa N, Westwood JA, Cretney E, Mitchell S, Waring P, Iezzi M, Smyth MJ (2005) Cutting edge: TRAIL deficiency accelerates hematological malignancies. J Immunol 175:5586–5590

    CAS  PubMed  Google Scholar 

  • Zhang X, Cheung RM, Komaki R, Fang B, Chang JY (2005) Radiotherapy sensitization by tumor-specific TRAIL gene targeting improves survival of mice bearing human non-small cell lung cancer. Clin Cancer Res 11:6657–6668

    CAS  PubMed  Google Scholar 

  • Zhao X, Mohaupt M, Jiang J, Liu S, Li B, Qin Z (2007) Tumor necrosis factor receptor 2-mediated tumor suppression is nitric oxide dependent and involves angiostasis. Cancer Res 67:4443–4450

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Original work of the authors referred to in this review was supported by Deutsche Krebshilfe, grant no. 107551 and 106235 to H.W. and K.P. as well as by a career fellowship award by the Peter and Traudl Engelhorn Foundation to J.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeannette Gerspach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gerspach, J., Wajant, H., Pfizenmaier, K. (2009). Death Ligands Designed to Kill: Development and Application of Targeted Cancer Therapeutics Based on Proapoptotic TNF Family Ligands . In: Kalthoff, H. (eds) Death Receptors and Cognate Ligands in Cancer. Results and Problems in Cell Differentiation, vol 49. Springer, Berlin, Heidelberg. https://doi.org/10.1007/400_2008_22

Download citation

Publish with us

Policies and ethics