Skip to main content

Hemostasis and Thrombosis: An Overview Focusing on Associated Laboratory Testing to Diagnose and Help Manage Related Disorders

  • Protocol
  • First Online:
Hemostasis and Thrombosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2663))

Abstract

Hemostasis is a complex but balanced process that permit normal blood flow, without adverse events. Disruption of the balance may lead to bleeding or thrombotic events, and clinical interventions may be required. Hemostasis laboratories typically offer an array of tests, including routine coagulation and specialized hemostasis assays used to guide clinicians for diagnosing and managing patients. Routine assays may be used to screen patients for hemostasis-related disturbances but may also be used for drug monitoring, measuring efficacy of replacement or adjunctive therapy, and other indications, which may then be used to guide further patient management. Similarly, “specialized” assays are used for diagnostic purposes or may be used to monitor or measure efficacy of a given therapy. This chapter provides an overview of hemostasis and thrombosis, with a focus on laboratory testing that may be used to diagnose and help manage patients suspected of hemostasis- and thrombosis-related disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lippi G, Favaloro EJ, Franchini M, Guidi GC (2009) Milestones and perspectives in coagulation and hemostasis. Semin Thromb Hemost 35:9–22. https://doi.org/10.1055/s-0029-1214144

    Article  PubMed  Google Scholar 

  2. Lippi G, Franchini M, Favaloro EJ (2016) Diagnostics of inherited bleeding disorders of secondary hemostasis: an easy guide for routine clinical laboratories. Semin Thromb Haemost 42:471–477. https://doi.org/10.1055/s-0036-1571311

    Article  Google Scholar 

  3. Lippi G, Pasalic L, Favaloro EJ (2015) Detection of mild inherited disorders of blood coagulation: current options and personal recommendations. Expert Rev Hematol 8:527–542. https://doi.org/10.1586/17474086.2015.1039978

    Article  CAS  PubMed  Google Scholar 

  4. Bonar RA, Favaloro EJ (2010) Quality in coagulation and haemostasis testing. Biochem Med 20:184–199

    Article  Google Scholar 

  5. Bonar RA, Lippi G, Favaloro EJ (2017) Overview of hemostasis and thrombosis and contribution of laboratory testing to diagnosis and management of hemostasis and thrombosis disorders. Methods Mol Biol 1646:3–27. https://doi.org/10.1007/978-1-4939-7196-1_1

    Article  CAS  PubMed  Google Scholar 

  6. Sadler JE, Budde U, Eikenboom JC, Working party on von Willebrand Disease Classification et al (2006) Update on the pathophysiology and classification of von Willebrand disease: a report of the Subcommittee on von Willebrand Factor. J Thromb Haemost 4:2103–2114. https://doi.org/10.1111/j.1538-7836.2006.02146.x

    Article  CAS  PubMed  Google Scholar 

  7. Blanchette S, Srivastava A (2015) Definitions in hemophilia: resolved and unresolved issues. Semin Thromb Hemost 41:819–825. https://doi.org/10.1055/s-0035-1564800

    Article  PubMed  Google Scholar 

  8. Favaloro EJ, Pasalic L, Curnow J (2016) Laboratory tests used to help diagnose von Willebrand disease: an update. Pathology 48:303–318. https://doi.org/10.1016/j.pathol.2016.03.001

    Article  CAS  PubMed  Google Scholar 

  9. Favaloro EJ, Bodó I, Israels SJ, Brown SA (2014) von Willebrand disease and platelet disorders. Haemophilia 20(Suppl 4):59–64. https://doi.org/10.1111/hae.12414

    Article  CAS  PubMed  Google Scholar 

  10. Favaloro EJ, Dean E, Arunachalam S, Vong R, Mohammed S (2022) Evaluating errors in the laboratory identification of von Willebrand disease using contemporary von Willebrand factor assays. Pathology 54(3):308–317. https://doi.org/10.1016/j.pathol.2021.07.001

    Article  CAS  PubMed  Google Scholar 

  11. Favaloro EJ, Dean E, Arunachalam S (2022) Evaluating performance of contemporary and historical von Willebrand factor (VWF) assays in the laboratory identification of von Willebrand disease (VWD): the Australasian experience. Semin Thromb Hemost 48(6):711–731. https://doi.org/10.1055/s-0042-1753528

  12. Favaloro EJ, Pasalic L (2022) Laboratory diagnosis of von Willebrand disease (VWD): geographical perspectives. Semin Thromb Hemost 48(6):750–766. https://doi.org/10.1055/s-0042-1754331

  13. Favaloro EJ (2020) Navigating the myriad of von Willebrand factor assays. Hamostaseologie 40(4):431–442. https://doi.org/10.1055/s-0040-1713735

    Article  PubMed  Google Scholar 

  14. Favaloro EJ, Mohammed S, Patzke J (2017) Laboratory testing for von Willebrand factor antigen (VWF:Ag). Methods Mol Biol 1646:403–416. https://doi.org/10.1007/978-1-4939-7196-1_30

    Article  CAS  PubMed  Google Scholar 

  15. Favaloro EJ, Mohammed S (2017) Laboratory testing for von Willebrand factor collagen binding (VWF:CB). Methods Mol Biol 1646:417–433. https://doi.org/10.1007/978-1-4939-7196-1_31

    Article  CAS  PubMed  Google Scholar 

  16. Mohammed S, Favaloro EJ (2017) Laboratory testing for von Willebrand factor ristocetin cofactor (VWF:RCo). Methods Mol Biol 1646:435–451. https://doi.org/10.1007/978-1-4939-7196-1_32

    Article  CAS  PubMed  Google Scholar 

  17. Patzke J, Favaloro EJ (2017) Laboratory testing for von Willebrand factor activity by glycoprotein Ib binding assays (VWF:GPIb). Methods Mol Biol 1646:453–460. https://doi.org/10.1007/978-1-4939-7196-1_33

    Article  CAS  PubMed  Google Scholar 

  18. Mohammed S, Favaloro EJ (2017) Laboratory testing for von Willebrand factor: factor VIII binding (for 2N VWD). Methods Mol Biol 1646:461–472. https://doi.org/10.1007/978-1-4939-7196-1_34

    Article  CAS  PubMed  Google Scholar 

  19. Frontroth JP, Favaloro EJ (2017) Ristocetin-induced platelet aggregation (RIPA) and RIPA mixing studies. Methods Mol Biol 1646:473–494. https://doi.org/10.1007/978-1-4939-7196-1_35

    Article  CAS  PubMed  Google Scholar 

  20. Oliver S, Lau KKE, Chapman K, Favaloro EJ (2017) Laboratory testing for Von Willebrand factor multimers. Methods Mol Biol 1646:495–511. https://doi.org/10.1007/978-1-4939-7196-1_36

    Article  CAS  PubMed  Google Scholar 

  21. Duncan E, Rodgers S (2017) One-stage factor VIII assays. Methods Mol Biol 1646:247–263. https://doi.org/10.1007/978-1-4939-7196-1_20

    Article  CAS  PubMed  Google Scholar 

  22. Rodgers S, Duncan E (2017) Chromogenic factor VIII assays for improved diagnosis of hemophilia A. Methods Mol Biol 1646:265–276. https://doi.org/10.1007/978-1-4939-7196-1_21

    Article  CAS  PubMed  Google Scholar 

  23. Kershaw G (2017) Detection and measurement of factor inhibitors. Methods Mol Biol 1646:295–304. https://doi.org/10.1007/978-1-4939-7196-1_23

    Article  CAS  PubMed  Google Scholar 

  24. Bowyer AE, Gosselin RC (2023) Factor VIII and factor IX activity measurements for haemophilia diagnosis and related treatments. Semin Thromb Hemost. https://doi.org/10.1055/s-0042-1758870. In press

  25. Franchini M, Mannucci PM (2022) The more recent history of hemophilia treatment. Semin Thromb Hemost 48(8):904–910. https://doi.org/10.1055/s-0042-1756188

  26. Rosen S, Tiefenbacher S, Robinson M et al (2020) Activity of transgene-produced B-domain-deleted factor VIII in human plasma following AAV5 gene therapy. Blood 136(22):2524–2534. https://doi.org/10.1182/blood.2020005683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lippi G, Favaloro EJ (2020) Gene therapy for hemophilias: the end of phenotypic testing or the start of a new era? Blood Coagul Fibrinolysis 31(4):237–242. https://doi.org/10.1097/MBC.0000000000000905

    Article  PubMed  Google Scholar 

  28. Hvas AM, Grove EL (2017) Platelet function tests: preanalytical variables, clinical utility, advantages, and disadvantages. Methods Mol Biol 1646:305–320. https://doi.org/10.1007/978-1-4939-7196-1_24

    Article  CAS  PubMed  Google Scholar 

  29. Hvas AM, Favaloro EJ (2017) Platelet function analyzed by light transmission aggregometry. Methods Mol Biol 1646:321–331. https://doi.org/10.1007/978-1-4939-7196-1_25

    Article  CAS  PubMed  Google Scholar 

  30. Fritsma GA, McGlasson DL (2017) Whole blood platelet aggregometry. Methods Mol Biol 1646:333–347. https://doi.org/10.1007/978-1-4939-7196-1_26

    Article  CAS  PubMed  Google Scholar 

  31. Pasalic L (2017) Assessment of platelet function in whole blood by flow cytometry. Methods Mol Biol 1646:349–367. https://doi.org/10.1007/978-1-4939-7196-1_27

    Article  CAS  PubMed  Google Scholar 

  32. Pasalic L, Pennings GJ, Connor D, Campbell H, Kritharides L, Chen VM (2017) Flow cytometry protocols for assessment of platelet function in whole blood. Methods Mol Biol 1646:369–389. https://doi.org/10.1007/978-1-4939-7196-1_28

    Article  CAS  PubMed  Google Scholar 

  33. Montagnana M, Lippi G, Danese E (2017) An overview of thrombophilia and associated laboratory testing. Methods Mol Biol 1646:113–135. https://doi.org/10.1007/978-1-4939-7196-1_9

    Article  CAS  PubMed  Google Scholar 

  34. Mohammed S, Favaloro EJ (2017) Laboratory testing for activated protein C resistance (APCR). Methods Mol Biol 1646:137–143. https://doi.org/10.1007/978-1-4939-7196-1_10

    Article  CAS  PubMed  Google Scholar 

  35. Marlar RA, Gausman JN (2017) Assessment of hereditary thrombophilia: performance of protein C (PC) testing. Methods Mol Biol 1646:145–151. https://doi.org/10.1007/978-1-4939-7196-1_11

    Article  CAS  PubMed  Google Scholar 

  36. Marlar RA, Gausman JN (2017) Assessment of hereditary thrombophilia: performance of protein S (PS) testing. Methods Mol Biol 1646:153–160. https://doi.org/10.1007/978-1-4939-7196-1_12

    Article  CAS  PubMed  Google Scholar 

  37. Gausman JN, Marlar RA (2017) Assessment of hereditary thrombophilia: performance of antithrombin (AT) testing. Methods Mol Biol 1646:161–167. https://doi.org/10.1007/978-1-4939-7196-1_13

    Article  CAS  PubMed  Google Scholar 

  38. Mian MK, Sreedharan S, Limaye NS, Hogan C, Darvall JN (2020) Research trends in anticoagulation therapy over the last 25 years. Semin Thromb Hemost 46(8):919–931. https://doi.org/10.1055/s-0040-1718892

    Article  PubMed  Google Scholar 

  39. Miziara LNB, Sendyk WR, Ortega KL, Gallottini M, Sendyk DI, Martins F (2021) Risk of bleeding during implant surgery in patients taking antithrombotics: a systematic review. Semin Thromb Hemost 47(6):702–708. https://doi.org/10.1055/s-0041-1722845

    Article  PubMed  Google Scholar 

  40. Santoro C, Capone V, Canonico ME, Gargiulo G, Esposito R, Sanna GD, Parodi G, Esposito G (2021) Single, dual, and triple antithrombotic therapy in cancer patients with coronary artery disease: searching for evidence and personalized approaches. Semin Thromb Hemost 47(8):950–961. https://doi.org/10.1055/s-0041-1726298

    Article  CAS  PubMed  Google Scholar 

  41. Favaloro EJ (2017) Optimizing the verification of mean normal prothrombin time (MNPT) and international sensitivity index (ISI) for accurate conversion of prothrombin time (PT) to international normalized ratio (INR). Methods Mol Biol 1646:59–74. https://doi.org/10.1007/978-1-4939-7196-1_4

    Article  CAS  PubMed  Google Scholar 

  42. Favaloro EJ (2019) How to generate a more accurate laboratory-based international normalized ratio: solutions to obtaining or verifying the mean normal prothrombin time and international sensitivity index. Semin Thromb Hemost 45(1):10–21. https://doi.org/10.1055/s-0038-1667342

    Article  PubMed  Google Scholar 

  43. Kershaw G (2017) Performance of activated partial thromboplastin time (APTT): determining reagent sensitivity to factor deficiencies, heparin, and lupus anticoagulants. Methods Mol Biol 1646:75–83. https://doi.org/10.1007/978-1-4939-7196-1_5

    Article  CAS  PubMed  Google Scholar 

  44. Favaloro EJ, Kershaw G, Mohammed S, Lippi G (2019) How to optimize activated partial thromboplastin time (APTT) testing: solutions to establishing and verifying normal reference intervals and assessing APTT reagents for sensitivity to heparin, lupus anticoagulant, and clotting factors. Semin Thromb Hemost 45(1):22–35. https://doi.org/10.1055/s-0038-1677018

    Article  CAS  PubMed  Google Scholar 

  45. Gosselin RC, Douxfils J (2017) Measuring direct oral anticoagulants. Methods Mol Biol 1646:217–225. https://doi.org/10.1007/978-1-4939-7196-1_18

    Article  CAS  PubMed  Google Scholar 

  46. Favaloro EJ, Lippi G (2015) Laboratory testing in the era of direct or non-vitamin k antagonist oral anticoagulants: a practical guide to measuring their activity and avoiding diagnostic errors. Semin Thromb Hemost 41:208–227. https://doi.org/10.1055/s-0035-1546827

    Article  CAS  PubMed  Google Scholar 

  47. Favaloro EJ, Lippi G (2017) Interference of direct oral anticoagulants (DOACs) in hemostasis assays: high potential for diagnostic false positives and false negatives. Blood Transfus. https://doi.org/10.2450/2016.0301-16

  48. Favaloro EJ, Gilmore G, Bonar R, Dean E, Arunachalam S, Mohammed S, Baker R (2020) Laboratory testing for activated protein C resistance: rivaroxaban induced interference and a comparative evaluation of andexanet alfa and DOAC Stop to neutralise interference. Clin Chem Lab Med 58(8):1322–1331. https://doi.org/10.1515/cclm-2019-1160

    Article  CAS  PubMed  Google Scholar 

  49. Favaloro EJ, Gilmore G, Arunachalam S, Mohammed S, Baker R (2019) Neutralising rivaroxaban induced interference in laboratory testing for lupus anticoagulant (LA): a comparative study using DOAC Stop and andexanet alfa. Thromb Res 180:10–19. https://doi.org/10.1016/j.thromres.2019.05.013

    Article  CAS  PubMed  Google Scholar 

  50. Favaloro EJ, Pasalic L (2022) Lupus anticoagulant testing during anticoagulation, including direct oral anticoagulants. Res Pract Thromb Haemost 6(2):e12676. https://doi.org/10.1002/rth2.12676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lippi G, Favaloro EJ (2017) Preanalytical issues in hemostasis and thrombosis testing. Methods Mol Biol 1646:29–42. https://doi.org/10.1007/978-1-4939-7196-1_2

    Article  CAS  PubMed  Google Scholar 

  52. Favaloro EJ, Lippi G, Adcock DM (2008) Preanalytical and postanalytical variables: the leading causes of diagnostic error in haemostasis. Semin Thromb Haemost 34:612–634. https://doi.org/10.1055/s-0028-1104540

    Article  CAS  Google Scholar 

  53. Adcock DM, Favaloro EJ, Lippi G (2016) Critical pre-examination variables in the hemostasis laboratory and their quality indicators. Critical pre-examination variables in the hemostasis laboratory and their quality indicators. Clin Biochem 49:1315–1320. https://doi.org/10.1016/j.clinbiochem.2016.08.022

    Article  PubMed  Google Scholar 

  54. Favaloro EJ, Lippi G (2010) Laboratory reporting of hemostasis assays: the final post-analytical opportunity to reduce errors of clinical diagnosis in hemostasis? Clin Chem Lab Med 48:309–321. https://doi.org/10.1515/CCLM.2010.061

    Article  CAS  PubMed  Google Scholar 

  55. Favaloro EJ, Lippi G (2017) Post-analytical issues in hemostasis and thrombosis testing. Methods Mol Biol 1646:545–559. https://doi.org/10.1007/978-1-4939-7196-1_40

    Article  CAS  PubMed  Google Scholar 

  56. Favaloro EJ, Lippi G (2011) Coagulation update: what’s new in hemostasis testing? Thromb Res 127S2:S13–S16. https://doi.org/10.1016/S0049-3848(10)70148-1

    Article  CAS  Google Scholar 

  57. Favaloro EJ, Henry BM, Lippi G (2021) Increased VWF and decreased ADAMTS13 in COVID-19: creating a milieu for (micro)thrombosis? Semin Thromb Hemost 47(4):400–418. https://doi.org/10.1055/s-0041-1727282

    Article  CAS  PubMed  Google Scholar 

  58. Calabrò P, Gragnano F, Golia E, Grove EL (2018) von Willebrand factor and venous thromboembolism: pathogenic link and therapeutic implications. Semin Thromb Hemost 44(3):249–260. https://doi.org/10.1055/s-0037-1605564

    Article  CAS  PubMed  Google Scholar 

  59. Favaloro EJ, Pasalic L, Henry B, Lippi G (2021) Laboratory testing for ADAMTS13: utility for TTP diagnosis/exclusion and beyond. Am J Hematol 96(8):1049–1055. https://doi.org/10.1002/ajh.26241

    Article  CAS  PubMed  Google Scholar 

  60. Favaloro EJ, Henry BM, Lippi G (2021) VWF and ADAMTS13 in COVID-19 and beyond: a question of balance. EMJ Hematol 9(1):55–68

    Google Scholar 

  61. van Hinsbergh VWM (2012) Endothelium – role in regulation of coagulation and inflammation. Semin Immunopathol 34(1):93–106. https://doi.org/10.1007/s00281-011-0285-5

    Article  CAS  PubMed  Google Scholar 

  62. Muszbek L, Katona É, Kerényi A (2017) Assessment of factor XIII. Methods Mol Biol 1646:277–293. https://doi.org/10.1007/978-1-4939-7196-1_22

    Article  CAS  PubMed  Google Scholar 

  63. Undas A (2017) Determination of fibrinogen and thrombin time (TT). Methods Mol Biol 1646:105–110. https://doi.org/10.1007/978-1-4939-7196-1_8

    Article  CAS  PubMed  Google Scholar 

  64. Thachil J, Lippi G, Favaloro EJ (2017) D-dimer testing: laboratory aspects and current issues. Methods Mol Biol 1646:91–104. https://doi.org/10.1007/978-1-4939-7196-1_7

    Article  CAS  PubMed  Google Scholar 

  65. Kershaw G (2017) Performance and interpretation of mixing tests in coagulation. Methods Mol Biol 1646:85–90. https://doi.org/10.1007/978-1-4939-7196-1_6

    Article  CAS  PubMed  Google Scholar 

  66. Larsen JB, Lisman T, Hvas AM (2021) Altered fibrinolysis-clinical impact and diagnostic challenges. Semin Thromb Hemost 47(5):477–479. https://doi.org/10.1055/s-0041-1725100

    Article  PubMed  Google Scholar 

  67. Kwaan HC, Lindholm PF (2019) Fibrin and fibrinolysis in cancer. Semin Thromb Hemost 45(4):413–422. https://doi.org/10.1055/s-0039-1688495

    Article  CAS  PubMed  Google Scholar 

  68. Lippi G, Favaloro EJ (2023) What we know (and do not know) regarding the pathogenesis of pulmonary thrombosis in COVID-19. Semin Thromb Hemost 49(1):27–33. https://doi.org/10.1055/s-0041-1742091

  69. Gosselin RC, Estacio EE, Song JY, Dwyre DM (2016) Verifying the performance characteristics of the TEG5000 thromboelastogram in the clinical laboratory. Int J Lab Hematol 38(2):183–192. https://doi.org/10.1111/ijlh.12464

    Article  CAS  PubMed  Google Scholar 

  70. Thachil J, Favaloro EJ, Lippi G (2022) D-dimers-“normal” levels versus elevated levels due to a range of conditions, including “D-dimeritis,” inflammation, thromboembolism, disseminated intravascular coagulation, and COVID-19. Semin Thromb Hemost 48(6):672–679. https://doi.org/10.1055/s-0042-1748193

    Article  CAS  PubMed  Google Scholar 

  71. Lippi G, Mullier F, Favaloro EJ (2022) D-dimer old dogmas, new (COVID-19) tricks. Clin Chem Lab Med. https://doi.org/10.1515/cclm-2022-0633. In press

  72. Favaloro EJ, Thachil J (2020) Reporting of D-dimer data in COVID-19: some confusion and potential for misinformation. Clin Chem Lab Med 58(8):1191–1199. https://doi.org/10.1515/cclm-2020-0573

    Article  CAS  PubMed  Google Scholar 

  73. Hoffman M (2003) A cell-based model of coagulation and the role of factor VIIa. Blood Rev 17:51–55. https://doi.org/10.1016/s0268-960x(03)90000-2

    Article  Google Scholar 

  74. Quick AJ (1935) The prothrombin time in haemophilia and in obstructive jaundice. J Biol Chem 109:73–74

    Google Scholar 

  75. Jonsson PI, Letertre L, Juliusson SJ, Gudmundsdottir BR, Francis CW, Onundarson PT (2017) During warfarin induction, the Fiix-prothrombin time reflects the anticoagulation level better than the standard prothrombin time. J Thromb Haemost 15(1):131–139. https://doi.org/10.1111/jth.13549

    Article  CAS  PubMed  Google Scholar 

  76. Letertre LR, Gudmundsdottir BR, Francis CW et al (2016) A single test to assay warfarin, dabigatran, rivaroxaban, apixaban, unfractionated heparin, and enoxaparin in plasma. J Thromb Haemost 14(5):1043–1053. https://doi.org/10.1111/jth.13300

    Article  CAS  PubMed  Google Scholar 

  77. McGlasson DL, Romick BG, Rubal BJ (2008) Comparison of a chromogenic factor X assay with international normalized ratio for monitoring oral anticoagulation therapy. Blood Coagul Fibrinolysis 19(6):513–517. https://doi.org/10.1097/MBC.0b013e328304e066

    Article  CAS  PubMed  Google Scholar 

  78. Favaloro EJ, Adcock DM (2008) Standardisation of the INR: how good is your laboratory’s INR and can it be improved. Semin Thromb Hemost 34:593–603. https://doi.org/10.1007/978-1-4939-7196-1_4

    Article  CAS  PubMed  Google Scholar 

  79. Favaloro EJ, Hamdam S, McDonald J, McVicker W, Ule V (2008) Time to think outside the box? Prothrombin time (PT), international normalised ratio (INR), international sensitivity index (ISI), mean normal prothrombin time (MNPT) and measurement of uncertainty (MU): a novel approach to standardisation. Pathology 40:296–306. https://doi.org/10.1080/00313020801911454

    Article  CAS  Google Scholar 

  80. Favaloro EJ, McVicker W, Zhang Y, Hamdam S, Huynh M, Peris P, O’Neal M, Hocker N (2012) Improving the inter-laboratory harmonization of the international normalized ratio (INR): utilizing the concept of transference to estimate and/or validate international sensitivity index (ISI) and mean normal prothrombin time (MNPT) values and/or to eliminate measurement bias. Clin Lab Sci 25(1):13–25

    Article  PubMed  Google Scholar 

  81. Bonar R, Favaloro EJ (2017) Explaining and reducing the variation in inter-laboratory reported values for international normalised ratio. Thromb Res 150:22–29. https://doi.org/10.1016/j.thromres.2016.12.007

    Article  CAS  PubMed  Google Scholar 

  82. Bonar R, Mohammed S, Favaloro EJ (2015) International normalized ratio monitoring of vitamin K antagonist therapy: comparative performance of point-of-care and laboratory-derived testing. Semin Thromb Hemost 41:279–286. https://doi.org/10.1055/s-0035-1549091

    Article  CAS  PubMed  Google Scholar 

  83. Moll S, Ortel TL (1997) Monitoring warfarin therapy in patients with lupus anticoagulants. Ann Intern Med 127(3):177–185. https://doi.org/10.7326/0003-4819-127-3-199708010-00001

    Article  CAS  PubMed  Google Scholar 

  84. Trask AS, Gosselin RC, Diaz JA, Dager WE (2004) Warfarin initiation and monitoring with clotting factors II, VII, and X. Ann Pharmacother 38(2):251–256. https://doi.org/10.1345/aph.1D266

    Article  PubMed  Google Scholar 

  85. Lippi G, Favaloro EJ (2008) Activated partial thromboplastin time: new tricks for an old dogma. Semin Thromb Hemost 34:604–611. https://doi.org/10.1055/s-0028-1104539

    Article  CAS  PubMed  Google Scholar 

  86. Favaloro EJ, Mohammed S, Vong R et al (2022) Harmonizing factor assay-related testing performed in a large laboratory network. Blood Coagul Fibrinolysis 33(7):402–411. https://doi.org/10.1097/MBC.0000000000001155

    Article  CAS  PubMed  Google Scholar 

  87. Do L, Favaloro EJ, Pasalic L (2022) An analysis of the sensitivity of the activated partial thromboplastin time (APTT) assay, as used in a large laboratory network, to coagulation factor deficiencies. Am J Clin Pathol 158(1):132–141. https://doi.org/10.1093/ajcp/aqac013

    Article  CAS  PubMed  Google Scholar 

  88. Baluwala I, Favaloro EJ, Pasalic L (2017) Therapeutic monitoring of unfractionated heparin – trials and tribulations. Expert Rev Hematol 10(7):595–605. https://doi.org/10.1080/17474086.2017.1345306

    Article  CAS  PubMed  Google Scholar 

  89. Kjaergaard AB, Fuglsang J, Hvas AM (2021) Anti-Xa monitoring of low-molecular-weight heparin during pregnancy: a systematic review. Semin Thromb Hemost 47(7):824–842. https://doi.org/10.1055/s-0041-1726374

    Article  PubMed  Google Scholar 

  90. Pengo V, Tripodi A, Reber G et al (2009) Update of the guidelines for lupus anticoagulant detection. J Thromb Haemost 7:1737–1740

    Article  CAS  PubMed  Google Scholar 

  91. Devreese KMJ, de Groot PG, de Laat B et al (2020) Guidance from the Scientific and Standardization Committee for lupus anticoagulant/antiphospholipid antibodies of the International Society on Thrombosis and Haemostasis: update of the guidelines for lupus anticoagulant detection and interpretation. J Thromb Haemost 18(11):2828–2839. https://doi.org/10.1111/jth.15047

    Article  CAS  PubMed  Google Scholar 

  92. Favaloro EJ, Mohammed S, Vong R et al (2022) A multi-laboratory assessment of lupus anticoagulant assays performed on the ACL TOP 50 family for harmonized testing in a large laboratory network. Int J Lab Hematol 44(3):654–665. https://doi.org/10.1111/ijlh.13818

    Article  PubMed  PubMed Central  Google Scholar 

  93. Tripodi A, Chantarangkul V (2017) Lupus anticoagulant testing: activated partial thromboplastin time (APTT) and silica clotting time (SCT). Methods Mol Biol 1646:177–183. https://doi.org/10.1007/978-1-4939-7196-1_15

    Article  CAS  PubMed  Google Scholar 

  94. Fritsma GA, Dembitzer FR, Randhawa A, Marques MB, Van Cott EM, Adcock-Funk D, Peerschke EI (2012) Recommendations for appropriate activated partial thromboplastin time reagent selection and utilization. Am J Clin Pathol 137(6):904–908. https://doi.org/10.1309/AJCP3J1ZKYBFQXJM

    Article  CAS  PubMed  Google Scholar 

  95. Ariëns RA (2013) Fibrin(ogen) and thrombotic disease. J Thromb Haemost 11(Suppl 1):294–305. https://doi.org/10.1111/jth.12229

    Article  PubMed  Google Scholar 

  96. Casini A, Moerloose P, Neerman-Arbez M (2022) One hundred years of congenital fibrinogen disorders. Semin Thromb Hemost 48(8):880–888. https://doi.org/10.1055/s-0042-1756187

  97. Richard M, Celeny D, Neerman-Arbez M (2022) Mutations accounting for congenital fibrinogen disorders: an update. Semin Thromb Hemost 48(8):889–903. https://doi.org/10.1055/s-0041-1742170

  98. Undas A (2016) How to assess fibrinogen levels and fibrin clot properties in clinical practice? Semin Thromb Hemost 42:381–388. https://doi.org/10.1055/s-0036-1579636

    Article  CAS  PubMed  Google Scholar 

  99. Favaloro EJ, Mohammed S, Vong R et al (2021) Verification of the ACL Top 50 family (350, 550 and 750) for harmonization of routine coagulation assays in a large network of 60 laboratories. Am J Clin Pathol 156(4):661–678. https://doi.org/10.1093/ajcp/aqab004

    Article  CAS  PubMed  Google Scholar 

  100. Muszbek L, Katona É (2016) Diagnosis and management of congenital and acquired FXIII deficiencies. Semin Thromb Hemost 42:429–439. https://doi.org/10.1055/s-0036-1572326

    Article  PubMed  Google Scholar 

  101. Mezei ZA, Katona É, Kállai J et al (2017) Factor XIII levels and factor XIII B subunit polymorphisms in patients with venous thromboembolism. Thromb Res 158:93–97. https://doi.org/10.1016/j.thromres.2017.08.018

    Article  CAS  PubMed  Google Scholar 

  102. Gerlach R, Tölle F, Raabe A, Zimmermann M, Siegemund A, Seifert V (2002) Increased risk for postoperative hemorrhage after intracranial surgery in patients with decreased factor XIII activity: implications of a prospective study. Stroke 33(6):1618–1623. https://doi.org/10.1161/01.str.0000017219.83330.ff

    Article  PubMed  Google Scholar 

  103. Lippi G, Danese E, Favaloro EJ, Montagnana M, Franchini M (2015) Diagnostics in venous thromboembolism: from origin to future prospects. Semin Thromb Hemost 41:374–381. https://doi.org/10.1055/s-0034-1544003

    Article  PubMed  Google Scholar 

  104. Pajič T (2023) Testing for Factor V Leiden (FVL) and Prothrombin G20210A genetic variants. In: Favaloro EJ, Gosselin RC (eds) Hemostasis and thrombosis: methods and protocols. Methods in molecular biology. Springer, New York, pp 233–251. https://doi.org/10.1007/978-1-0716-3175-1_14

  105. Favaloro EJ, Mohammed S, Vong R, Pasalic L (2023) Laboratory testing for activated protein c resistance (APCR) – an update. In: Favaloro EJ, Gosselin RC (eds) Hemostasis and thrombosis: methods and protocols. Methods in molecular biology. Springer, New York, pp 203–210. https://doi.org/10.1007/978-1-0716-3175-1_11

  106. Douxfils J, Bouvy C, Morimont L (2023) Evaluation of activated protein C resistance using thrombin generation test. In: Favaloro EJ, Gosselin RC (eds) Hemostasis and thrombosis: methods and protocols. Methods in molecular biology. Springer, New York, pp 211–224. https://doi.org/10.1007/978-1-0716-3175-1_12

  107. Sharma A, Bhakuni T, Biswas A et al (2017) Prevalence of factor V genetic variants associated with Indian APCR contributing to thrombotic risk. Clin Appl Thromb Hemost 23(6):596–600. https://doi.org/10.1177/1076029615623376

    Article  CAS  PubMed  Google Scholar 

  108. Adams R, Coleman R, Stanton T (2023) Performance of chromogenic protein C (PC) testing. In: Favaloro EJ, Gosselin RC (eds) Hemostasis and thrombosis: methods and protocols. Methods in molecular biology. Springer, New York, pp 225–232. https://doi.org/10.1007/978-1-0716-3175-1_13

  109. Marlar RA (2023) Laboratory evaluation of thrombophilia. In: Favaloro EJ, Gosselin RC (eds) Hemostasis and thrombosis: methods and protocols. Methods in molecular biology. Springer, New York, pp 177–201. https://doi.org/10.1007/978-1-0716-3175-1_10

  110. Duarte-García A, Pham MM, Crowson CS et al (2019) The epidemiology of antiphospholipid syndrome: a population-based study. Arthritis Rheum 71(9):1545–1552. https://doi.org/10.1002/art.40901

    Article  CAS  Google Scholar 

  111. Favaloro EJ, Wong RCW (2014) Antiphospholipid antibody testing for the antiphospholipid syndrome: a synopsis of challenges and recent guidelines. Pathology 46:481–495. https://doi.org/10.1097/PAT.0000000000000142

    Article  CAS  PubMed  Google Scholar 

  112. Galli M, Luciai D, Bertolini G, Barbui T (2003) Lupus anticoagulants are stronger risk factors for thrombosis than anticardiolipin antibodies in the antiphospholipid syndrome: a systematic review of the literature. Blood 101:1827–1832. https://doi.org/10.1182/blood-2002-02-0441

    Article  CAS  PubMed  Google Scholar 

  113. Moore GW (2014) Recent guidelines and recommendations for laboratory detection of lupus anticoagulants. Semin Thromb Hemost 40:163–171. https://doi.org/10.1055/s-0033-1364185

    Article  CAS  PubMed  Google Scholar 

  114. Favaloro EJ, Bonar RA, Marsden K (2012) Internal quality control and external quality assurance in testing for antiphospholipid antibodies: part II-lupus anticoagulant. Semin Thromb Hemost 38:404–411. https://doi.org/10.1055/s-0032-1311993

    Article  CAS  PubMed  Google Scholar 

  115. Bonar R, Favaloro E, Zebeljan D et al (2012) Evaluating laboratory approaches to the identification of lupus anticoagulants: a diagnostic challenge from the RCPA haematology QAP. Pathology 44:240–247. https://doi.org/10.1097/PAT.0b013e32834d7b83

    Article  PubMed  Google Scholar 

  116. Willis R, Papalardo E, Nigel Harris E (2017) Solid phase immunoassay for the detection of anticardiolipin antibodies. Methods Mol Biol 1646:185–199. https://doi.org/10.1007/978-1-4939-7196-1_16

    Article  CAS  PubMed  Google Scholar 

  117. Willis R, Papalardo E, Nigel Harris E (2017) Solid phase immunoassay for the detection of anti-β(2) glycoprotein I antibodies. Methods Mol Biol 1646:201–215. https://doi.org/10.1007/978-1-4939-7196-1_17

    Article  CAS  PubMed  Google Scholar 

  118. Carpenè G, Negrini D, Lippi G, Favaloro EJ, Montagnana M (2022) Heparin: the journey from parenteral agent to nasal delivery. Semin Thromb Hemost 48(8):949–954. https://doi.org/10.1055/s-0042-1749395

  119. Liesdek OCD, Urbanus RT, de Heer LM, Fischer K, Suyker WJL, Schutgens REG (2021) Alternatives for vitamin K antagonists as thromboprophylaxis for mechanical heart valves and mechanical circulatory support devices: a systematic review. Semin Thromb Hemost 47(6):724–734. https://doi.org/10.1055/s-0041-1722846

    Article  CAS  PubMed  Google Scholar 

  120. Lippi G, Favaloro EJ (2015) Recent guidelines and recommendations for laboratory assessment of the direct oral anticoagulants (DOACs): is there consensus? Clin Chem Lab Med 53:185–197. https://doi.org/10.1515/cclm-2014-0767

    Article  CAS  PubMed  Google Scholar 

  121. Cuker A (2012) Unfractionated heparin for the treatment of venous thromboembolism: best practices and areas of uncertainty. Semin Thromb Hemost 38:593–599. https://doi.org/10.1055/s-0032-1319770

    Article  CAS  PubMed  Google Scholar 

  122. Gosselin RC, Adcock DM, Bates SM et al (2018) International Council for Standardization in Haematology (ICSH) recommendations for laboratory measurement of direct oral anticoagulants. Thromb Haemost 118(3):437–450. https://doi.org/10.1055/s-0038-1627480

    Article  PubMed  Google Scholar 

  123. Warkentin TE (2015) Heparin-induced thrombocytopenia in critically ill patients. Semin Thromb Hemost 41:49–60. https://doi.org/10.1055/s-0034-1398381

    Article  CAS  PubMed  Google Scholar 

  124. Favaloro EJ, Mohammed S, Donikian D et al (2021) A multicentre assessment of contemporary laboratory assays for heparin induced thrombocytopenia. Pathology 53(2):247–256. https://doi.org/10.1016/j.pathol.2020.07.012

    Article  CAS  PubMed  Google Scholar 

  125. Favaloro EJ, Pasalic L, Henry B, Lippi G (2022) Laboratory testing for platelet factor 4 antibodies: differential utility for diagnosis/exclusion of heparin induced thrombocytopenia versus suspected vaccine induced thrombotic thrombocytopenia. Pathology 54(3):254–261. https://doi.org/10.1016/j.pathol.2021.10.008

    Article  CAS  PubMed  Google Scholar 

  126. Lau KKE, Mohammed S, Pasalic L, Favaloro EJ (2017) Laboratory testing protocols for heparin-induced thrombocytopenia (HIT) testing. Methods Mol Biol 1646:227–243. https://doi.org/10.1007/978-1-4939-7196-1_19

    Article  CAS  PubMed  Google Scholar 

  127. Bonar R, Favaloro EJ, Marsden K (2012) External quality assurance in heparin monitoring. Semin Thromb Hemost 38:632–639. https://doi.org/10.1055/s-0032-1321954

    Article  CAS  PubMed  Google Scholar 

  128. Favaloro EJ, Pasalic L, Lippi G (2020) Oral anticoagulation therapy: an update on usage, costs and associated risks. Pathology 52(6):736–741. https://doi.org/10.1016/j.pathol.2020.05.006

    Article  CAS  PubMed  Google Scholar 

  129. Favaloro EJ, McCaughan GJ, Mohammed S, Pasalic L (2018) Anticoagulation therapy in Australia. Ann Blood 3:48. https://doi.org/10.21037/aob.2018.12.02

    Article  Google Scholar 

  130. Bonar R, Favaloro EJ, Mohammed S, Pasalic L, Sioufi J, Marsden K (2015) The effect of dabigatran on haemostasis tests: a comprehensive assessment using in-vitro and ex-vivo samples. Pathology 47:355–364. https://doi.org/10.1097/PAT.0000000000000252

    Article  PubMed  Google Scholar 

  131. Bonar R, Favaloro EJ, Mohammed S, Ahuja M, Pasalic L, Sioufi J, Marsden K (2016) The effect of the direct factor Xa inhibitors apixaban and rivaroxaban on haemostasis tests: a comprehensive assessment using in vitro and ex vivo samples. Pathology 48:60–71. https://doi.org/10.1016/j.pathol.2015.11.025

    Article  CAS  PubMed  Google Scholar 

  132. Favaloro EJ (2011) Von Willebrand disease: local diagnosis and management of a globally distributed bleeding disorder. Semin Thromb Hemost 37(5):440–455. https://doi.org/10.1055/s-0031-1281028

    Article  CAS  PubMed  Google Scholar 

  133. Favaloro EJ, Mohammed S (2016) Evaluation of a von Willebrand factor three test panel and chemiluminescent-based assay system for identification of, and therapy monitoring in, von Willebrand disease. Thromb Res 141:202–211. https://doi.org/10.1016/j.thromres.2015.12.010

    Article  CAS  PubMed  Google Scholar 

  134. Franchini M, Lippi G, Veneri D, Targher G, Zaffanello M, Guidi GC (2008) Inherited platelet disorders. Clin Chim Acta 387:1–8. https://doi.org/10.1016/j.cca.2007.08.010

    Article  CAS  PubMed  Google Scholar 

  135. Favaloro EJ (2017) Clinical utility of closure times using the platelet function analyzer (PFA)-100/200. Am J Hematol 92(4):398–404. https://doi.org/10.1002/ajh.24620

    Article  CAS  PubMed  Google Scholar 

  136. Favaloro EJ (2008) Clinical utility of the PFA-100. Semin Thromb Hemost 34:709–733. https://doi.org/10.1055/s-0029-1145254

    Article  CAS  PubMed  Google Scholar 

  137. Favaloro EJ, Pasalic L, Lippi G (2023) Towards 50 years of platelet function analyser (PFA) testing. Clin Chem Lab Med 61:851–860. https://doi.org/10.1515/cclm-2022-0666

  138. Favaloro EJ, Lippi G, Franchini M (2010) Contemporary platelet function testing. Clin Chem Lab Med 48:579–598. https://doi.org/10.1515/CCLM.2010.121

    Article  CAS  PubMed  Google Scholar 

  139. Lordkipanidzé M (2016) Platelet function tests. Semin Thromb Hemost 42:258–267. https://doi.org/10.1055/s-0035-1564834

    Article  PubMed  Google Scholar 

  140. Gomez K, Laffan M, Keeney S, Sutherland M, Curry N, Lunt P (2019) Recommendations for the clinical interpretation of genetic variants and presentation of results to patients with inherited bleeding disorders. A UK Haemophilia Centre Doctors’ Organisation Good Practice Paper. Haemophilia 25(1):116–126. https://doi.org/10.1111/hae.13637

    Article  PubMed  Google Scholar 

  141. Peyvandi F, Favaloro EJ (2009) Rare bleeding disorders. Semin Thromb Hemost 35:345–347. https://doi.org/10.1055/s-0029-1225756

    Article  PubMed  Google Scholar 

  142. Kershaw G, Suresh S, Prellana D, Nguy Y (2012) Laboratory identification of lupus anticoagulants. Semin Thromb Hemost 38:375–384. https://doi.org/10.1055/s-0032-1311991

    Article  CAS  PubMed  Google Scholar 

  143. Favaloro EJ, Verbruggen B, Miller CH (2014) Laboratory testing for factor inhibitors. Haemophilia 20(Suppl 4):94–98. https://doi.org/10.1111/hae.12408

    Article  PubMed  Google Scholar 

  144. Bonar RA, Favaloro EJ, Marsden K (2013) External quality assessment of factor VIII inhibitor assays. Semin Thromb Hemost 39:320–326. https://doi.org/10.1055/s-0033-1334464

    Article  PubMed  Google Scholar 

  145. Adcock DM, Favaloro EJ (2015) Pearls and pitfalls in factor inhibitor assays. Int J Lab Hematol 37(Suppl 1):52–60. https://doi.org/10.1111/ijlh.12352

    Article  PubMed  Google Scholar 

  146. Favaloro EJ, Meijer P, Jennings I, Sioufi J, Bonar RA, Kitchen DP, Kershaw G, Lippi G (2013) Problems and solutions in laboratory testing for hemophilia. Semin Thromb Hemost 39:816–883. https://doi.org/10.1055/s-0033-1356573

    Article  PubMed  Google Scholar 

  147. Franchini M, Marano G, Cruciani M et al (2020) Advances in managing rare acquired bleeding disorders. Expert Rev Hematol 13(6):599–606. https://doi.org/10.1080/17474086.2020.1756259

    Article  CAS  PubMed  Google Scholar 

  148. Ichinose A, Osaki T, Souri M (2022) A review of coagulation abnormalities of autoimmune acquired factor V deficiency with a focus on Japan. Semin Thromb Hemost 48(2):206–218. https://doi.org/10.1055/s-0041-1740149

    Article  CAS  PubMed  Google Scholar 

  149. Colonne CK, Reardon B, Curnow J, Favaloro EJ (2021) Why is misdiagnosis of von Willebrand disease still prevalent and how can we overcome it? A focus on clinical considerations and recommendations. J Blood Med 12:755–768. https://doi.org/10.2147/JBM.S266791

    Article  PubMed  PubMed Central  Google Scholar 

  150. Mohammed S, Ule Priebbenow V, Pasalic L, Favaloro EJ (2019) Development and implementation of an expert rule set for automated reflex testing and validation of routine coagulation tests in a large pathology network. Int J Lab Hematol 41(5):642–649. https://doi.org/10.1111/ijlh.13078

    Article  PubMed  Google Scholar 

  151. Ahuja M, McVicker W, Mohammed S, Favaloro EJ (2017) Towards harmonization of internal quality control for routine coagulation tests across a large network of laboratories. Aust J Med Sci 38(1):2–8

    Google Scholar 

  152. Favaloro EJ (2019) Rethinking internal quality control and external quality assessment for laboratory diagnostics of von Willebrand disease. Ann Blood 4:4. https://doi.org/10.21037/aob.2019.01.03

    Article  Google Scholar 

  153. Favaloro EJ (2009) Internal quality control and external quality assurance of platelet function tests. Semin Thromb Hemost 35(2):139–149. https://doi.org/10.1055/s-0029-1220322

    Article  PubMed  Google Scholar 

  154. Favaloro EJ (2013) Time for a conceptual shift in assessment of internal quality control for whole blood or cell-based testing systems? An evaluation using platelet function and the PFA-100 as a case example. Clin Chem Lab Med 51(4):767–774. https://doi.org/10.1515/cclm-2012-0616

    Article  CAS  PubMed  Google Scholar 

  155. Favaloro EJ, Bonar R (2014) External quality assessment/proficiency testing and internal quality control for the PFA-100 and PFA-200: an update. Semin Thromb Hemost 40(2):239–253. https://doi.org/10.1055/s-0034-1365844

    Article  PubMed  Google Scholar 

  156. Favaloro EJ, Wheatland L, Jovanovich S, Roberts-Thomson P, Wong RCW (2012) Internal quality control and external quality assurance in testing for antiphospholipid antibodies: part I – anticardiolipin and anti-β2-glycoprotein I antibodies. Semin Thromb Hemost 38(4):390–403. https://doi.org/10.1055/s-0032-1311990

    Article  CAS  PubMed  Google Scholar 

  157. Clinical and Laboratory Standards Institute (CLSI) (2008) Collection, transport and processing of blood specimens for testing plasma-based coagulation assays and molecular haemostasis assays; approved guideline, vol 28, No. 5 CLSI document H21-A5

    Google Scholar 

  158. Lippi G, Salvagno GL, Montagnana M, Lima-Oliveira G, Guidi GC, Favaloro EJ (2012) Quality standards for sample collection in coagulation testing. Semin Thromb Hemost 38:565–575. https://doi.org/10.1055/s-0032-1315961

    Article  PubMed  Google Scholar 

  159. Adcock Funk DM, Lippi G, Favaloro EJ (2012) Quality standards for sample processing, transportation, and storage in hemostasis testing. Semin Thromb Haemost 38:576–585. https://doi.org/10.1055/s-0032-1319768

    Article  CAS  Google Scholar 

  160. Plebani M, Sanzari MC, Zardo L (2008) Quality control in coagulation testing. Semin Thromb Hemost 34:642–646. https://doi.org/10.1055/s-0028-1104542

    Article  PubMed  Google Scholar 

Download references

Conflicts of Interest

RCG receives consulting fees from Sysmex America Inc. The other authors have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel J. Favaloro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Favaloro, E.J., Gosselin, R.C., Pasalic, L., Lippi, G. (2023). Hemostasis and Thrombosis: An Overview Focusing on Associated Laboratory Testing to Diagnose and Help Manage Related Disorders. In: Favaloro, E.J., Gosselin, R.C. (eds) Hemostasis and Thrombosis. Methods in Molecular Biology, vol 2663. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3175-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3175-1_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3174-4

  • Online ISBN: 978-1-0716-3175-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics