Skip to main content

Nano-Biocomposites for Food Packaging

  • Chapter
  • First Online:
Environmental Silicate Nano-Biocomposites

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

The main directions in food packaging research are targeted towards improvements in food quality and safety. For this purpose, food packaging providing longer product shelf-life, as well as the monitoring of safety and quality based upon international standards, is desirable. New active packaging strategies represent a key area of development in new multifunctional materials. Nanotechnology can help to address these requirements and also with other packaging functions, such as food protection and preservation, marketing and smart communication to consumers. The use of nano-biocomposites for food packaging combines two of the most active research areas on materials in contact with food. Thus, applications of nano-biocomposites could help to provide new food packaging materials with improved mechanical, barrier, antioxidant and antimicrobial properties. From the food industry standpoint, concerns such as the safety and risk associated with nanomaterials, migration properties, possible ingestion considering mechanisms for nanoparticles to interact with the human body and regulations on the use of nanotechnology need to be considered The latest innovations in food packaging and the use of nano-biocomposites are reviewed in this chapter. Legislative issues related to the use of nanomaterials in food packaging systems are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. http://www.epa.gov/osw/nonhaz/municipal/pubs/msw2009-fs.pdf. Accessed June 2011

  2. http://www.waste-management-world.com/index/display/article-display/304406/articles/waste-management-world/volume-8/issue-4/features/msw-management-in-europe.html. Accessed June 2011

  3. Jamshidian M, Tehrany EA, Imran M et al (2010) Poly-lactic acid: production, applications, nanocomposites, and release studies. Compr Rev Food Sci Food Saf 9:552–571

    Article  CAS  Google Scholar 

  4. Martucci JF, Ruseckaite RA (2010) Biodegradable three-layer film derived from bovine gelatin. J Food Eng 99:377–383

    Article  CAS  Google Scholar 

  5. Kechichian V, Ditchfield C, Veiga-Santos P et al (2010) Natural antimicrobial ingredients incorporated in biodegradable films based on cassava starch. LWT—Food Sci Technol 43:1088–1094

    CAS  Google Scholar 

  6. Arzu AB, Tulay O, Oya IS et al (2010) The utilisation of microbial poly-hydroxy alkanoates (PHA) in food industry. Res J Biotechnol 5:76–79

    Google Scholar 

  7. Ahmed J, Varshney SK (2011) Polylactides-chemistry, properties and green packaging technology: a review. Intern J Food Prop 14:37–58

    Article  CAS  Google Scholar 

  8. Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 9:835–864

    Article  Google Scholar 

  9. Shen L, Haufe J, Patel MK (2009) Product overview and market projection of emerging bio-based plastics PRO-BIP2009, Utrecht University

    Google Scholar 

  10. Sorrentino A, Gorrasi G, Vittoria V (2007) Potential perspectives of bionanocomposites for food packaging applications. Trends Food Sci Technol 18:84–95

    Article  CAS  Google Scholar 

  11. de Azeredo HMC (2009) Nanocomposites for food packaging applications. Food Res Int 42:1240–1253

    Article  Google Scholar 

  12. Neethirajan S, Jayas DS (2011) Nanotechnology for the food and bioprocessing industries. Food Bioprocess Technol 4:39–47

    Article  CAS  Google Scholar 

  13. Sozer N, Kokini JL (2010) Nanotechnology and its applications in the food sector. Trends Biotechnol 27:82–89

    Article  Google Scholar 

  14. Lagaron JM, LĂłpez-Rubio A (2011) Nanotechnology for bioplastics: opportunities, challenges and strategies. Trends Food Sci Technol. doi:10.1016/j.tifs.2011.01.007

    Google Scholar 

  15. Alexandre M, Degee P, Henrist C et al (2001) Preparation and properties of layered silicate nanocomposites based on ethylene vinyl acetate copolymers. Macromol Rapid Commun 22:643–646

    Article  CAS  Google Scholar 

  16. Li X (2001) Preparation and characterization of poly (butyleneterephthalate) organoclay nanocomposites. Macromol Rapid Commun 22:1306–1312

    Article  CAS  Google Scholar 

  17. Khare A, Deshmukh S (2006) Studies toward producing eco-friendly plastics. J Plastic Film Sheeting 22:193–211

    Article  CAS  Google Scholar 

  18. Bordes P, Pollet E, Averous L (2009) Nano-biocomposites: biodegradable polyester/nanoclay systems. Prog Polym Sci 34:125–155

    Article  CAS  Google Scholar 

  19. Suyatma NE, Copinet A, Tighzert L et al (2004) Mechanical and barrier properties of biodegradable films made from chitosan and poly (lactic acid) blends. J Polym Environ 12:1–6

    Article  CAS  Google Scholar 

  20. Tharanathan RN (2003) Biodegradable films and composite coatings: past, present and future. Trends Food Sci Technol 14:71–78

    Article  CAS  Google Scholar 

  21. Kaynak C, Tasan C (2006) Effects of production parameters on the structure of resol type phenolic resin/layered silicate nanocomposites. Eur Polym J 42:1908–1921

    Article  CAS  Google Scholar 

  22. Pereira de Abreu DA, Paseiro-Posada P, Angulo I et al (2007) Development of new polyolefin films with nanoclays for application in food packaging. Macromol Nanotechnol 43:2229–2243

    CAS  Google Scholar 

  23. Martino VP, Ruseckaite RA, Jiménez A et al (2010) Correlation between composition, structure and properties of poly(lactic acid)—polyadipate based nano-biocomposites. Macromol Mat Eng 295:551–558

    Article  CAS  Google Scholar 

  24. Park ES, Kim MN, Yoon JS (2002) Grafting of polycaprolactone onto poly(ethylene-co-vinyl alcohol) and application to polyethylene-based bioerodable blends. J Polym Sci Part B Polym Phys 40:2561–2569

    Article  CAS  Google Scholar 

  25. Tsuji H, Yamada T (2003) Blends of aliphatic polyesters. VIII. Effects of poly(L-lactide-co-ε-caprolactone) on enzymatic hydrolysis of poly(L-lactide), poly(ε-caprolactone), and their blend films. J Appl Polym Sci 87:412–419

    Article  CAS  Google Scholar 

  26. Chen CC, Chueh JY, Tseng H et al (2003) Preparation and characterization of biodegradable PLA polymeric blends. Biomaterials 24:1167–1173

    Article  CAS  Google Scholar 

  27. Martin O, Averous L (2001) Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42:6209–6219

    Article  CAS  Google Scholar 

  28. Ljungberg N, Wesslén B (2002) The effects of plasticizers on the dynamic mechanical and thermal properties of poly(lactic acid). J Appl Polym Sci 86:1227–1234

    Article  CAS  Google Scholar 

  29. Ljungberg N, Wesslén B (2003) Tributyl citrate oligomers as plasticizers for poly (lactic acid): thermo-mechanical film properties and aging. Polymer 44:7679–7688

    Article  CAS  Google Scholar 

  30. Courgneau C, Domenek S, Guinault A et al (2011) Analysis of the structure–properties relationships of different multiphase systems based on plasticized poly(lactic acid). J Polym Environ 19:362–371

    Article  CAS  Google Scholar 

  31. Martino VP, Ruseckaite RA, Jiménez A (2009) Ageing of poly(lactic acid) films plasticized with commercial polyadipates. Polym Int 58:437–444

    Article  CAS  Google Scholar 

  32. Rogovina SZ, Alexanyan CV, Prut EV (2011) Biodegradable blends based on chitin and chitosan: Production, structure, and properties. J Appl Polym Sci 121:1850–1859

    Article  CAS  Google Scholar 

  33. Anderson TJ, Lamsa BP (2011) Zein extraction from corn, corn products, and coproducts and modifications for various applications: a review. Cereal Chem 88:159–173

    Article  CAS  Google Scholar 

  34. Aider M (2010) Chitosan application for active bio-based films production and potential in the food industry: review. LWT-Food Sci Technol 43:837–842

    Article  CAS  Google Scholar 

  35. Campos CA, Gerschenson LN, Flores SK (2011) Development of edible films and coatings with antimicrobial activity. Food Bioprocess Technol 4:849–875

    Article  CAS  Google Scholar 

  36. Wang Y, Padua GW (2004) Zein adsorption to hydrophilic and hydrophobic surfaces investigated by surface plasmon resonance. J Agric Food Chem 52:3100–3105

    Article  CAS  Google Scholar 

  37. Maiti P, Yamada K, Okamoto M et al (2002) New polylactide/layered silicate. Nanocomposites: role of organoclay. Chem Mater 14:4654–4661

    Article  CAS  Google Scholar 

  38. Ray SS, Yamada K, Okamoto M et al (2003) New polylactide/layered silicate nanocomposites. 5. Designing of materials with desired properties. Polymer 44:857–866

    Article  Google Scholar 

  39. Petersson L, Oksman K (2006) Biopolymer based nanocomposites: Comparing layered silicates and microcrystalline cellulose as nanoreinforcement. Comp Sci Technol 66:2187–2196

    Article  CAS  Google Scholar 

  40. Zenkiewicz M, Richert J (2008) Thermoforming of polylactide nanocomposite films for packaging containers. Polym Test 27:835–840

    Article  CAS  Google Scholar 

  41. Rhim JW, Hong SI, Ha CS (2009) Tensile, water barrier and antimicrobial properties of PLA/nanoclay composite films. LWT Food Sci Technol 42:612–617

    Article  CAS  Google Scholar 

  42. Martino VP, Jiménez A, Ruseckaite RA et al (2011) Structure and properties of clay nano-biocomposites based on poly(lactic acid) plasticized with polyadipates. Polym Adv Technol 22:2206–2213

    Article  CAS  Google Scholar 

  43. Choi WM, Kim TW, Park OO et al (2003) Preparation and characterization of tapioca starch-poly(lactic acid)-Cloisite Na nanocomposite foams. J Appl PolymSci 90:525–529

    Article  CAS  Google Scholar 

  44. Wang SF, Song CJ, Chen GX et al (2005) Characteristics and biodegradation properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/organophilic montmorillonite (PHBV/OMMT) nanocomposite. Polym Degrad Stab 87:69–76

    Article  CAS  Google Scholar 

  45. Cabedo L, Plackett D, Giménez E et al (2009) Studying the degradation of polyhydroxybutyrate-co-valerate during processing with clay-based nanofillers. J Appl Polym Sci 112:3669–3676

    Article  CAS  Google Scholar 

  46. González I, Eguizabal JI, Nazabal J (2006) New clay-reinforced nanocomposites based on a polycarbonate/polycaprolactone blend. Polym Eng Sci 46:864–873

    Article  Google Scholar 

  47. Cabedo L, Feijoo JL, Villanueva MP et al (2006) Optimization of biodegradable nanocomposites based on PLA/PCL blends for food packaging. Macromol Symp 233:191–197

    Article  CAS  Google Scholar 

  48. Chen BQ, Evans JRG (2006) Poly(ε-caprolactone)-clay nanocomposites: Structure and mechanical properties. Macromolecules 39:747–754

    Article  CAS  Google Scholar 

  49. Gorrasi G, Tortora M, Vittoria V et al (2004) Physical properties of poly(ε-caprolactone) layered silicate nanocomposites prepared by controlled grafting polymerization. J Polym Sci Part B Polym Phys 42:1466–1475

    Article  CAS  Google Scholar 

  50. Messersmith PB, Giannellis EP (1993) Polymer-layered silicate nanocomposites: in situ intercalative polymerrization of poly(ε-caprolactone). Chem Mat 5:1064–1066

    Article  CAS  Google Scholar 

  51. Gain O, Espuche E, Pollet E et al (2005) Gas barrier properties of poly(ε-caprolactone)/clay nanocomposites: Influence of the morphology and polymer/clay interactions. J Polym Sci Part B Polym Phys 43:205–214

    Article  CAS  Google Scholar 

  52. Park HM, Li X, Jin CZ et al (2002) Preparation and properties of biodegradable thermoplastic starch/clay hybrids. Macromol Mat Eng 287:553–558

    Article  CAS  Google Scholar 

  53. Park HM, Lee WK, Park CY et al (2003) Environmentally friendly polymer hybrids. Part I Mechanical, thermal, and barrier properties of thermoplastic starch/clay nanocomposites. J Mat Sci 38:909–915

    Article  CAS  Google Scholar 

  54. Kampeerapappun P, Ath-ong D, Pentrakoon D et al (2007) Preparation of cassava starch/montmorillonite composite film. Carbohydrate Polym 67:155–163

    Article  CAS  Google Scholar 

  55. Finnigan B, Martin D, Halley P et al (2004) Morphology and properties of thermoplastic polyurethane nanocomposites incorporating hydrophilic nanoparticles. Polymer 45:2249–2260

    Article  CAS  Google Scholar 

  56. Peeterbroeck S, Alexandre M, Jerome R et al (2005) Poly(ethylene-co-vinyl acetate)/clay nanocomposites: effect of clay nature on properties. Polym Degrad Stab 90:288–294

    Article  CAS  Google Scholar 

  57. Almasi H, Ghanbarzadeh B, Entezam AA (2010) Physicochemical properties of starch-CMC-nanoclay biodegradable films. Int J Biol Macromol 46:1–5

    Article  CAS  Google Scholar 

  58. Pucciariello R, Villani V, Gorrasi G et al (2005) Phase behavior of blends of poly(ε-caprolactone) and a modified montmorillonite-poly(ε-caprolactone) nanocomposite. J Macromol Sci 44:79–92

    Article  Google Scholar 

  59. Podsiadlo P, Choi SY, Shim B et al (2005) Molecularly engineered nanocomposites: layer-by-layer assembly of cellulose nanocrystals. Biomacromolecules 6:2914–2918

    Article  CAS  Google Scholar 

  60. Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposites field. Biomacromolecules 6:612–626

    Article  Google Scholar 

  61. Wang B, Sain M (2007) Isolation of nanofibers from soybean source and their reinforcing capability on synthetic polymers. Comp Sci Technol 67:2521–2527

    Article  CAS  Google Scholar 

  62. Azizi Samir MAS, Alloin F, Sanchez JY et al (2004) Cellulose nanocrystals reinforced poly(oxyethylene). Polymer 45:4149–4157

    Article  CAS  Google Scholar 

  63. Dujardin E, Blaseby M, Mann S (2003) Synthesis of mesoporous silica by sol-gel mineralisation of cellulose nanorod nematic suspensions. J Mat Chem 13:696–699

    Article  CAS  Google Scholar 

  64. Alemdar A, Sain M (2008) Biocomposites from wheat straw nanofibers: morphology, thermal and mechanical properties. Comp Sci Technol 68:557–565

    Article  CAS  Google Scholar 

  65. Lu Y, Weng L, Cao X (2005) Biocomposites of plasticized starch reinforced with cellulose crystallites from cotton-seed linter. Macromol Biosci 5:1101–1107

    Article  CAS  Google Scholar 

  66. Paralikar SA, Simonsen J, Lombardi J (2008) Poly(vinyl alcohol)/cellulose nanocrystal barrier membranes. J Membr Sci 320:248–258

    Article  CAS  Google Scholar 

  67. Sanchez-Garcia MD, Gimenez E, Lagaron JM (2008) Morphology and barrier properties of solvent cast composites of thermoplastic biopolymers and purified cellulose fibers. Carbohydrate Polym 71:235–244

    Article  CAS  Google Scholar 

  68. Svagan AJ, Hedenqvist MS, Berglund L (2009) Reduced water vapour sorption in cellulose nanocomposites with starch matrix. Comp Sci Technol 69:500–506

    Article  CAS  Google Scholar 

  69. Dufresne A (2010) Processing of polymer nanocomposites reinforced with polysaccharide nanocrystals. Molecules 15:4111–4128

    Article  CAS  Google Scholar 

  70. Habibi Y, Dufresne A (2008) Highly filled bionanocomposites from functionalized polysaccharide nanocrystals. Biomacromolecules 9:1974–1980

    Article  CAS  Google Scholar 

  71. Chen G, Dufresne A, Huang J et al (2009) A Novel Thermoformable Bionanocomposite Based on Cellulose Nanocrystal-graft-Poly(ε-caprolactone). Macromol Mat Eng 294:59–65

    Article  CAS  Google Scholar 

  72. Löngberg H, Fogelström L, Samir MASA et al (2008) Surface grafting of microfibrillated cellulose with poly(ε-caprolactone)—synthesis and characterization. Eur Polym J 44:2991–2997

    Article  Google Scholar 

  73. Löngberg H, Zhou Q, Brumer H et al (2006) Grafting of cellulose fibers with poly(ε-caprolactone) and poly(L-lactic acid) via ring-opening polymerization. Biomacromolecules 7:2178–2185

    Article  Google Scholar 

  74. Funabashi M, Kunioka M (2005) Biodegradable composites of poly(lactic acid) with cellulose fibers polymerized by aluminum triflate. Macromol Symposia 224:309–321

    Article  CAS  Google Scholar 

  75. Lin N, Chen G, Huang J et al (2009) Effects of polymer-grafted natural nanocrystals on the structure and mechanical properties of poly(lactic acid): a case of cellulose whisker-graft-polycaprolactone. J Appl Polym Sci 113:3417–3425

    Article  CAS  Google Scholar 

  76. Weiss J, Takhistov P, McClements DJ (2006) Functional materials in food nanotechnology. J Food Sci 71:107–116

    Article  Google Scholar 

  77. Elkin T, Jiang X, Taylor S et al (2005) Immuno carbon nanotubes and recognition of pathogens. ChemBioChem 6:640–643

    Article  CAS  Google Scholar 

  78. Ruoff RS, Lorents DC (1995) Mechanical and thermal properties of carbon nanotubes. Carbon 33:925–930

    Article  CAS  Google Scholar 

  79. Ipsen R, Otte J (2007) Self-assembly of partially hydrolysed α-lactalbumin. Biotechnol Adv 25:602–607

    Article  CAS  Google Scholar 

  80. Graveland-Bikker JF, de Kruif CG (2006) Unique milk protein based nanotubes: food and nanotechnology meet. Trends Food Sci Technol 17:196–203

    Article  CAS  Google Scholar 

  81. Rhim JW, Ng PKW (2007) Natural biopolymer-based nanocomposite films for packaging applications. Crit Rev Food Sci Nutr 47:411–433

    Article  CAS  Google Scholar 

  82. Luo PG, Stutzenberger FJ (2008) Nanotechnology in the detection and control of microorganisms. In Laskin AI, Sariaslani S, Gadd GM (eds). Adv Appl Microbiol 63:145–181. Elsevier, London

    Google Scholar 

  83. Liau SY, Read DC, Pugh WJ et al (1997) Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions. Lett Appl Microbiol 25:279–283

    Article  CAS  Google Scholar 

  84. Kumar R, Munstedt H (2005) Silver ion release from antimicrobial polyamide/silver composites. Biomaterials 26:2081–2088

    Article  CAS  Google Scholar 

  85. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182

    Article  CAS  Google Scholar 

  86. Li Q, Mahendra S, Lyon DY et al (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42:4591–4602

    Article  CAS  Google Scholar 

  87. Morones JR, Elechiguerra JL, Camacho A et al (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353

    Article  CAS  Google Scholar 

  88. Damm C, Munstedt H, Rosch A (2008) The antimicrobial efficacy of polyamide 6/silver-nano- and microcomposites. Mat Chem Phys 108:61–66

    Article  CAS  Google Scholar 

  89. Damm C, Munstedt H, Rosch A (2007) Long-term antimicrobial polyamide-6/silver-nanocomposites. J Mat Sci 42:6067–6073

    Article  CAS  Google Scholar 

  90. Wei H, YanJun Y, NingTao L et al (2011) Application and safety assessment for nano-composite materials in food packaging. Chinese Sci Bull 56:1216–1225

    Article  Google Scholar 

  91. Schmidt B, Petersen JH, Koch CB et al (2009) Migration of nanosized layered double hydroxide platelets from polylactide nanocomposite films. Food Addit Contam 26:1619–1627

    Article  CAS  Google Scholar 

  92. Šimon P, Qasim C, Dušan B (2008) Migration of engineered nanoparticles from polymer packaging to food. A physicochemical view. J Food Nutr Res 47:105–113

    Google Scholar 

  93. Hoet PH, Bruske-Hohlfeld I, Salata OV (2004) Nanoparticles-known and unknown health risks. J Nanobiotechnology 2:12–27

    Article  Google Scholar 

  94. Fievez V, Garinot M, Schneider IJ et al (2006) Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release 116:1–27

    Article  Google Scholar 

  95. Kim YS, Kim JS, Cho HS et al (2008) Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol 20:575–583

    Article  CAS  Google Scholar 

  96. Günter O, Eva O, Jan O (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Persp 113:823–839

    Article  Google Scholar 

  97. Costantino U, Nocchetti M, Gorrasi G et al (2011) Hydrotalcites in nanobiocomposites. In: Lagaron JM (ed) Multifunctional and reinforced polymers for food packaging. Woodhead Publishing Ltd, Cambridge

    Google Scholar 

  98. http://www.fda.gov/MedicalDevices/ScienceandResearch/ucm-221171.htm. Accesed June 2011

  99. Bawa R (2008) Nanoparticle-based therapeutics in humans. A survey. Nanotechnol Laws Bus 5:1–21

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alfonso Jiménez or Roxana A. Ruseckaite .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Jiménez, A., Ruseckaite, R.A. (2012). Nano-Biocomposites for Food Packaging. In: Avérous, L., Pollet, E. (eds) Environmental Silicate Nano-Biocomposites. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-4108-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4108-2_15

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4101-3

  • Online ISBN: 978-1-4471-4108-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics