Skip to main content

Identification and Characterization of Some Genes, Enzymes, and Metabolic Intermediates Belonging to the Bile Acid Aerobic Catabolic Pathway from Pseudomonas

  • Protocol
  • First Online:
Microbial Steroids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2704))

  • 318 Accesses

Abstract

The study of the catabolic potential of microbial species isolated from different habitats has allowed the identification and characterization of bacteria able to assimilate bile acids and/or other steroids (e.g., testosterone and 4-androsten-3,17-dione) under aerobic conditions through the 9,10-seco pathway. From soil samples, we have isolated several strains belonging to genus Pseudomonas that grow efficiently in chemically defined media containing some cyclopentane–perhydrophenanthrene derivatives as carbon sources. Genetic and biochemical studies performed with one of these bacteria (P. putida DOC21) allowed the identification of the genes and enzymes belonging to the route involved in bile acids and androgens, the 9,10-seco pathway in this bacterium. In this manuscript, we describe the most relevant methods used in our lab for the identification of the chromosomal location and nucleotide sequence of the catabolic genes (or gene clusters) encoding the enzymes of this pathway, and the tools useful to establish the role of some of the enzymes that participate in this route.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Russell DW (2003) The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem 72:137–174

    Article  CAS  PubMed  Google Scholar 

  2. di Gregorio MC, Cautela J, Galantini L (2021) Physiology and physical chemistry of bile acids. Int J Mol Sci 22:1780

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hofmann AF, Hagey LR, Krasowski MD (2010) Bile salts of vertebrates: structural variation and possible evolutionary significance. J Lipid Res 51:226–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hofmann AF, Hagey LR (2008) Bile acids: chemistry, pathochemistry, biology, pathobiology, and therapeutics. Cell Mol Life Sci 65:2461–2483

    Article  CAS  PubMed  Google Scholar 

  5. Durník R, Šindlerová L, Babica P et al (2022) Bile acids transporters of enterohepatic circulation for targeted drug delivery. Molecules 27:2961

    Article  PubMed  PubMed Central  Google Scholar 

  6. Collins SL, Stine JG, Bisanz JE et al (2023) Bile acids and the gut microbiota: metabolic interactions and impacts on disease. Nat Rev Microbiol 21(4):236–247. https://doi.org/10.1038/s41579-022-00805-x

    Article  CAS  PubMed  Google Scholar 

  7. Hagey LR, Vidal N, Hofmann AF et al (2010) Evolutionary diversity of bile salts in reptiles and mammals, including analysis of ancient human and extinct giant ground sloth coprolites. BMC Evol Biol 10:133

    Article  PubMed  PubMed Central  Google Scholar 

  8. Merino E, Barrientos A, Rodríguez J et al (2013) Isolation of cholesterol- and deoxycholate-degrading bacteria from soil samples: evidence of a common pathway. Appl Microbiol Biotechnol 97:891–904

    Article  CAS  PubMed  Google Scholar 

  9. Horinouchi M, Hayashi T, Kudo T (2012) Steroid degradation in Comamonas testosteroni. J Steroid Biochem Mol Biol 129:4–14

    Article  CAS  PubMed  Google Scholar 

  10. van der Geize R, Yam K, Heuser T et al (2007) A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proc Natl Acad Sci 104:1947–1952

    Article  PubMed  PubMed Central  Google Scholar 

  11. van der Geize R, Grommen AWF, Hessels GI et al (2011) The steroid catabolic pathway of the intracellular pathogen Rhodococcus equi is important for pathogenesis and a target for vaccine development. PLoS Pathog 7:e1002181

    Article  PubMed  PubMed Central  Google Scholar 

  12. Drzyzga O, de las Heras LF, Morales V et al (2011) Cholesterol degradation by Gordonia cholesterolivorans. Appl Environ Microbiol 77:4802–4810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bragin EY, Shtratnikova VY, Dovbnya DV et al (2013) Comparative analysis of genes encoding key steroid core oxidation enzymes in fast-growing Mycobacterium spp. strains. J Steroid Biochem Mol Biol 138:41–53

    Article  CAS  PubMed  Google Scholar 

  14. Uhía I, Galán B, Kendall SL et al (2012) Cholesterol metabolism in Mycobacterium smegmatis. Environ Microbiol Rep 4:168–182

    Article  PubMed  Google Scholar 

  15. Mohn WW, Wilbrink MH, Casabon I et al (2012) Gene cluster encoding cholate catabolism in Rhodococcus spp. J Bacteriol 194:6712–6719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Birkenmaier A, Holert J, Erdbrink H et al (2007) Biochemical and genetic investigation of initial reactions in aerobic degradation of the bile acid cholate in Pseudomonas sp. strain Chol1. J Bacteriol 189:7165–7173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Barrientos Á, Merino E, Casabon I et al (2015) Functional analyses of three acyl-CoA synthetases involved in bile acid degradation in Pseudomonas putida DOC21. Environ Microbiol 17:47–63

    Article  CAS  PubMed  Google Scholar 

  18. Feller FM, Holert J, Yücel O et al (2021) Degradation of bile acids by soil and water bacteria. Microorganisms 9:1759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Olivera ER, Luengo JM (2019) Steroids as environmental compounds recalcitrant to degradation: genetic mechanisms of bacterial biodegradation pathways. Genes (Basel) 10:512

    Article  CAS  PubMed  Google Scholar 

  20. Olivera ER, de la Torre M, Barrientos Á et al (2018) Steroid catabolism in bacteria: genetic and functional analyses of stdH and stdJ in Pseudomonas putida DOC21. Can J Biotechnol 2:88–99

    Article  Google Scholar 

  21. Holert J, Jagmann N, Philipp B (2013) The essential function of genes for a hydratase and an aldehyde dehydrogenase for growth of Pseudomonas sp. strain Chol1 with the steroid compound cholate indicates an aldolytic reaction step for deacetylation of the side chain. J Bacteriol 195:3371–3380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Holert J, Kulic Z, Yucel O et al (2013) Degradation of the acyl side chain of the steroid compound cholate in Pseudomonas sp. strain Chol1 proceeds via an aldehyde intermediate. J Bacteriol 195:585–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Horinouchi M, Taguchi K, Arai H et al (2001) Meta-cleavage enzyme gene tesB is necessary for testosterone degradation in Comamonas testosteroni TA441. Microbiology (Reading) 147:3367–3375

    Article  CAS  PubMed  Google Scholar 

  24. Yam KC, D’Angelo I, Kalscheuer R et al (2009) Studies of a ring-cleaving dioxygenase illuminate the role of cholesterol metabolism in the pathogenesis of Mycobacterium tuberculosis. PLoS Pathog 5:e1000344

    Article  PubMed  PubMed Central  Google Scholar 

  25. Casabon I, Crowe AM, Liu J et al (2013) FadD3 is an acyl-CoA synthetase that initiates catabolism of cholesterol rings C and D in actinobacteria. Mol Microbiol 87:269–283

    Article  CAS  PubMed  Google Scholar 

  26. Horinouchi M, Hayashi T (2021) Identification of the coenzyme A (CoA) ester intermediates and genes involved in the cleavage and degradation of the steroidal C-ring by Comamonas testosteroni TA441. Appl Environ Microbiol 87:e0110221

    Article  PubMed  Google Scholar 

  27. Horinouchi M, Koshino H, Malon M et al (2019) Steroid degradation in Comamonas testosteroni TA441: identification of the entire β-oxidation cycle of the cleaved B ring. Appl Environ Microbiol 85:e01204-19

    Article  PubMed  PubMed Central  Google Scholar 

  28. Crowe AM, Casabon I, Brown KL et al (2017) Catabolism of the last two steroid rings in Mycobacterium tuberculosis and other bacteria. mBio 8:e00321-17

    Article  PubMed  PubMed Central  Google Scholar 

  29. Horinouchi M, Malon M, Hirota H et al (2019) Identification of 4-methyl-5-oxo-octane-1,8-dioic acid and the derivatives as metabolites of steroidal C,D-ring degradation in Comamonas testosteroni TA441. J Steroid Biochem Mol Biol 185:277–286

    Article  CAS  PubMed  Google Scholar 

  30. Selvaraj G, Iyer VN (1983) Suicide plasmid vehicles for insertion mutagenesis in Rhizobium meliloti and related bacteria. J Bacteriol 156:1292–1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Herrero M, de Lorenzo V, Timmis KN (1990) Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J Bacteriol 172:6557–6567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Quandt J, Hynes MF (1993) Versatile suicide vectors which allow direct selection for gene replacement in gram-negative bacteria. Gene 127:15–21

    Article  CAS  PubMed  Google Scholar 

  33. Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  34. Ruvkun GB, Sundaresan V, Ausubel FM (1982) Directed transposon Tn5 mutagenesis and complementation analysis of Rhizobium meliloti symbiotic nitrogen fixation genes. Cell 29:551–559

    Article  CAS  PubMed  Google Scholar 

  35. Olivera ER, Miñambres B, García B et al (1998) Molecular characterization of the phenylacetic acid catabolic pathway in Pseudomonas putida U: the phenylacetyl-CoA catabolon. Proc Natl Acad Sci U S A 95:6419–6424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Arcos M, Olivera ER, Arias S et al (2010) The 3,4-dihydroxyphenylacetic acid catabolon, a catabolic unit for degradation of biogenic amines tyramine and dopamine in Pseudomonas putida U. Environ Microbiol 12:1684–1704

    CAS  PubMed  Google Scholar 

  37. Berg DE, Weiss A, Crossland L (1980) Polarity of Tn5 insertion mutations in Escherichia coli. J Bacteriol 142:439–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tenneson ME, Baty JD, Bilton RF et al (1979) The degradation of cholic acid by Pseudomonas spp. N.C.I.B. 10590. Biochem J 184:613–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was funded by the Ministerio de Economía y Competitividad (Madrid, España, grants BFU2009-11545-C03-01, BIO2012-39695-C02-02, and BIO2015-66960-C3-3R), by a CENIT Project RTC-2014-2249-1 (CDTI, Ministerio de Economía y Competitividad, Madrid, España), and by a grant from the Junta de Castilla y León (Consejería de Educación, Valladolid, España) LE246A11-2. The authors also want to thank the support to their actual research by the Horizon Europe Framework Programme (call: HORIZON-CL4-2021-RESILIENCE-01-11) through the ESTELLA project (“DESign of bio-based Thermoset polymer with rEcycLing capabiLity by dynAmic bonds for bio-composite manufacturing”) (Project no. 101058371), the Ministerio de Ciencia e Innovación (grant TED2021-132593B-I00 belonging to the 2021 convocatory “Proyectos Estratégicos Orientados a la Transición Ecológica y a la Transición Digital” and RTI2018-095584-B-C43 from Proyectos de I+D+i RETOS INVESTIGACION), and the Junta de Castilla y León, grant LE250P20.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elias R. Olivera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Luengo, J.M., Olivera, E.R. (2023). Identification and Characterization of Some Genes, Enzymes, and Metabolic Intermediates Belonging to the Bile Acid Aerobic Catabolic Pathway from Pseudomonas. In: Barreiro, C., Barredo, JL. (eds) Microbial Steroids. Methods in Molecular Biology, vol 2704. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3385-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3385-4_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3384-7

  • Online ISBN: 978-1-0716-3385-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics