Skip to main content

Antibody Affinity and Stability Maturation by Error-Prone PCR

  • Protocol
  • First Online:
Phage Display

Abstract

Human antibodies are the most important class of biologicals, and antibodies – human and nonhuman – are indispensable as research agents and for diagnostic assays. When generating antibodies, they sometimes show the desired specificity profile but lack sufficient affinity for the desired application. In this article, a phage display-based method and protocol to increase the affinity of recombinant antibody fragments is given.

The given protocol starts with the construction of a mutated antibody gene library by error-prone PCR. Subsequently, the selection of high-affinity variants is performed by panning on immobilized antigen with washing conditions optimized for off-rate-dependent selection. A screening ELISA protocol to identify antibodies with improved affinity and an additional protocol to select antibodies with improved thermal stability is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ecker DM, Crawford TJ, Seymour P (2020) The therapeutic monoclonal antibody product market. BioProcess Int 18

    Google Scholar 

  2. Lu R-M, Hwang Y-C, Liu I-J et al (2020) Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci 27:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Finlay WJJ, Bloom L, Cunningham O (2011) Phage display: a powerful technology for the generation of high specificity affinity reagents from alternative immune sources. Methods Mol Biol 681:87 –101

    Article  CAS  PubMed  Google Scholar 

  4. Tiller T, Schuster I, Deppe D et al (2013) A fully synthetic human Fab antibody library based on fixed VH/VL framework pairings with favorable biophysical properties. MAbs 5:445 –470

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pantazes RJ, Maranas CD (2013) MAPs: a database of modular antibody parts for predicting tertiary structures and designing affinity matured antibodies. BMC Bioinf 14:168

    Article  Google Scholar 

  6. Tomszak F, Weber S, Zantow J et al (2016) Selection of recombinant human antibodies. In: Protein targeting compounds. Springer, Cham, pp 23–54

    Chapter  Google Scholar 

  7. McCafferty J (1996) Phage display: factors affecting panning efficiency. In: Phage display of peptides and proteins. Elsevier, London, pp 261–276

    Chapter  Google Scholar 

  8. Douthwaite JA, Sridharan S, Huntington C et al (2015) Affinity maturation of a novel antagonistic human monoclonal antibody with a long VH CDR3 targeting the Class A GPCR formyl-peptide receptor 1. MAbs 7:152 –166

    Article  CAS  PubMed  Google Scholar 

  9. Li B, Fouts AE, Stengel K et al (2014) In vitro affinity maturation of a natural human antibody overcomes a barrier to in vivo affinity maturation. MAbs 6:437 –445

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lamdan H, Gavilondo JV, Muñoz Y et al (2013) Affinity maturation and fine functional mapping of an antibody fragment against a novel neutralizing epitope on human vascular endothelial growth factor. Mol BioSyst 9:2097 –2106

    Article  CAS  PubMed  Google Scholar 

  11. Lou J, Geren I, Garcia-Rodriguez C et al (2010) Affinity maturation of human botulinum neurotoxin antibodies by light chain shuffling via yeast mating. Protein Eng Des Sel 23:311 –319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yoshinaga K, Matsumoto M, Torikai M et al (2008) Ig L-chain shuffling for affinity maturation of phage library-derived human anti-human MCP-1 antibody blocking its chemotactic activity. J Biochem 143:593 –601

    Article  CAS  PubMed  Google Scholar 

  13. Ohlin M, Owman H, Mach M et al (1996) Light chain shuffling of a high affinity antibody results in a drift in epitope recognition. Mol Immunol 33:47 –56

    Article  CAS  PubMed  Google Scholar 

  14. Teixeira AAR, D’Angelo S, Erasmus MF et al (2022) Simultaneous affinity maturation and developability enhancement using natural liability-free CDRs. MAbs 14:2115200

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rajpal A, Beyaz N, Haber L et al (2005) A general method for greatly improving the affinity of antibodies by using combinatorial libraries. Proc Natl Acad Sci U S A 102:8466 –8471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu J-L, Hu Z-Q, Xing S et al (2012) Attainment of 15-fold higher affinity of a Fusarium-specific single-chain antibody by directed molecular evolution coupled to phage display. Mol Biotechnol 52:111 –122

    Article  CAS  PubMed  Google Scholar 

  17. Low NM, Holliger PH, Winter G (1996) Mimicking somatic hypermutation: affinity maturation of antibodies displayed on bacteriophage using a bacterial mutator strain. J Mol Biol 260:359 –368

    Article  CAS  PubMed  Google Scholar 

  18. Laffly E, Pelat T, Cédrone F et al (2008) Improvement of an antibody neutralizing the anthrax toxin by simultaneous mutagenesis of its six hypervariable loops. J Mol Biol 378:1094 –1103

    Article  CAS  PubMed  Google Scholar 

  19. Chowdhury PS (2002) Targeting random mutations to hotspots in antibody variable domains for affinity improvement. Methods Mol Biol 178:269 –285

    CAS  PubMed  Google Scholar 

  20. Renaut L, Monnet C, Dubreuil O et al (2012) Affinity maturation of antibodies: optimized methods to generate high-quality ScFv libraries and isolate IgG candidates by high-throughput screening. Methods Mol Biol 907:451 –461

    Article  CAS  PubMed  Google Scholar 

  21. Hust M, Frenzel A, Schirrmann T et al (2014) Selection of recombinant antibodies from antibody gene libraries. Methods Mol Biol 1101:305 –320

    Article  CAS  PubMed  Google Scholar 

  22. Thie H, Toleikis L, Li J et al (2011) Rise and fall of an anti-MUC1 specific antibody. PLoS One 6:e15921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schier R, Bye J, Apell G et al (1996) Isolation of high-affinity monomeric human anti-c-erbB-2 single chain Fv using affinity-driven selection. J Mol Biol 255:28 –43

    Article  CAS  PubMed  Google Scholar 

  24. Unkauf T, Hust M, Frenzel A (2018) Antibody affinity and stability maturation by error-prone PCR. Methods Mol Biol 1701:393 –407

    Article  CAS  PubMed  Google Scholar 

  25. Friguet B, Chaffotte AF, Djavadi-Ohaniance L et al (1985) Measurements of the true affinity constant in solution of antigen-antibody complexes by enzyme-linked immunosorbent assay. J Immunol Methods 77:305 –319

    Article  CAS  PubMed  Google Scholar 

  26. Della Ducata D, Jaehrling J, Hänel C et al (2015) Solution equilibrium titration for high-throughput affinity estimation of unpurified antibodies and antibody fragments. J Biomol Screen 20:1256 –1267

    Article  CAS  PubMed  Google Scholar 

  27. Russo G, Theisen U, Fahr W et al (2018) Sequence defined antibodies improve the detection of cadherin 2 (N-cadherin) during zebrafish development. New Biotechnol 45:98 –112

    Article  CAS  Google Scholar 

  28. Vernet T, Choulier L, Nominé Y et al (2015) Spot peptide arrays and SPR measurements: throughput and quantification in antibody selectivity studies. J Mol Recognit 28:635 –644

    Article  CAS  PubMed  Google Scholar 

  29. Knowling S, Clark J, Sjuts H et al (2020) Direct comparison of label-free biosensor binding kinetics obtained on the biacore 8K and the carterra LSA. SLAS Discov 25:977 –984

    Article  CAS  PubMed  Google Scholar 

  30. Schütte M, Thullier P, Pelat T et al (2009) Identification of a putative Crf splice variant and generation of recombinant antibodies for the specific detection of Aspergillus fumigatus. PLoS One 4:e6625

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wenzel EV, Bosnak M, Tierney R et al (2020) Human antibodies neutralizing diphtheria toxin in vitro and in vivo. Sci Rep 10:571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bertoglio F, Fühner V, Ruschig M et al (2021) A SARS-CoV-2 neutralizing antibody selected from COVID-19 patients binds to the ACE2-RBD interface and is tolerant to most known RBD mutations. Cell Rep 36:109433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hust M, Toleikis L, Dübel S (2007) Handbook of therapeutic antibodies. In: Dübel S (ed) Antibody phage display. Willey-VCH-Verlag, Weinheim

    Google Scholar 

  34. Kügler J, Wilke S, Meier D et al (2015) Generation and analysis of the improved human HAL9/10 antibody phage display libraries. BMC Biotechnol 15:10

    Article  PubMed  PubMed Central  Google Scholar 

  35. Barbas CF, Burton DR, Scott JK et al (2001) Phage display. A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  36. Russo G, Unkauf T, Meier D et al (2022) In vitro evolution of myc-tag antibodies: in-depth specificity and affinity analysis of Myc1-9E10 and Hyper-Myc. Biol Chem 403:479 –494

    Article  CAS  PubMed  Google Scholar 

  37. Welschof M, Terness P, Kipriyanov SM et al (1997) The antigen-binding domain of a human IgG-anti-F(ab′)2 autoantibody. Proc Natl Acad Sci U S A 94:1902 –1907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Soltes G, Hust M, Ng KKY et al (2007) On the influence of vector design on antibody phage display. J Biotechnol 127:626 –637

    Article  CAS  PubMed  Google Scholar 

  39. Rondot S, Koch J, Breitling F et al (2001) A helper phage to improve single-chain antibody presentation in phage display. Nat Biotechnol 19:75 –78

    Article  CAS  PubMed  Google Scholar 

  40. Goletz S, Christensen PA, Kristensen P et al (2002) Selection of large diversities of antiidiotypic antibody fragments by phage display. J Mol Biol 315:1087 –1097

    Article  CAS  PubMed  Google Scholar 

  41. Finnern R, Pedrollo E, Fisch I et al (1997) Human autoimmune anti-proteinase 3 scFv from a phage display library. Clin Exp Immunol 107:269 –281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mersmann M, Schmidt A, Tesar M et al (1998) Monitoring of scFv selected by phage display using detection of scFv-pIII fusion proteins in a microtiter scale assay. J Immunol Methods 220:51 –58

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This review is an updated and revised version with improved protocols of [24].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Hust .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Langreder, N. et al. (2023). Antibody Affinity and Stability Maturation by Error-Prone PCR. In: Hust, M., Lim, T.S. (eds) Phage Display. Methods in Molecular Biology, vol 2702. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3381-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3381-6_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3380-9

  • Online ISBN: 978-1-0716-3381-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics