Skip to main content

Advertisement

Log in

Attainment of 15-Fold Higher Affinity of a Fusarium-specific Single-Chain Antibody by Directed Molecular Evolution Coupled to Phage Display

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Fusarium head blight (FHB) caused by Fusarium graminearum infection is a devastating disease of wheat, maize, and other cereals. A previously isolated chicken single-chain Fv antibody (scFv), CWP2, that conferred durable resistance in planta was subjected to directed evolution by error-prone PCR and DNA shuffling, generating a mutated library. Panning of the mutated library against cell wall–bound proteins (CWPs) from F. graminearum by phage display enriched phage clones that were used for a further round of DNA shuffling to construct a combinatorial library comprising 3 × 106 variants. Screening of this library by phage display for variants reactive against the CWPs led to the identification of a number of clones. Comparative enzyme-linked immunosorbent assay analyses revealed eight clones exhibiting a higher reactivity than the parent, CWP2, and containing four different single-chain antibody sequences. Surface plasmon resonance measurements confirmed that three mutated scFvs, CWPa, CWPb, and CWPd, displayed 15-fold, 11-fold, and 7-fold higher affinities, respectively, compared with CWP2. Three-dimension modeling of CWPa illustrates a conformational change bringing all six complementary domain regions on the antibody surface in one direction. These results provide promising unique resistance molecules for effective control of FHB and its associated mycotoxins in food/feed chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Windels, C. E. (2000). Economic and social impacts of Fusarium head blight: Changing farms and rural communities in the northern great plains. Phytopathology, 90, 17–21.

    Article  CAS  Google Scholar 

  2. Chen, L. F., Bai, G. H., & Desjardins, A. E. (2000). Recent advances in wheat head scab research in China. National Agricultural Library Internet Publication, US Department of Agriculture, Beltsville, MD, published online.

  3. Tavladoraki, P., Benvenuto, E., Trinca, S., de Martinis, D., Cattaneo, A., & Galeffi, P. (1993). Transgenic plants expressing a functional single-chain Fv antibody are specifically protected from virus attack. Nature, 366, 469–472.

    Article  CAS  Google Scholar 

  4. Engelen, F. A., Schouten, A., Molthoff, J. W., Roosien, J., Salinas, J., Dirkse, W. G., et al. (1994). Coordinate expression of antibody subunit genes yields high levels of functional antibodies in roots of transgenic tobacco. Plant Molecular Biology, 26, 1701–1710.

    Article  Google Scholar 

  5. Voss, A., Niersbach, M., Hain, R., Hirsch, H. J., Liao, Y. C., Kreuzaler, F., et al. (1995). Reduced virus infectivity in N. tabacum secreting a TMV-specific full-size antibody. Molecular Breeding, 1, 39–50.

    Article  CAS  Google Scholar 

  6. Schillberg, S., Zimmermann, S., Zhang, M. Y., & Fischer, R. (2001). Antibody-based resistance to plant pathogens. Transgenic Research, 10, 1–12.

    Article  CAS  Google Scholar 

  7. Nölke, G., Cobanov, P., Uhde-Holzem, K., Reustle, G., Fischer, R., & Schillberg, S. (2009). Grapevine fanleaf virus (GFLV)-specific antibodies confer GFLV and Arabis mosaic virus (ArMV) resistance in Nicotiana benthamiana. Molecular Plant Pathology, 10, 41–49.

    Article  Google Scholar 

  8. Zimmermann, S., Schillberg, S., Liao, Y. C., & Fisher, R. (1998). Intracellular expression of TMV-specific single-chain Fv fragments leads to improved virus resistance in shape Nicotiana tabacum. Molecular Breeding, 4, 369–379.

    Article  CAS  Google Scholar 

  9. Boonrod, K., Galetzka, D., Nagy, P. D., Conrad, U., & Krczal, G. (2004). Single-chain antibodies against a plant viral RNA-dependent RNA polymerase confer virus resistance. Nature Biotechnology, 22, 856–862.

    Article  CAS  Google Scholar 

  10. Peschen, D., Li, H. P., Fischer, R., Kreuzaler, F., & Liao, Y. C. (2004). Fusion proteins comprising a Fusarium-specific antibody linked to antifungal peptides protect plants against a fungal pathogen. Nature Biotechnology, 22, 732–738.

    Article  CAS  Google Scholar 

  11. Nickel, H., Kawchuk, L., Twyman, R. M., Zimmermann, S., Junghans, H., Winter, S., et al. (2008). Plantibody-mediated inhibition of the Potato leafroll virus P1 protein reduces virus accumulation. Virus Research, 136, 140–145.

    Article  CAS  Google Scholar 

  12. Safarnejad, M., Fischer, R., & Commandeur, U. (2009). Recombinant-antibody-mediated resistance against Tomato yellow leaf curl virus in Nicotiana benthamiana. Archives of Virology, 154, 457–467.

    Article  CAS  Google Scholar 

  13. Cervera, M., Esteban, O., Gil, M., Gorris, M., Martínez, M., Peña, L., et al. (2010). Transgenic expression in citrus of single-chain antibody fragments specific to Citrus tristeza virus confers virus resistance. Transgenic Research, 19, 1001–1015.

    Article  CAS  Google Scholar 

  14. Yajima, W., Verma, S. S., Shah, S., Rahman, M. H., Liang, Y., & Kav, N. N. (2010). Expression of anti-sclerotinia scFv in transgenic Brassica napus enhances tolerance against stem rot. New Biotechnology, 27, 816–821.

    Article  CAS  Google Scholar 

  15. Fromant, M., Blanquet, S., & Plateau, P. (1995). Direct random mutagenesis of gene-sized DNA fragments using polymerase chain reaction. Analytical Biochemistry, 224, 347–353.

    Article  CAS  Google Scholar 

  16. Stemmer, W. P. C. (1994). Rapid evolution of a protein in vitro by DNA shuffling. Nature, 370, 389–391.

    Article  CAS  Google Scholar 

  17. Stemmer, W. P. C. (1994). DNA shuffling by random fragmentation and reassembly: In vitro recombination for molecular evolution. Proceedings of the National Academy of Sciences of the United States of America, 91, 10747–10751.

    Article  CAS  Google Scholar 

  18. van den Beucken, T., Pieters, H., Steukers, M., van der Vaart, M., Ladner, R. C., Hoogenboom, H. R., et al. (2003). Affinity maturation of Fab antibody fragments by fluorescent-activated cell sorting of yeast-displayed libraries. FEBS Letters, 546, 288–294.

    Article  Google Scholar 

  19. Luginbühl, B., Kanyo, Z., Jones, R. M., Fletterick, R. J., Prusiner, S. B., Cohen, F. E., et al. (2006). Directed evolution of an anti-prion protein scFv fragment to an affinity of 1 pM and its structural interpretation. Journal of Molecular Biology, 363, 75–97.

    Article  Google Scholar 

  20. Fukuda, I., Kojoh, K., Tabata, N., Doi, N., Takashima, H., Miyamoto-Sato, E., et al. (2006). In vitro evolution of single-chain antibodies using mRNA display. Nucleic Acids Research, 34, e127.

    Article  Google Scholar 

  21. Kobayashi, N., Oyama, H., Kato, Y., Goto, J., Söderlind, E., & Borrebaeck, C. A. K. (2010). Two-step in vitro antibody affinity maturation enables estradiol-17β assays with more than 10-fold higher sensitivity. Analytical Chemistry, 82, 1027–1038.

    Article  CAS  Google Scholar 

  22. Willats, W. G. T. (2002). Phage display: Practicalities and prospects. Plant Molecular Biology, 50, 837–854.

    Article  CAS  Google Scholar 

  23. Riaño-Umbarila, L., Juárez-González, V. R., Olamendi-Portugal, T., Ortíz-León, M., Possani, L. D., & Becerril, B. (2005). A strategy for the generation of specific human antibodies by directed evolution and phage display. FEBS Journal, 272, 2591–2601.

    Article  Google Scholar 

  24. Li, H. P., Zhang, J. B., Shi, R. P., Huang, T., Fischer, R., & Liao, Y. C. (2008). Engineering Fusarium head blight resistance in wheat by expression of a fusion protein containing a Fusarium-specific antibody and an antifungal peptide. Molecular Plant–Microbe Interactions, 21, 1242–1248.

    Article  CAS  Google Scholar 

  25. Zhang, J. B., Li, H. P., Dang, F. J., Qu, B., Xu, Y. B., Zhao, C. S., et al. (2007). Determination of the trichothecene mycotoxin chemotypes and associated geographical distribution and phylogenetic species of the Fusarium graminearum clade from China. Mycological Research, 111, 967–975.

    Article  CAS  Google Scholar 

  26. Qu, B., Li, H. P., Zhang, J. B., Xu, Y. B., Huang, T., Wu, A. B., et al. (2008). Geographic distribution and genetic diversity of Fusarium graminearum and F. asiaticum on wheat spikes throughout China. Plant Pathology, 57, 15–24.

    Article  CAS  Google Scholar 

  27. Schoffelmeer, E. A. M., Klis, F. M., Sietsma, J. H., & Cornelissen, B. J. C. (1999). The cell wall of Fusarium oxysporum. Fungal Genetics and Biology, 27, 275–282.

    Article  CAS  Google Scholar 

  28. Gough, K. C., Li, Y., Vaughan, T. J., Williams, A. J., Cockburn, W., & Whitelam, G. C. (1999). Selection of phage antibodies to surface epitopes of Phytophthora infestans. Journal of Immunological Methods, 228, 97–108.

    Article  CAS  Google Scholar 

  29. O’Shannessy, D. J., Brigham-Burke, M., Soneson, K. K., & Hensley, P. (1993). Determination of rate and equilibrium binding constants for macromolecular interactions using surface plasmon resonance: Use of nonlinear least squares analysis methods. Analytical Biochemistry, 212, 457–468.

    Article  Google Scholar 

  30. Gershon, P. D., & Khilko, S. (1995). Stable chelating linkage for reversible immobilization of oligohistidine tagged proteins in the BIAcore surface plasmon resonance detector. Journal of Immunological Methods, 183, 65–76.

    Article  CAS  Google Scholar 

  31. Wanyera, R., Kinyua, M. G., Jin, Y., & Singh, R. P. (2006). The spread of stem rust caused by Puccinia graminis f. sp. tritici, with virulence on Sr31 in wheat in Eastern Africa. Plant Disease, 90, 113.

    Article  Google Scholar 

  32. Chen, X. M. (2007). Challenges and solutions for stripe rust control in the United States. Australian Journal of Agricultural Research, 58, 648–655.

    Article  Google Scholar 

  33. Stokstad, E. (2007). Deadly wheat fungus threatens world’s breadbaskets. Science, 315, 1786–1787.

    Article  CAS  Google Scholar 

  34. Daugherty, P. S., Chen, G., Iverson, B. L., & Georgiou, G. (2000). Quantitative analysis of the effect of the mutation frequency on the affinity maturation of single chain Fv antibodies. Proceedings of the National Academy of Sciences of the United States of America, 97, 2029–2034.

    Article  CAS  Google Scholar 

  35. Christians, F. C., & Loeb, L. A. (1996). Novel human DNA alkyltransferases obtained by random substitution and genetic selection in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 93, 6124–6128.

    Article  CAS  Google Scholar 

  36. Martinez, M. A., Pezo, V., Marliere, P., & Wain-Hobson, S. (1996). Exploring the functional robustness of an enzyme by in vitro evolution. EMBO Journal, 15, 1203–1210.

    CAS  Google Scholar 

  37. Zaccolo, M., & Gherardi, E. (1999). The effect of high-frequency random mutagenesis on in vitro protein evolution: a study on TEM-1β-lactamase. Journal of Molecular Biology, 285, 775–783.

    Article  CAS  Google Scholar 

  38. Juárez-González, V. R., Riaño-Umbarila, L., Quintero-Hernández, V., Olamendi-Portugal, T., Ortiz-León, M., Ortíz, E., et al. (2005). Directed evolution, phage display and combination of evolved mutants: A strategy to recover the neutralization properties of the scFv version of BCF2 a neutralizing monoclonal antibody specific to scorpion toxin Cn2. Journal of Molecular Biology, 346, 1287–1297.

    Article  Google Scholar 

  39. Saviranta, P., Pajunen, M., Jauria, P., Karp, M., Pettersson, K., Mäntsälä, P., et al. (1998). Engineering the steroid-specificity of an anti-17β-estradiol Fab by random mutagenesis and competitive phage panning. Protein Engineering, 11, 143–152.

    Article  CAS  Google Scholar 

  40. Graff, C. P., Chester, K., Begent, R., & Wittrup, K. D. (2004). Directed evolution of an anti-carcinoembryonic antigen scFv with a 4-day monovalent dissociation half-time at 37°C. Protein Engineering, Design and Selection, 17, 293–304.

    Article  CAS  Google Scholar 

  41. Zahnd, C., Spinelli, S., Luginbühl, B., Amstutz, P., Cambillau, C., & Plückthun, A. (2004). Directed in vitro evolution and crystallographic analysis of a peptide-binding single chain antibody fragment (scFv) with low picomolar affinity. Journal of Biological Chemistry, 279, 18870–18877.

    Article  CAS  Google Scholar 

  42. Jensen, K. B., Larsen, M., Pedersen, J. S., Christensen, P. A., Álvarez-Vallina, L., Goletz, S., et al. (2002). Functional improvement of antibody fragments using a novel phage coat protein III fusion system. Biochemical and Biophysical Research Communications, 298, 566–573.

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from the National Basic Research Program of China (2009CB118806), National Natural Science Foundation of China (30530510, 30571160, 30771337), the Ministry of Agriculture of China (2008ZX08002-001, 2009ZX08002-001B) and the Ministry of Science and Technology of China (2009DFA32330).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Cai Liao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, JL., Hu, ZQ., Xing, S. et al. Attainment of 15-Fold Higher Affinity of a Fusarium-specific Single-Chain Antibody by Directed Molecular Evolution Coupled to Phage Display. Mol Biotechnol 52, 111–122 (2012). https://doi.org/10.1007/s12033-011-9478-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-011-9478-3

Keywords

Navigation