Skip to main content

Computational Approaches for Peroxisomal Protein Localization

  • Protocol
  • First Online:
Peroxisomes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2643))

  • 707 Accesses

Abstract

Computational approaches are practical when investigating putative peroxisomal proteins and for sub-peroxisomal protein localization in unknown protein sequences. Nowadays, advancements in computational methods and Machine Learning (ML) can be used to hasten the discovery of novel peroxisomal proteins and can be combined with more established computational methodologies. Here, we explain and list some of the most used tools and methodologies for novel peroxisomal protein detection and localization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anteghini M, Martins dos Santos VAP, Saccenti E (2021) In-Pero: exploiting deep learning Embeddings of protein sequences to predict the localisation of Peroxisomal proteins. Int J Mol Sci 22(12):6409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Savojardo C, Bruciaferri N, Tartari G et al (2019) DeepMito: accurate prediction of protein sub-mitochondrial localization using convolutional neural networks. Bioinformatics 36(1):56–64

    Article  PubMed Central  Google Scholar 

  3. Schlüter A, Real-Chicharro A, Gabaldón T et al (2009) PeroxisomeDB 2.0: an integrative view of the global peroxisomal metabolome. Nuc Acid Res 38:D800–D805

    Article  Google Scholar 

  4. Claros MG, Vincens P (1996) Computational method to predict Mitochondrially imported proteins and their targeting sequences. Eur J Biochem 241(3):779–786

    Article  CAS  PubMed  Google Scholar 

  5. Anteghini M, Haja A, Martins dos Santos VAP et al (2022) OrganelX web server for sub-peroxisomal and sub-mitochondrial protein localisation. bioRxiv. https://doi.org/10.1101/2022.06.21.497045

  6. Thumuluri V, Almagro Armenteros JJ, Rosenberg Johansen A et al (2022) DeepLoc 2.0: multi-label subcellular localization prediction using protein language models. Nuc Acid Res Apr 30, gkac278. https://doi.org/10.1093/nar/gkac278

  7. Horton P, Park K-J, Obayashi T et al (2007) WoLF PSORT: protein localization predictor. Nuc Acid Res 35:W585–W587

    Article  Google Scholar 

  8. Krogh A, Larsson B, von Heijne G, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305(3):567–580

    Article  CAS  PubMed  Google Scholar 

  9. Small I, Peeters N, Legeai F, Lurin C (2004) Predotar: a tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics 4(6):1581–1590

    Article  CAS  PubMed  Google Scholar 

  10. Almagro Armenteros JJ, Salvatore M, Emanuelsson O et al (2019) Detecting sequence signals in targeting peptides using deep learning. Life Sci Alliance 2(5):e201900429

    Article  PubMed  PubMed Central  Google Scholar 

  11. Käll L, Krogh A, Sonnhammer ELL (2004) A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338(5):1027–1036

    Article  PubMed  Google Scholar 

  12. Schrader TA, Islinger M, Schrader M (2017) Detection and Immunolabeling of Peroxisomal proteins. Methods Mol Biol 1595:113–130

    Article  CAS  PubMed  Google Scholar 

  13. Gould SG, Keller GA, Subramani S (1987) Identification of a peroxisomal targeting signal at the carboxy terminus of firefly luciferase. J Cell Biol 105(6):2923–2931

    Article  CAS  PubMed  Google Scholar 

  14. Kiel JAKW, Emmrich K, Meyer HE, Kunau WH (2005) Ubiquitination of the peroxisomal targeting signal type 1 receptor, Pex5p, suggests the presence of a quality control mechanism during peroxisomal matrix protein import. J Biol Chem 280(3):1921–1930

    Article  CAS  PubMed  Google Scholar 

  15. Brocard C, Hartig A (2006) Peroxisome targeting signal 1: is it really a simple tripeptide? Biochim Biophys Acta - Mol Cell Res 1763(12):1565–1573

    Article  CAS  Google Scholar 

  16. Kunze M (2020) The Type-2 peroxisomal targeting signal. Biochim Biophys Acta, Mol Cell Res 1867(2):118609

    Article  CAS  Google Scholar 

  17. Van Ael E, Fransen M (2006) Targeting signals in Peroxisomal membrane proteins. Biochim Biophys Acta, Mol Cell Res 1763(12):1629–1638

    Article  PubMed  Google Scholar 

  18. Kamoshita M, Kumar R, Anteghini M et al (2022) Insights into the Peroxisomal protein inventory of zebrafish. Front Phys 13:822509

    Article  Google Scholar 

  19. Alley E, Khimulya G, Biswas S et al (2019) Unified rational protein engineering with sequence-based deep representation learning. Nat Methods 16(12):1315–1322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Heinzinger M, Elnaggar A, Wang Y et al (2019) Modeling aspects of the language of life through transfer-learning protein sequences. BMC Bioinform 20(1):723

    Article  CAS  Google Scholar 

  21. Hallgren J, Tsirigos KD, Pedersen MD et al (2022) DeepTMHMM predicts alpha and Beta transmembrane proteins using deep neural networks. bioRxiv. https://doi.org/10.1101/2022.04.08.487609

  22. Lin Z, Feng M, Nogueira dos Santos C et al (2017) A Structured self-attentive sentence embedding. arXiv Preprint arXiv:1703.03130

    Google Scholar 

  23. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  CAS  PubMed  Google Scholar 

  24. Camacho C, Coulouris G, Avagyan V et al (2009) BLAST+: architecture and applications. BMC Bioinform 10(1):421. https://doi.org/10.1186/1471-2105-10-42125

    Article  Google Scholar 

  25. Consortium, UniProt T (2020) UniProt: the universal protein knowledgebase in 2021. Nuc Acid Res 49(D1):D480–D489

    Article  Google Scholar 

  26. Schrader M, Costello JL, Godinho LF, Islinger M (2015) Peroxisome-mitochondria interplay and disease. J Inherit Metab Dis 38(4):681–702

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Anteghini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Anteghini, M., Martins dos Santos, V.A.P. (2023). Computational Approaches for Peroxisomal Protein Localization. In: Schrader, M. (eds) Peroxisomes. Methods in Molecular Biology, vol 2643. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3048-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3048-8_29

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3047-1

  • Online ISBN: 978-1-0716-3048-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics