Skip to main content
Log in

Peroxisome-mitochondria interplay and disease

  • SSIEM 2014
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Peroxisomes and mitochondria are ubiquitous, highly dynamic organelles with an oxidative type of metabolism in eukaryotic cells. Over the years, substantial evidence has been provided that peroxisomes and mitochondria exhibit a close functional interplay which impacts on human health and development. The so-called “peroxisome-mitochondria connection” includes metabolic cooperation in the degradation of fatty acids, a redox-sensitive relationship, an overlap in key components of the membrane fission machineries and cooperation in anti-viral signalling and defence. Furthermore, combined peroxisome-mitochondria disorders with defects in organelle division have been revealed. In this review, we present the latest progress in the emerging field of peroxisomal and mitochondrial interplay in mammals with a particular emphasis on cooperative fatty acid β-oxidation, redox interplay, organelle dynamics, cooperation in anti-viral signalling and the resulting implications for disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Antonenkov VD, Hiltunen JK (2012) Transfer of metabolites across the peroxisomal membrane. Biochim Biophys Acta 1822:1374–1386

    CAS  PubMed  Google Scholar 

  • Antonenkov VD, Grunau S, Ohlmeier S, Hiltunen JK (2010) Peroxisomes are oxidative organelles. Antioxid Redox Signal 13:525–537

    CAS  PubMed  Google Scholar 

  • Apanasets O, Grou CP, Van Veldhoven PP et al (2014) PEX5, the shuttling import receptor for peroxisomal matrix proteins, is a redox-sensitive protein. Traffic 15(1):94–103

    CAS  PubMed  Google Scholar 

  • Baarine M, Ragot K, Athias A et al (2012a) Incidence of Abcd1 level on the induction of cell death and organelle dysfunctions triggered by very long chain fatty acids and TNF-α on oligodendrocytes and astrocytes. Neurotoxicology 33:212–228

    CAS  PubMed  Google Scholar 

  • Baarine M, Andreoletti P, Athias A et al (2012b) Evidence of oxidative stress in very long chain fatty acid–treated oligodendrocytes and potentialization of ROS production using RNA interference-directed knockdown of ABCD1 and ACOX1 peroxisomal proteins. Neuroscience 213:1–18

    CAS  PubMed  Google Scholar 

  • Baarine M, Beeson C, Singh A, Singh I (2014) ABCD1 deletion-induced mitochondrial dysfunction is corrected by SAHA: implication for adrenoleukodystrophy. J Neurochem. doi:10.1111/jnc.12992

    Google Scholar 

  • Bagattin A, Hugendubler L, Mueller E (2010) Transcriptional coactivator PGC-1alpha promotes peroxisomal remodeling and biogenesis. Proc Natl Acad Sci U S A 107:20376–20381

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bai J, Rodriguez AM, Melendez JA, Cederbaum AI (1999) Overexpression of catalase in cytosolic or mitochondrial compartment protects HepG2 cells against oxidative injury. J Biol Chem 274:26217–26224

    CAS  PubMed  Google Scholar 

  • Baker MJ, Tatsuta T, Langer T (2011) Quality control of mitochondrial proteostasis. Cold Spring Harb Perspect Biol 3. doi: 10.1101/cshperspect.a007559

  • Barak Y, Nelson MC, Ong ES et al (1999) PPAR gamma is required for placental, cardiac, and adipose tissue development. Mol Cell 4:585–595

    CAS  PubMed  Google Scholar 

  • Bartlett K, Eaton S (2004) Mitochondrial beta-oxidation. Eur J Biochem 271(3):462–469

    CAS  PubMed  Google Scholar 

  • Baumgart E, Vanhorebeek I, Grabenbauer M et al (2001) Mitochondrial alterations caused by defective peroxisomal biogenesis in a mouse model for Zellweger syndrome (PEX5 knockout mouse). Am J Pathol 159:1477–1494

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berg RK, Melchjorsen J, Rintahaka J et al (2012) Genomic HIV RNA induces innate immune responses through RIG-I-dependent sensing of secondary-structured RNA. PLoS One 7:e29291

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bezman L, Moser AB, Raymond GV et al (2001) Adrenoleukodystrophy: incidence, new mutation rate, and results of extended family screening. Ann Neurol 49(4):512–517

    CAS  PubMed  Google Scholar 

  • Bolte K, Rensing SA, Maier UG (2014) The evolution of eukaryotic cells from the perspective of peroxisomes: phylogenetic analyses of peroxisomal beta-oxidation enzymes support mitochondria-first models of eukaryotic cell evolution. BioEssays. doi:10.1002/bies.201400151

    PubMed  Google Scholar 

  • Boncompain G, Muller C, Meas-Yedid V, Schmitt-Kopplin P, Lazarow PB, Subtil A (2014) The intracellular bacteria Chlamydia hijack peroxisomes and utilize their enzymatic capacity to produce bacteria-specific phospholipids. PLoS One 9:e86196

    PubMed Central  PubMed  Google Scholar 

  • Bonekamp NA, Vormund K, Jacob R, Schrader M (2010) Dynamin-like protein 1 at the Golgi complex: a novel component of the sorting/targeting machinery en route to the plasma membrane. Exp Cell Res 316:3454–3467

    CAS  PubMed  Google Scholar 

  • Bonekamp NA, Sampaio P, de Abreu FV, Luers GH, Schrader M (2012) Transient complex interactions of mammalian peroxisomes without exchange of matrix or membrane marker proteins. Traffic 13:960–978

    CAS  PubMed  Google Scholar 

  • Bonekamp NA, Grille S, Cardoso MJ et al (2013) Self-interaction of human Pex11pbeta during peroxisomal growth and division. PLoS One 8:e53424

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bonnefont JP, Djouadi F, Prip-Buus C, Gobin S, Munnich A, Bastin J (2004) Carnitine palmitoyltransferases 1 and 2: biochemical, molecular and medical aspects. Mol Aspects Med 25:495–520

    CAS  PubMed  Google Scholar 

  • Borst P (1983) Animal peroxisomes (microbodies), lipid biosynthesis and the Zellweger syndrome. Trends Biochem Sci 8:269–272

    CAS  Google Scholar 

  • Borst P (1986) How proteins get into microbodies (peroxisomes, glyoxysomes, glycosomes). Biochim Biophys Acta 866:179–203

    CAS  PubMed  Google Scholar 

  • Bottelbergs A, Verheijden S, Van Veldhoven PP, Just W, Devos R, Baes M (2012) Peroxisome deficiency but not the defect in ether lipid synthesis causes activation of the innate immune system and axonal loss in the central nervous system. J Neuroinflammation 9:61

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boveris A, Cadenas E (2000) Mitochondrial production of hydrogen peroxide regulation by nitric oxide and the role of ubisemiquinone. IUBMB Life 50:245–250

    CAS  PubMed  Google Scholar 

  • Brandes RP, Kreuzer J (2005) Vascular NADPH oxidases: molecular mechanisms of activation. Cardiovasc Res 65:16–27

    CAS  PubMed  Google Scholar 

  • Bronfman M, Inestrosa NC, Nervi FO, Leighton F (1984) Acyl-CoA synthetase and the peroxisomal enzymes of beta-oxidation in human liver. Quantitative analysis of their subcellular localization. Biochem J 224:709–720

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bulina ME, Chudakov DM, Britanova OV et al (2006) A genetically encoded photosensitizer. Nat Biotechnol 24:95–99

    CAS  PubMed  Google Scholar 

  • Calnan DR, Brunet A (2008) The FoxO code. Oncogene 27:2276–2288

    CAS  PubMed  Google Scholar 

  • Camoes F, Bonekamp NA, Delille HK, Schrader M (2009) Organelle dynamics and dysfunction: a closer link between peroxisomes and mitochondria. J Inherit Metab Dis 32:163–180

    CAS  PubMed  Google Scholar 

  • Camoes F, Islinger M, Guimaraes SC et al (2014) New insights into the peroxisomal protein inventory: Acyl-CoA oxidases and -dehydrogenases are an ancient feature of peroxisomes. Biochim Biophys Acta 1853:111–125

    PubMed  Google Scholar 

  • Chang CR, Manlandro CM, Arnoult D et al (2010) A lethal de novo mutation in the middle domain of the dynamin-related GTPase Drp1 impairs higher order assembly and mitochondrial division. J Biol Chem 285:32494–32503

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen H, Chan DC (2009) Mitochondrial dynamics–fusion, fission, movement, and mitophagy–in neurodegenerative diseases. Hum Mol Genet 18:R169–R176

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen H, Jiang Z (2013) The essential adaptors of innate immune signaling. Protein Cell 4:27–39

    CAS  PubMed  Google Scholar 

  • Cheng L, Ding G, Qin Q et al (2004) Peroxisome proliferator-activated receptor delta activates fatty acid oxidation in cultured neonatal and adult cardiomyocytes. Biochem Biophys Res Commun 313:277–286

    CAS  PubMed  Google Scholar 

  • Cohen GB, Rangan VS, Chen BK, Smith S, Baltimore D (2000) The human thioesterase II protein binds to a site on HIV-1 Nef critical for CD4 down-regulation. J Biol Chem 275:23097–23105

    CAS  PubMed  Google Scholar 

  • Cook WS, Yeldandi AV, Rao MS, Hashimoto T, Reddy JK (2000) Less extrahepatic induction of fatty acid beta-oxidation enzymes by PPAR alpha. Biochem Biophys Res Commun 278:250–257

    CAS  PubMed  Google Scholar 

  • Corona JC, de Souza SC, Duchen MR (2014) PPARgamma activation rescues mitochondrial function from inhibition of complex I and loss of PINK1. Exp Neurol 253:16–27

    CAS  PubMed  Google Scholar 

  • Costet P, Legendre C, More J, Edgar A, Galtier P, Pineau T (1998) Peroxisome proliferator-activated receptor alpha-isoform deficiency leads to progressive dyslipidemia with sexually dimorphic obesity and steatosis. J Biol Chem 273:29577–29585

    CAS  PubMed  Google Scholar 

  • D’Autreaux B, Toledano MB (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8:813–824

    PubMed  Google Scholar 

  • de Duve C (1965) Function of microbodies (peroxisomes). J Cell Biol 27:25A–26A

    Google Scholar 

  • De Marcos Lousa C, van Roermund CW, Postis VL et al (2013) Intrinsic acyl-CoA thioesterase activity of a peroxisomal ATP binding cassette transporter is required for transport and metabolism of fatty acids. Proc Natl Acad Sci U S A 110:1279–1284

    PubMed Central  PubMed  Google Scholar 

  • Delille HK, Alves R, Schrader M (2009) Biogenesis of peroxisomes and mitochondria: linked by division. Histochem Cell Biol 131:441–446

    CAS  PubMed  Google Scholar 

  • Delille HK, Agricola B, Guimaraes SC et al (2010) Pex11pbeta-mediated growth and division of mammalian peroxisomes follows a maturation pathway. J Cell Sci 123(Pt 16):2750–2762

    CAS  PubMed  Google Scholar 

  • Diano S, Liu ZW, Jeong JK et al (2011) Peroxisome proliferation-associated control of reactive oxygen species sets melanocortin tone and feeding in diet-induced obesity. Nat Med 17:1121–1127

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ding J, Loizides-Mangold U, Rando G et al (2013) The peroxisomal enzyme L-PBE is required to prevent the dietary toxicity of medium-chain fatty acids. Cell Rep 5:248–258

    CAS  PubMed  Google Scholar 

  • Dirkx R, Vanhorebeek I, Martens K et al (2005) Absence of peroxisomes in mouse hepatocytes causes mitochondrial and ER abnormalities. Hepatology 41:868–878

    CAS  PubMed  Google Scholar 

  • Dixit E, Boulant S, Zhang Y et al (2010) Peroxisomes are signaling platforms for antiviral innate immunity. Cell 141:668–681

    CAS  PubMed Central  PubMed  Google Scholar 

  • Djouadi F, Bastin J (2008) PPARs as therapeutic targets for correction of inborn mitochondrial fatty acid oxidation disorders. J Inherit Metab Dis 31:217–225

    CAS  PubMed  Google Scholar 

  • Djouadi F, Aubey F, Schlemmer D et al (2005) Bezafibrate increases very-long-chain acyl-CoA dehydrogenase protein and mRNA expression in deficient fibroblasts and is a potential therapy for fatty acid oxidation disorders. Hum Mol Genet 14:2695–2703

    CAS  PubMed  Google Scholar 

  • Ebberink MS, Koster J, Visser G et al (2012) A novel defect of peroxisome division due to a homozygous non-sense mutation in the PEX11beta gene. J Med Genet 49:307–313

    CAS  PubMed  Google Scholar 

  • Ebberink M, Koster J, Stark Z, et al (2014) PEX11β deficiency: a novel human peroxisome biogenesis disorder affecting peroxisome division. J Inherit Metab Dis 37(Suppl. 1): O-053.

  • Eggens I, Brunk U, Dallner G (1980) Effects of clofibrate administration to rats on their hepatocytes. Exp Mol Pathol 32:115–127

    CAS  PubMed  Google Scholar 

  • Elbaz-Alon Y, Morgan B, Clancy A et al (2014) The yeast oligopeptide transporter Opt2 is localized to peroxisomes and affects glutathione redox homeostasis. FEMS Yeast Res 14:1055–1067

    CAS  PubMed  Google Scholar 

  • Elsner M, Gehrmann W, Lenzen S (2011) Peroxisome-generated hydrogen peroxide as important mediator of lipotoxicity in insulin-producing cells. Diabetes 60:200–208

    CAS  PubMed Central  PubMed  Google Scholar 

  • Epperly MW, Melendez JA, Zhang X et al (2009) Mitochondrial targeting of a catalase transgene product by plasmid liposomes increases radioresistance in vitro and in vivo. Radiat Res 171:588–595

    CAS  PubMed Central  PubMed  Google Scholar 

  • Falcon A, Doege H, Fluitt A et al (2010) FATP2 is a hepatic fatty acid transporter and peroxisomal very long-chain acyl-CoA synthetase. Am J Physiol Endocrinol Metab 299:E384–E393

    CAS  PubMed Central  PubMed  Google Scholar 

  • Farrell SO, Bieber LL (1983) Carnitine octanoyltransferase of mouse liver peroxisomes: properties and effect of hypolipidemic drugs. Arch Biochem Biophys 222:123–132

    CAS  PubMed  Google Scholar 

  • Ferdinandusse S, Denis S, Hogenhout EM et al (2007) Clinical, biochemical, and mutational spectrum of peroxisomal acyl-coenzyme A oxidase deficiency. Hum Mutat 28:904–912

    CAS  PubMed  Google Scholar 

  • Ferdinandusse S, Jimenez-Sanchez G, Koster J, et al (2014) A novel bile acid biosynthesis defect due to a deficiency of peroxisomal ABCD3. Hum Mol Genet

  • Ferrer I, Kapfhammer JP, Hindelang C et al (2005) Inactivation of the peroxisomal ABCD2 transporter in the mouse leads to late-onset ataxia involving mitochondria, Golgi and endoplasmic reticulum damage. Hum Mol Genet 14:3565–3577

    CAS  PubMed  Google Scholar 

  • Foerster EC, Fahrenkemper T, Rabe U, Graf P, Sies H (1981) Peroxisomal fatty acid oxidation as detected by H2O2 production in intact perfused rat liver. Biochem J 196:705–712

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fourcade S, López-Erauskin J, Galino J et al (2008) Early oxidative damage underlying neurodegeneration in X-adrenoleukodystrophy. Hum Mol Genet 17:1762–1773

    CAS  PubMed  Google Scholar 

  • Fourcade S, Lopez-Erauskin J, Ruiz M, Ferrer I, Pujol A (2014) Mitochondrial dysfunction and oxidative damage cooperatively fuel axonal degeneration in X-linked adrenoleukodystrophy. Biochimie 98:143–149

    CAS  PubMed  Google Scholar 

  • Fransen M, Nordgren M, Wang B, Apanasets O (2012) Role of peroxisomes in ROS/RNS-metabolism: implications for human disease. Biochim Biophys Acta 1822(9):1363–1373

    CAS  PubMed  Google Scholar 

  • Fransen M, Nordgren M, Wang B, Apanasets O, Van Veldhoven PP (2013) Aging, age-related diseases and peroxisomes. Subcell Biochem 69:45–65

    CAS  PubMed  Google Scholar 

  • Freitag J, Ast J, Bolker M (2012) Cryptic peroxisomal targeting via alternative splicing and stop codon read-through in fungi. Nature 485:522–525

    CAS  PubMed  Google Scholar 

  • Friedman JR, Lackner LL, West M, DiBenedetto JR, Nunnari J, Voeltz GK (2011) ER tubules mark sites of mitochondrial division. Science 334:358–362

    CAS  PubMed Central  PubMed  Google Scholar 

  • Frohlich C, Grabiger S, Schwefel D et al (2013) Structural insights into oligomerization and mitochondrial remodelling of dynamin 1-like protein. EMBO J 32:1280–1292

    PubMed Central  PubMed  Google Scholar 

  • Gabaldon T (2014) Evolutionary considerations on the origin of peroxisomes from the endoplasmic reticulum, and their relationships with mitochondria. Cell Mol Life Sci 71:2379–2382

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gabaldon T, Capella-Gutierrez S (2010) Lack of phylogenetic support for a supposed actinobacterial origin of peroxisomes. Gene 465:61–65

    CAS  PubMed  Google Scholar 

  • Galino J, Ruiz M, Fourcade S et al (2011) Oxidative damage compromises energy metabolism in the axonal degeneration mouse model of X-adrenoleukodystrophy. Antioxid Redox Signal 15:2095–2107

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gandre-Babbe S, van der Bliek AM (2008) The novel tail-anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells. Mol Biol Cell 19:2402–2412

    CAS  PubMed Central  PubMed  Google Scholar 

  • Giordano CR, Terlecky SR (2012) Peroxisomes, cell senescence, and rates of aging. Biochim Biophys Acta 1822:1358–1362

    CAS  PubMed  Google Scholar 

  • Go YM, Jones DP (2013) The redox proteome. J Biol Chem 288:26512–26520

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goldfischer S, Moore CL, Johnson AB et al (1973) Peroxisomal and mitochondrial defects in the cerebro-hepato-renal syndrome. Science 182:62–64

    CAS  PubMed  Google Scholar 

  • Gray E, Ginty M, Kemp K, Scolding N, Wilkins A (2012) The PPAR-gamma agonist pioglitazone protects cortical neurons from inflammatory mediators via improvement in peroxisomal function. J Neuroinflammation 9:63

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gronemeyer T, Wiese S, Ofman R et al (2013) The proteome of human liver peroxisomes: identification of five new peroxisomal constituents by a label-free quantitative proteomics survey. PLoS One 8:e57395

    CAS  PubMed Central  PubMed  Google Scholar 

  • Han JM, Kang JA, Han MH et al (2014) Peroxisome-localized hepatitis Bx protein increases the invasion property of hepatocellular carcinoma cells. Arch Virol 159:2549–2557

    CAS  PubMed  Google Scholar 

  • Handschin C, Spiegelman BM (2006) Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr Rev 27:728–735

    CAS  PubMed  Google Scholar 

  • Hashimoto T, Fujita T, Usuda N et al (1999) Peroxisomal and mitochondrial fatty acid beta-oxidation in mice nullizygous for both peroxisome proliferator-activated receptor alpha and peroxisomal fatty acyl-CoA oxidase. Genotype correlation with fatty liver phenotype. J Biol Chem 274:19228–19236

    CAS  PubMed  Google Scholar 

  • Hashimoto T, Cook WS, Qi C, Yeldandi AV, Reddy JK, Rao MS (2000) Defect in peroxisome proliferator-activated receptor alpha-inducible fatty acid oxidation determines the severity of hepatic steatosis in response to fasting. J Biol Chem 275:28918–28928

    CAS  PubMed  Google Scholar 

  • He M, Rutledge SL, Kelly DR et al (2007) A new genetic disorder in mitochondrial fatty acid beta-oxidation: ACAD9 deficiency. Am J Hum Genet 81:87–103

    CAS  PubMed Central  PubMed  Google Scholar 

  • He M, Pei Z, Mohsen AW et al (2011) Identification and characterization of new long chain acyl-CoA dehydrogenases. Mol Genet Metab 102:418–429

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hein S, Schonfeld P, Kahlert S, Reiser G (2008) Toxic effects of X-linked adrenoleukodystrophy-associated, very long chain fatty acids on glial cells and neurons from rat hippocampus in culture. Hum Mol Genet 17:1750–1761

    CAS  PubMed  Google Scholar 

  • Hess R, Staubli W, Riess W (1965) Nature of the hepatomegalic effect produced by ethyl-chlorophenoxy-isobutyrate in the rat. Nature 208:856–858

    CAS  PubMed  Google Scholar 

  • Hicks L, Fahimi HD (1977) Peroxisomes (microbodies) in the myocardium of rodents and primates. A comparative Ultrastructural cytochemical study. Cell Tissue Res 175(4):467–481

    CAS  PubMed  Google Scholar 

  • Horner SM, Liu HM, Park HS, Briley J, Gale M Jr (2011) Mitochondrial-associated endoplasmic reticulum membranes (MAM) form innate immune synapses and are targeted by hepatitis C virus. Proc Natl Acad Sci U S A 108:14590–14595

    CAS  PubMed Central  PubMed  Google Scholar 

  • Houten SM, Wanders RJ (2010) A general introduction to the biochemistry of mitochondrial fatty acid beta-oxidation. J Inherit Metab Dis 33(5):469–477

    CAS  PubMed Central  PubMed  Google Scholar 

  • Houten SM, Denis S, Argmann CA, Jia Y, Ferdinandusse S, Reddy JK, Wanders RJ (2012) Peroxisomal L-bifunctional enzyme (Ehhadh) is essential for the production of medium-chain dicarboxylic acids. J Lipid Res 53:1296–1303

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huber N, Guimaraes S, Schrader M, Suter U, Niemann A (2013) Charcot-Marie-Tooth disease-associated mutants of GDAP1 dissociate its roles in peroxisomal and mitochondrial fission. EMBO Rep 14:545–552

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hunt MC, Tillander V, Alexson SE (2014) Regulation of peroxisomal lipid metabolism: the role of acyl-CoA and coenzyme A metabolizing enzymes. Biochimie 98:45–55

    CAS  PubMed  Google Scholar 

  • Huybrechts SJ, Van Veldhoven PP, Brees C, Mannaerts GP, Los GV, Fransen M (2009) Peroxisome dynamics in cultured mammalian cells. Traffic 10(11):1722–1733

    CAS  PubMed  Google Scholar 

  • Ishihara N, Nomura M, Jofuku A et al (2009) Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nat Cell Biol 11:958–966

    CAS  PubMed  Google Scholar 

  • Islinger M, Luers GH, Li KW, Loos M, Volkl A (2007) Rat liver peroxisomes after fibrate treatment. A survey using quantitative mass spectrometry. J Biol Chem 282:23055–23069

    CAS  PubMed  Google Scholar 

  • Islinger M, Li KW, Loos M et al (2010) Peroxisomes from the heavy mitochondrial fraction: isolation by zonal free flow electrophoresis and quantitative mass spectrometrical characterization. J Proteome Res 9:113–124

    CAS  PubMed  Google Scholar 

  • Islinger M, Grille S, Fahimi HD, Schrader M (2012) The peroxisome: an update on mysteries. Histochem Cell Biol 137:547–574

    CAS  PubMed  Google Scholar 

  • Issemann I, Green S (1990) Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347:645–650

    CAS  PubMed  Google Scholar 

  • Itoyama A, Michiyuki S, Honsho M et al (2013) Mff functions with Pex11pbeta and DLP1 in peroxisomal fission. Biol Open 2:998–1006

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ivashchenko O, Van Veldhoven PP, Brees C, Ho YS, Terlecky SR, Fransen M (2011) Intraperoxisomal redox balance in mammalian cells: oxidative stress and interorganellar cross-talk. Mol Biol Cell 22:1440–1451

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jefferson M, Whelband M, Mohorianu I, Powell PP (2014) The pestivirus N terminal protease N(pro) redistributes to mitochondria and peroxisomes suggesting new sites for regulation of IRF3 by N(pro.). PLoS One 9:e88838

    PubMed Central  PubMed  Google Scholar 

  • Kagan JC (2012) Signaling organelles of the innate immune system. Cell 151:1168–1178

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kelley RI (1983) Review: the cerebrohepatorenal syndrome of Zellweger, morphologic and metabolic aspects. Am J Med Genet 16:503–517

    CAS  PubMed  Google Scholar 

  • Kersten S, Seydoux J, Peters JM, Gonzalez FJ, Desvergne B, Wahli W (1999) Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting. J Clin Invest 103(11):1489–1498

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klose J, Kronstad JW (2006) The multifunctional beta-oxidation enzyme is required for full symptom development by the biotrophic maize pathogen Ustilago maydis. Eukaryot Cell 5:2047–2061

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kobayashi S, Tanaka A, Fujiki Y (2007) Fis1, DLP1, and Pex11p coordinately regulate peroxisome morphogenesis. Exp Cell Res 313:1675–1686

    CAS  PubMed  Google Scholar 

  • Koch J, Brocard C (2012) PEX11 proteins attract Mff and human Fis1 to coordinate peroxisomal fission. J Cell Sci 125:3813–3826

    CAS  PubMed  Google Scholar 

  • Koch A, Thiemann M, Grabenbauer M, Yoon Y, McNiven MA, Schrader M (2003) Dynamin-like protein 1 is involved in peroxisomal fission. J Biol Chem 278:8597–8605

    CAS  PubMed  Google Scholar 

  • Koch A, Schneider G, Luers GH, Schrader M (2004) Peroxisome elongation and constriction but not fission can occur independently of dynamin-like protein 1. J Cell Sci 117:3995–4006

    CAS  PubMed  Google Scholar 

  • Koepke JI, Nakrieko KA, Wood CS et al (2007) Restoration of peroxisomal catalase import in a model of human cellular aging. Traffic 8:1590–1600

    CAS  PubMed  Google Scholar 

  • Koepke JI, Wood CS, Terlecky LJ, Walton PA, Terlecky SR (2008) Progeric effects of catalase inactivation in human cells. Toxicol Appl Pharmacol 232:99–108

    CAS  PubMed  Google Scholar 

  • Kompare M, Rizzo WB (2008) Mitochondrial fatty-acid oxidation disorders. Semin Pediatr Neurol 15:140–149

    PubMed  Google Scholar 

  • Kondrup J, Lazarow PB (1985) Flux of palmitate through the peroxisomal and mitochondrial beta-oxidation systems in isolated rat hepatocytes. Biochim Biophys Acta 835:147–153

    CAS  PubMed  Google Scholar 

  • Korobova F, Ramabhadran V, Higgs HN (2013) An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2. Science 339:464–467

    CAS  PubMed  Google Scholar 

  • Kretschmer M, Klose J, Kronstad JW (2012a) Defects in mitochondrial and peroxisomal beta-oxidation influence virulence in the maize pathogen Ustilago maydis. Eukaryot Cell 11:1055–1066

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kretschmer M, Wang J, Kronstad JW (2012b) Peroxisomal and mitochondrial beta-oxidation pathways influence the virulence of the pathogenic fungus Cryptococcus neoformans. Eukaryot Cell 11:1042–1054

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar M, Jung SY, Hodgson AJ, Madden CR, Qin J, Slagle BL (2011) Hepatitis B virus regulatory HBx protein binds to adaptor protein IPS-1 and inhibits the activation of beta interferon. J Virol 85:987–995

    PubMed Central  PubMed  Google Scholar 

  • Kurihara T, Ueda M, Okada H et al (1992) Beta-oxidation of butyrate, the short-chain-length fatty acid, occurs in peroxisomes in the yeast Candida tropicalis. J Biochem 111:783–787

    CAS  PubMed  Google Scholar 

  • Lazarow PB (1978) Rat liver peroxisomes catalyze the beta oxidation of fatty acids. J Biol Chem 253:1522–1528

    CAS  PubMed  Google Scholar 

  • Lazarow PB (2011) Viruses exploiting peroxisomes. Curr Opin Microbiol 14:458–469

    CAS  PubMed  Google Scholar 

  • Lazarow PB, De Duve C (1976) A fatty acyl-CoA oxidizing system in rat liver peroxisomes; enhancement by clofibrate, a hypolipidemic drug. Proc Natl Acad Sci U S A 73:2043–2046

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lazo O, Contreras M, Singh I (1990) Topographical localization of peroxisomal acyl-CoA ligases: differential localization of palmitoyl-CoA and lignoceroyl-CoA ligases. Biochemistry 29:3981–3986

    CAS  PubMed  Google Scholar 

  • Legakis JE, Koepke JI, Jedeszko C et al (2002) Peroxisome senescence in human fibroblasts. Mol Biol Cell 13:4243–4255

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lewin TM, Kim JH, Granger DA, Vance JE, Coleman RA (2001) Acyl-CoA synthetase isoforms 1, 4, and 5 are present in different subcellular membranes in rat liver and can be inhibited independently. J Biol Chem 276:24674–24679

    CAS  PubMed  Google Scholar 

  • Lewin TM, Van Horn CG, Krisans SK, Coleman RA (2002) Rat liver acyl-CoA synthetase 4 is a peripheral-membrane protein located in two distinct subcellular organelles, peroxisomes, and mitochondrial-associated membrane. Arch Biochem Biophys 404:263–270

    CAS  PubMed  Google Scholar 

  • Li X, Gould SJ (2003) The dynamin-like GTPase DLP1 is essential for peroxisome division and is recruited to peroxisomes in part by PEX11. J Biol Chem 278:17012–17020

    CAS  PubMed  Google Scholar 

  • Li X, Baumgart E, Dong GX et al (2002a) PEX11alpha is required for peroxisome proliferation in response to 4-phenylbutyrate but is dispensable for peroxisome proliferator-activated receptor alpha-mediated peroxisome proliferation. Mol Cell Biol 22:8226–8240

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li X, Baumgart E, Morrell JC, Jimenez-Sanchez G, Valle D, Gould SJ (2002b) PEX11 beta deficiency is lethal and impairs neuronal migration but does not abrogate peroxisome function. Mol Cell Biol 22:4358–4365

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li D, Lai Y, Yue Y, Rabinovitch PS, Hakim C, Duan D (2009) Ectopic catalase expression in mitochondria by adeno-associated virus enhances exercise performance in mice. PLoS One 4:e6673

    PubMed Central  PubMed  Google Scholar 

  • Li Y, Chen R, Zhou Q et al (2012) LSm14A is a processing body-associated sensor of viral nucleic acids that initiates cellular antiviral response in the early phase of viral infection. Proc Natl Acad Sci U S A 109:11770–11775

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li H, Alavian KN, Lazrove E et al (2013) A Bcl-xL-Drp1 complex regulates synaptic vesicle membrane dynamics during endocytosis. Nat Cell Biol 15:773–785

    PubMed Central  PubMed  Google Scholar 

  • Lopez-Erauskin J, Galino J, Ruiz M et al (2013) Impaired mitochondrial oxidative phosphorylation in the peroxisomal disease X-linked adrenoleukodystrophy. Hum Mol Genet 22:3296–3305

    CAS  PubMed  Google Scholar 

  • Lu JF, Lawler AM, Watkins PA et al (1997) A mouse model for X-linked adrenoleukodystrophy. Proc Natl Acad Sci U S A 94:9366–9371

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ma J, Sun T, Park S, Shen G, Liu J (2011) The role of hepatitis B virus X protein is related to its differential intracellular localization. Acta Biochim Biophys Sin 43:583–588

    CAS  PubMed  Google Scholar 

  • Maggio-Hall LA, Keller NP (2004) Mitochondrial beta-oxidation in Aspergillus nidulans. Mol Microbiol 54:1173–1185

    CAS  PubMed  Google Scholar 

  • Mandard S, Muller M, Kersten S (2004) Peroxisome proliferator-activated receptor alpha target genes. Cell Mol Life Sci 61:393–416

    CAS  PubMed  Google Scholar 

  • Mannaerts GP, Debeer LJ, Thomas J, De Schepper PJ (1979) Mitochondrial and peroxisomal fatty acid oxidation in liver homogenates and isolated hepatocytes from control and clofibrate-treated rats. J Biol Chem 254:4585–4595

    CAS  PubMed  Google Scholar 

  • Markwell MA, McGroarty EJ, Bieber LL, Tolbert NE (1973) The subcellular distribution of carnitine acyltransferases in mammalian liver and kidney. A new peroxisomal enzyme. J Biol Chem 248:3426–3432

    CAS  PubMed  Google Scholar 

  • Mast FD, Li J, Virk MK, Hughes SC, Simmonds AJ, Rachubinski RA (2011) A Drosophila model for the Zellweger spectrum of peroxisome biogenesis disorders. Dis Model Mech 4:659–672

    CAS  PubMed Central  PubMed  Google Scholar 

  • McGuinness MC, Lu JF, Zhang HP et al (2003) Role of ALDP (ABCD1) and mitochondria in X-linked adrenoleukodystrophy. Mol Cell Biol 23:744–753

    CAS  PubMed Central  PubMed  Google Scholar 

  • Medzhitov R, Horng T (2009) Transcriptional control of the inflammatory response. Nat Rev Immunol 9:692–703

    CAS  PubMed  Google Scholar 

  • Melton EM, Cerny RL, DiRusso CC, Black PN (2013) Overexpression of human fatty acid transport protein 2/very long chain acyl-CoA synthetase 1 (FATP2/Acsvl1) reveals distinct patterns of trafficking of exogenous fatty acids. Biochem Biophys Res Commun 440:743–748

    CAS  PubMed  Google Scholar 

  • Menendez-Gutierrez MP, Roszer T, Ricote M (2012) Biology and therapeutic applications of peroxisome proliferator- activated receptors. Curr Top Med Chem 12:548–584

    CAS  PubMed  Google Scholar 

  • Mesecke N, Terziyska N, Kozany C et al (2005) A disulfide relay system in the intermembrane space of mitochondria that mediates protein import. Cell 121:1059–1069

    CAS  PubMed  Google Scholar 

  • Mohan KV, Atreya CD (2003) Novel organelle-targeting signals in viral proteins. Bioinformatics 19:10–13

    CAS  PubMed  Google Scholar 

  • Mohan KV, Som I, Atreya CD (2002) Identification of a type 1 peroxisomal targeting signal in a viral protein and demonstration of its targeting to the organelle. J Virol 76:2543–2547

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morita M, Imanaka T (2012) Peroxisomal ABC transporters: structure, function and role in disease. Biochim Biophys Acta 1822:1387–1396

    CAS  PubMed  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    CAS  PubMed Central  PubMed  Google Scholar 

  • Neuspiel M, Schauss AC, Braschi E et al (2008) Cargo-selected transport from the mitochondria to peroxisomes is mediated by vesicular carriers. Curr Biol 18:102–108

    CAS  PubMed  Google Scholar 

  • Niemann A, Ruegg M, La Padula V, Schenone A, Suter U (2005) Ganglioside-induced differentiation associated protein 1 is a regulator of the mitochondrial network: new implications for Charcot-Marie-Tooth disease. J Cell Biol 170:1067–1078

    CAS  PubMed Central  PubMed  Google Scholar 

  • Niemann A, Berger P, Suter U (2006) Pathomechanisms of mutant proteins in Charcot-Marie-Tooth disease. Neuromol Med 8:217–242

    CAS  Google Scholar 

  • Niemann A, Wagner KM, Ruegg M, Suter U (2009) GDAP1 mutations differ in their effects on mitochondrial dynamics and apoptosis depending on the mode of inheritance. Neurobiol Dis 36:509–520

    CAS  PubMed  Google Scholar 

  • Nordgren M, Fransen M (2014) Peroxisomal metabolism and oxidative stress. Biochimie 98:56–62

    CAS  PubMed  Google Scholar 

  • Odendall C, Kagan JC (2013) Peroxisomes and the antiviral responses of Mammalian cells. Subcell Biochem 69:67–75

    CAS  PubMed Central  PubMed  Google Scholar 

  • Odendall C, Dixit E, Stavru F et al (2014) Diverse intracellular pathogens activate type III interferon expression from peroxisomes. Nat Immunol 15:717–726

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oezen I, Rossmanith W, Forss-Petter S et al (2005) Accumulation of very long-chain fatty acids does not affect mitochondrial function in adrenoleukodystrophy protein deficiency. Hum Mol Genet 14:1127–1137

    CAS  PubMed  Google Scholar 

  • Onoue K, Jofuku A, Ban-Ishihara R et al (2013) Fis1 acts as a mitochondrial recruitment factor for TBC1D15 that is involved in regulation of mitochondrial morphology. J Cell Sci 126:176–185

    CAS  PubMed  Google Scholar 

  • Opalinski L, Kiel JA, Williams C, Veenhuis M, van der Klei IJ (2011) Membrane curvature during peroxisome fission requires Pex11. EMBO J 30:5–16

    CAS  PubMed Central  PubMed  Google Scholar 

  • Osmundsen H, Neat CE, Norum KR (1979) Peroxisomal oxidation of long chain fatty acids. FEBS Lett 99:292–296

    CAS  PubMed  Google Scholar 

  • Otera H, Wang C, Cleland MM et al (2010) Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. J Cell Biol 191:1141–1158

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paget GE (1963) Experimental studies of the toxicity of Atromid with particular reference to fine structural changes in the livers of rodents. J Atheroscler Res 3:729–736

    CAS  PubMed  Google Scholar 

  • Palmer CS, Elgass KD, Parton RG, Osellame LD, Stojanovski D, Ryan MT (2013) Adaptor proteins MiD49 and MiD51 can act independently of Mff and Fis1 in Drp1 recruitment and are specific for mitochondrial fission. J Biol Chem 288:27584–27593

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peeters A, Shinde AB, Dirkx R et al (2014) Mitochondria in peroxisome-deficient hepatocytes exhibit impaired respiration, depleted DNA, and PGC-1alpha independent proliferation. Biochim Biophys Acta 1853:285–298

    PubMed  Google Scholar 

  • Powers JM, Pei Z, Heinzer AK et al (2005) Adreno-leukodystrophy: oxidative stress of mice and men. J Neuropathol Exp Neurol 64:1067–1079

    CAS  PubMed  Google Scholar 

  • Puigserver P (2005) Tissue-specific regulation of metabolic pathways through the transcriptional coactivator PGC1-alpha. Int J Obes 29(Suppl 1):S5–S9

    CAS  Google Scholar 

  • Pyper SR, Viswakarma N, Yu S, Reddy JK (2010) PPARalpha: energy combustion, hypolipidemia, inflammation and cancer. Nucl Recept Signal 16:e002

    Google Scholar 

  • Reddy JK, Hashimoto T (2001) Peroxisomal beta-oxidation and peroxisome proliferator-activated receptor alpha: an adaptive metabolic system. Annu Rev Nutr 21:193–230

    CAS  PubMed  Google Scholar 

  • Rinaldo P, Matern D, Bennett MJ (2002) Fatty acid oxidation disorders. Annu Rev Physiol 64:477–502

    CAS  PubMed  Google Scholar 

  • Roberts LD, Murray AJ, Menassa D, Ashmore T, Nicholls AW, Griffin JL (2011) The contrasting roles of PPARdelta and PPARgamma in regulating the metabolic switch between oxidation and storage of fats in white adipose tissue. Genome Biol 12:R75

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ruggieri V, Mazzoccoli C, Pazienza V, Andriulli A, Capitanio N, Piccoli C (2014) Hepatitis C virus, mitochondria and auto/mitophagy: exploiting a host defense mechanism. World J Gastroenterol 20:2624–2633

    PubMed Central  PubMed  Google Scholar 

  • Saggerson D (2008) Malonyl-CoA, a key signaling molecule in mammalian cells. Annu Rev Nutr 28:253–272

    CAS  PubMed  Google Scholar 

  • Salcher S, Hagenbuchner J, Geiger K et al (2014) C10ORF10/DEPP, a transcriptional target of FOXO3, regulates ROS-sensitivity in human neuroblastoma. Mol Cancer 13:224

    PubMed Central  PubMed  Google Scholar 

  • Salpietro V, Phadke R, Saggar A, et al (2014) Zellweger syndrome and secondary mitochondrial myopathy. Eur J Pediatr

  • Saudubray JM, Martin D, de Lonlay P et al (1999) Recognition and management of fatty acid oxidation defects: a series of 107 patients. J Inherit Metab Dis 22:488–502

    CAS  PubMed  Google Scholar 

  • Schrader M, Fahimi HD (2006a) Growth and division of peroxisomes. Int Rev Cytol 255:237–290

    CAS  PubMed  Google Scholar 

  • Schrader M, Fahimi HD (2006b) Peroxisomes and oxidative stress. Biochim Biophys Acta 1763:1755–1766

    CAS  PubMed  Google Scholar 

  • Schrader M, Yoon Y (2007) Mitochondria and peroxisomes: are the ‘big brother’ and the ‘little sister’ closer than assumed? BioEssays 29:1105–1114

    CAS  PubMed  Google Scholar 

  • Schrader M, Reuber BE, Morrell JC et al (1998) Expression of PEX11beta mediates peroxisome proliferation in the absence of extracellular stimuli. J Biol Chem 273:29607–29614

    CAS  PubMed  Google Scholar 

  • Schrader M, King SJ, Stroh TA, Schroer TA (2000) Real time imaging reveals a peroxisomal reticulum in living cells. J Cell Sci 113:3663–3671

    CAS  PubMed  Google Scholar 

  • Schrader M, Bonekamp NA, Islinger M (2012) Fission and proliferation of peroxisomes. Biochim Biophys Acta 1822:1343–1357

    CAS  PubMed  Google Scholar 

  • Schrader M, Grille S, Fahimi HD, Islinger M (2013) Peroxisome interactions and cross-talk with other subcellular compartments in animal cells. Subcell Biochem 69:1–22

    CAS  PubMed  Google Scholar 

  • Schriner SE, Linford NJ, Martin GM et al (2005) Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308:1909–1911

    CAS  PubMed  Google Scholar 

  • Sebastian D, Guitart M, Garcia-Martinez C et al (2009) Novel role of FATP1 in mitochondrial fatty acid oxidation in skeletal muscle cells. J Lipid Res 50:1789–1799

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shamseldin HE, Alshammari M, Al-Sheddi T et al (2012) Genomic analysis of mitochondrial diseases in a consanguineous population reveals novel candidate disease genes. J Med Genet 49:234–241

    PubMed  Google Scholar 

  • Shen YQ, Lang BF, Burger G (2009) Diversity and dispersal of a ubiquitous protein family: acyl-CoA dehydrogenases. Nucleic Acids Res 37:5619–5631

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sinclair AM, Trobacher CP, Mathur N, Greenwood JS, Mathur J (2009) Peroxule extension over ER-defined paths constitutes a rapid subcellular response to hydroxyl stress. Plant J 59:231–242

    CAS  PubMed  Google Scholar 

  • Singh J, Giri S (2014) Loss of AMP-activated protein kinase in X-linked adrenoleukodystrophy patient-derived fibroblasts and lymphocytes. Biochem Biophys Res Commun 445:126–131

    CAS  PubMed  Google Scholar 

  • Singh I, Moser AE, Goldfischer S, Moser HW (1984) Lignoceric acid is oxidized in the peroxisome: implications for the Zellweger cerebro-hepato-renal syndrome and adrenoleukodystrophy. Proc Natl Acad Sci U S A 81:4203–4207

    CAS  PubMed Central  PubMed  Google Scholar 

  • Speijer D (2011) Oxygen radicals shaping evolution: why fatty acid catabolism leads to peroxisomes while neurons do without it: FADH(2)/NADH flux ratios determining mitochondrial radical formation were crucial for the eukaryotic invention of peroxisomes and catabolic tissue differentiation. BioEssays 33:88–94

    CAS  PubMed  Google Scholar 

  • Speijer D (2014) How the mitochondrion was shaped by radical differences in substrates: what carnitine shuttles and uncoupling tell us about mitochondrial evolution in response to ROS. BioEssays 36:634–643

    CAS  PubMed  Google Scholar 

  • Spiekerkoetter U, Lindner M, Santer R et al (2009) Management and outcome in 75 individuals with long-chain fatty acid oxidation defects: results from a workshop. J Inherit Metab Dis 32:488–497

    CAS  PubMed  Google Scholar 

  • Sugiura A, McLelland GL, Fon EA, McBride HM (2014) A new pathway for mitochondrial quality control: mitochondrial-derived vesicles. EMBO J 33:2142-2156

  • Suzuki A, Yasuno T, Kojo H, Hirosumi J, Mutoh S, Notsu Y (2000) Alteration in expression profiles of a series of diabetes-related genes in db/db mice following treatment with thiazolidinediones. Jpn J Pharmacol 84:113–123

    CAS  PubMed  Google Scholar 

  • Svoboda DJ, Azarnoff DL (1966) Response of hepatic microbodies to a hypolipidemic agent, ethyl chlorophenoxyisobutyrate (CPIB). J Cell Biol 30:442–450

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tanaka A, Osumi M, Fukui S (1982) Peroxisomes of alkane-grown yeast: fundamental and practical aspects. Ann N Y Acad Sci 386:183–199

    CAS  PubMed  Google Scholar 

  • Tanner LB, Chng C, Guan XL, Lei Z, Rozen SG, Wenk MR (2014) Lipidomics identifies a requirement for peroxisomal function during influenza virus replication. J Lipid Res 55:1357–1365

    CAS  PubMed Central  PubMed  Google Scholar 

  • Terlecky SR, Koepke JI, Walton PA (2006) Peroxisomes and aging. Biochim Biophys Acta 1763:1749–1754

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thomas J, Debeer LJ, De Schepper PJ, Mannaerts GP (1980) Factors influencing palmitoyl-CoA oxidation by rat liver peroxisomal fractions. Substrate concentration, organelle integrity and ATP. Biochem J 190:485–494

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thoms S, Erdmann R (2005) Dynamin-related proteins and Pex11 proteins in peroxisome division and proliferation. FEBS J 272:5169–5181

    CAS  PubMed  Google Scholar 

  • Thoms S, Gartner J (2012) First PEX11beta patient extends spectrum of peroxisomal biogenesis disorder phenotypes. J Med Genet 49:314–316

    CAS  PubMed  Google Scholar 

  • Tolbert NE (1981) Metabolic pathways in peroxisomes and glyoxysomes. Annu Rev Biochem 50:133–157

    CAS  PubMed  Google Scholar 

  • Uchida Y, Kondo N, Orii T, Hashimoto T (1996) Purification and properties of rat liver peroxisomal very-long-chain acyl-CoA synthetase. J Biochem 119:565–571

    CAS  PubMed  Google Scholar 

  • van Roermund CW, Visser WF, Ijlst L et al (2008) The human peroxisomal ABC half transporter ALDP functions as a homodimer and accepts acyl-CoA esters. FASEB J 22:4201–4208

    PubMed  Google Scholar 

  • van Roermund CW, Visser WF, Ijlst L, Waterham HR, Wanders RJ (2011) Differential substrate specificities of human ABCD1 and ABCD2 in peroxisomal fatty acid beta-oxidation. Biochim Biophys Acta 1811:148–152

    PubMed  Google Scholar 

  • van Roermund CW, Ijlst L, Wagemans T, Wanders RJ, Waterham HR (2014) A role for the human peroxisomal half-transporter ABCD3 in the oxidation of dicarboxylic acids. Biochim Biophys Acta 1841:563–568

    PubMed  Google Scholar 

  • Van Veldhoven PP (2010) Biochemistry and genetics of inherited disorders of peroxisomal fatty acid metabolism. J Lipid Res 51:2863–2895

    PubMed Central  PubMed  Google Scholar 

  • Van Veldhoven PP, Vanhove G, Assselberghs S, Eyssen HJ, Mannaerts GP (1992) Substrate specificities of rat liver peroxisomal acyl-CoA oxidases: palmitoyl-CoA oxidase (inducible acyl-CoA oxidase), pristanoyl-CoA oxidase (non-inducible acyl-CoA oxidase), and trihydroxycoprostanoyl-CoA oxidase. J Biol Chem 267:20065–20074

    PubMed  Google Scholar 

  • Violante S, Ijlst L, Te Brinke H et al (2013) Peroxisomes contribute to the acylcarnitine production when the carnitine shuttle is deficient. Biochim Biophys Acta 1831:1467–1474

    CAS  PubMed  Google Scholar 

  • Vockley J, Whiteman DA (2002) Defects of mitochondrial beta-oxidation: a growing group of disorders. Neuromuscul Disord 12:235–246

    PubMed  Google Scholar 

  • Wakabayashi J, Zhang Z, Wakabayashi N et al (2009) The dynamin-related GTPase Drp1 is required for embryonic and brain development in mice. J Cell Biol 186:805–816

    CAS  PubMed Central  PubMed  Google Scholar 

  • Walton PA, Pizzitelli M (2012) Effects of peroxisomal catalase inhibition on mitochondrial function. Front Physiol 3:108

    PubMed Central  PubMed  Google Scholar 

  • Wanders RJ (2013) Peroxisomes in human health and disease: metabolic pathways, metabolite transport, interplay with other organelles and signal transduction. Subcell Biochem 69:23–44

    CAS  PubMed  Google Scholar 

  • Wanders RJ, Waterham HR (2006) Peroxisomal disorders: the single peroxisomal enzyme deficiencies. Biochim Biophys Acta 1763:1707–1720

    CAS  PubMed  Google Scholar 

  • Wanders RJ, Ferdinandusse S, Brites P, Kemp S (2010) Peroxisomes, lipid metabolism and lipotoxicity. Biochim Biophys Acta 1801:272–280

    CAS  PubMed  Google Scholar 

  • Wanders RJ, Komen J, Ferdinandusse S (2011) Phytanic acid metabolism in health and disease. Biochim Biophys Acta 1811:498–507

    CAS  PubMed  Google Scholar 

  • Wang YX, Lee CH, Tiep S et al (2003) Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity. Cell 113:159–170

    CAS  PubMed  Google Scholar 

  • Wang B, Van Veldhoven PP, Brees C et al (2013) Mitochondria are targets for peroxisome-derived oxidative stress in cultured mammalian cells. Free Radic Biol Med 65:882–894

    CAS  PubMed  Google Scholar 

  • Waterham HR, Koster J, van Roermund CW, Mooyer PA, Wanders RJ, Leonard JV (2007) A lethal defect of mitochondrial and peroxisomal fission. N Engl J Med 356:1736–1741

    CAS  PubMed  Google Scholar 

  • Westermann B (2010) Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 11:872–884

    CAS  PubMed  Google Scholar 

  • Westermann B (2012) Bioenergetic role of mitochondrial fusion and fission. Biochim Biophys Acta 1817:1833–1838

    CAS  PubMed  Google Scholar 

  • Westin MA, Hunt MC, Alexson SE (2008) Short- and medium-chain carnitine acyltransferases and acyl-CoA thioesterases in mouse provide complementary systems for transport of beta-oxidation products out of peroxisomes. Cell Mol Life Sci 65:982–990

    CAS  PubMed  Google Scholar 

  • Wiese S, Gronemeyer T, Ofman R et al (2007) Proteomics characterization of mouse kidney peroxisomes by tandem mass spectrometry and protein correlation profiling. Mol Cell Proteomics 6:2045–2057

    CAS  PubMed  Google Scholar 

  • Wiesinger C, Kunze M, Regelsberger G, Forss-Petter S, Berger J (2013) Impaired very long-chain acyl-CoA β-oxidation in human X-linked adrenoleukodystrophy fibroblasts is a direct consequence of ABCD1 transporter dysfunction. J Biol Chem 288:19269–19279

    CAS  PubMed Central  PubMed  Google Scholar 

  • Williams C, Bener Aksam E, Gunkel K, Veenhuis M, van der Klei IJ (2012) The relevance of the non-canonical PTS1 of peroxisomal catalase. Biochim Biophys Acta 1823:1133–1141

    CAS  PubMed  Google Scholar 

  • Wolff T, O’Neill RE, Palese P (1996) Interaction cloning of NS1-I, a human protein that binds to the nonstructural NS1 proteins of influenza A and B viruses. J Virol 70:5363–5372

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu M, Cao A, Dong B, Liu J (2011) Reduction of serum free fatty acids and triglycerides by liver-targeted expression of long chain acyl-CoA synthetase 3. Int J Mol Med 27:655–662

    CAS  PubMed  Google Scholar 

  • Yamano K, Fogel AI, Wang C, van der Bliek AM, Youle RJ (2014) Mitochondrial Rab GAPs govern autophagosome biogenesis during mitophagy. eLife 3:e01612

    PubMed Central  PubMed  Google Scholar 

  • Zanardelli M, Micheli L, Cinci L et al (2014) Oxaliplatin neurotoxicity involves peroxisome alterations. PPARgamma agonism as preventive pharmacological approach. PLoS One 9:e102758

    PubMed Central  PubMed  Google Scholar 

  • Zhang J, Zhang W, Zou D et al (2002) Cloning and functional characterization of ACAD-9, a novel member of human acyl-CoA dehydrogenase family. Biochem Biophys Res Commun 297:1033–1042

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank H. Dariush Fahimi (Heidelberg) and Marc Fransen (Leuven) for kindly providing images and members of the laboratory for stimulating discussions and comments on the manuscript. We apologize to those whose work has not been cited owing to space limitations. This work was supported by BBSRC (BB/K006231/1), the Portuguese Foundation for Science and Technology (FCT) and FEDER/COMPETE (PTDC/BIA-BCM/118605/2010) to M. S., SFRH/BPD/90084/2012 to L. G.) and FP-7-PEOPLE-2012-Marie Curie-ITN 316723 PERFUME.

Compliance with Ethics Guidelines

This article does not contain any studies with human or animal subjects performed by any of the authors.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Schrader.

Additional information

Communicated by: Jerry Vockley

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schrader, M., Costello, J., Godinho, L.F. et al. Peroxisome-mitochondria interplay and disease. J Inherit Metab Dis 38, 681–702 (2015). https://doi.org/10.1007/s10545-015-9819-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-015-9819-7

Keywords

Navigation