Skip to main content

Lineage Tracing of Bone Cells in the Regenerating Fin and During Repair of Bone Lesions

  • Protocol
  • First Online:
Zebrafish

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2707))

Abstract

Small teleost fishes such as zebrafish and medaka show remarkable regeneration capabilities upon tissue injury or amputation. To elucidate cellular mechanisms of teleost tissue repair and regeneration processes, the Cre/LoxP recombination system for cell lineage tracing is a widely used technique. In this chapter, we describe protocols used for inducible Cre/LoxP recombination-mediated lineage tracing of osteoblast progenitors during medaka fin regeneration as well as during the repair of osteoporosis-like bone lesions in the medaka vertebral column. Our approach can be adapted for lineage tracing of other cell populations in the regenerating teleost fin or in other tissues undergoing repair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hadjidakis DJ, Androulakis II (2006) Bone remodeling. Ann N Y Acad Sci 1092:385–396. https://doi.org/10.1196/annals.1365.035

    Article  CAS  PubMed  Google Scholar 

  2. Raggatt LJ, Partridge NC (2010) Cellular and molecular mechanisms of bone remodeling. J Biol Chem 285(33):25103–25108. https://doi.org/10.1074/jbc.R109.041087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Daponte V, Tylzanowski P, Forlino A (2021) Appendage regeneration in vertebrates: what makes this possible? Cell 10(2):242. https://doi.org/10.3390/cells10020242

    Article  CAS  Google Scholar 

  4. Stoick-Cooper CL, Moon RT, Weidinger G (2007) Advances in signaling in vertebrate regeneration as a prelude to regenerative medicine. Genes Dev 21(11):1292–1315. https://doi.org/10.1101/gad.1540507

    Article  CAS  PubMed  Google Scholar 

  5. Schemitsch EH (2017) Size matters: defining critical in bone defect size! J Orthop Trauma 31(Suppl 5):S20–s22. https://doi.org/10.1097/bot.0000000000000978

    Article  PubMed  Google Scholar 

  6. Clark D, Nakamura M, Miclau T, Marcucio R (2017) Effects of aging on fracture healing. Curr Osteoporos Rep 15(6):601–608. https://doi.org/10.1007/s11914-017-0413-9

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jaźwińska A, Sallin P (2016) Regeneration versus scarring in vertebrate appendages and heart. J Pathol 238(2):233–246. https://doi.org/10.1002/path.4644

    Article  PubMed  Google Scholar 

  8. Takeyama K, Chatani M, Takano Y et al (2014) In-vivo imaging of the fracture healing in medaka revealed two types of osteoclasts before and after the callus formation by osteoblasts. Dev Biol 394(2):292–304. https://doi.org/10.1016/j.ydbio.2014.08.007

    Article  CAS  PubMed  Google Scholar 

  9. Azevedo AS, Grotek B, Jacinto A et al (2011) The regenerative capacity of the zebrafish caudal fin is not affected by repeated amputations. PLoS One 6(7):e22820. https://doi.org/10.1371/journal.pone.0022820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nishidate M, Nakatani Y, Kudo A et al (2007) Identification of novel markers expressed during fin regeneration by microarray analysis in medaka fish. Dev Dyn 236(9):2685–2693. https://doi.org/10.1002/dvdy.21274

    Article  CAS  PubMed  Google Scholar 

  11. Kaliya-Perumal A-K, Ingham PW (2021) Musculoskeletal regeneration: A zebrafish perspective. Biochimie 196:171. https://doi.org/10.1016/j.biochi.2021.10.014

    Article  CAS  PubMed  Google Scholar 

  12. Sousa S, Valerio F, Jacinto A (2012) A new zebrafish bone crush injury model. Biol Open 1(9):915–921. https://doi.org/10.1242/bio.2012877

    Article  PubMed  PubMed Central  Google Scholar 

  13. Geurtzen K, Knopf F, Wehner D et al (2014) Mature osteoblasts dedifferentiate in response to traumatic bone injury in the zebrafish fin and skull. Development 141(11):2225–2234. https://doi.org/10.1242/dev.105817

    Article  CAS  PubMed  Google Scholar 

  14. Renn J, Buttner A, To TT et al (2013) A col10a1:nlGFP transgenic line displays putative osteoblast precursors at the medaka notochordal sheath prior to mineralization. Dev Biol 381(1):134–143. https://doi.org/10.1016/j.ydbio.2013.05.030

    Article  CAS  PubMed  Google Scholar 

  15. To TT, Witten PE, Renn J et al (2012) Rankl-induced osteoclastogenesis leads to loss of mineralization in a medaka osteoporosis model. Development 139(1):141–150. https://doi.org/10.1242/dev.071035

    Article  CAS  PubMed  Google Scholar 

  16. Singh SP, Holdway JE, Poss KD (2012) Regeneration of amputated zebrafish fin rays from de novo osteoblasts. Dev Cell 22(4):879–886. https://doi.org/10.1016/j.devcel.2012.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dasyani M, Tan WH, Sundaram S et al (2019) Lineage tracing of col10a1 cells identifies distinct progenitor populations for osteoblasts and joint cells in the regenerating fin of medaka (Oryzias latipes). Dev Biol 455(1):85–99. https://doi.org/10.1016/j.ydbio.2019.07.012

    Article  CAS  PubMed  Google Scholar 

  18. Tu S, Johnson SL (2011) Fate restriction in the growing and regenerating zebrafish fin. Dev Cell 20(5):725–732. https://doi.org/10.1016/j.devcel.2011.04.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ando K, Shibata E, Hans S et al (2017) Osteoblast production by reserved progenitor cells in zebrafish bone regeneration and maintenance. Dev Cell 43(5):643–650.e643. https://doi.org/10.1016/j.devcel.2017.10.015

    Article  CAS  PubMed  Google Scholar 

  20. Kretzschmar K, Watt FM (2012) Lineage tracing. Cell 148(1–2):33–45. https://doi.org/10.1016/j.cell.2012.01.002

    Article  CAS  PubMed  Google Scholar 

  21. Knopf F, Hammond C, Chekuru A et al (2011) Bone regenerates via dedifferentiation of osteoblasts in the zebrafish fin. Dev Cell 20(5):713–724. https://doi.org/10.1016/j.devcel.2011.04.014

    Article  CAS  PubMed  Google Scholar 

  22. Centanin L, Ander J-J, Hoeckendorf B et al (2014) Exclusive multipotency and preferential asymmetric divisions in post-embryonic neural stem cells of the fish retina. Development 141(18):3472–3482. https://doi.org/10.1242/dev.109892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Uemoto T, Abe G, Tamura K (2020) Regrowth of zebrafish caudal fin regeneration is determined by the amputated length. Sci Rep 10(1):649. https://doi.org/10.1038/s41598-020-57533-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tan WH, Winkler C (2022) A non-disruptive and efficient knock-in approach allows fate tracing of resident osteoblast progenitors during repair of vertebral lesions in medaka. Development 149(12). https://doi.org/10.1242/dev.200238

Download references

Acknowledgments

We thank Lazaro Centanin (Centre for Organismal Studies, University of Heidelberg) for sharing the GaudiBBW2.1 transgenic line. We also thank the Centre for Bioimaging Sciences confocal unit and the fish facility at Department of Biological Sciences, National University of Singapore, for continued support. This work was supported by the Singapore Ministry of Education (MOE2016-T2-2-086) and the National Research Foundation Singapore (NRF2017-NRF-ISF002-2671). The authors declare no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Hui Tan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tan, W.H., Winkler, C. (2024). Lineage Tracing of Bone Cells in the Regenerating Fin and During Repair of Bone Lesions. In: Amatruda, J.F., Houart, C., Kawakami, K., Poss, K.D. (eds) Zebrafish. Methods in Molecular Biology, vol 2707. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3401-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3401-1_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3400-4

  • Online ISBN: 978-1-0716-3401-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics