Skip to main content

Design, Production, and Characterization of Catalytically Active Inclusion Bodies

  • Protocol
  • First Online:
Inclusion Bodies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2617))

Abstract

Catalytically active inclusion bodies (CatIBs) are promising biologically produced enzyme/protein immobilizates for application in biocatalysis, synthetic chemistry, and biomedicine. CatIB formation is commonly induced by fusion of suitable aggregation-inducing tags to a given target protein. Heterologous production of the fusion protein in turn yields CatIBs. This chapter presents the methodology needed to design, produce, and characterize CatIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Guisan JM (2013) New opportunities for immobilization of enzymes. Methods Mol Biol 1051:1–13

    Article  CAS  Google Scholar 

  2. Homaei AA, Sariri R, Vianello F et al (2013) Enzyme immobilization: an update. J Chem Biol 6:185–205

    Article  Google Scholar 

  3. Sheldon RA, Van Pelt S (2013) Enzyme immobilisation in biocatalysis: why, what and how. Chem Soc Rev 42:6223–6235

    Article  CAS  Google Scholar 

  4. Ölçücü G, Klaus O, Jaeger KE et al (2021) Emerging solutions for in vivo biocatalysts immobilization: tailor-made catalysts for industrial biocatalysis. ACS Sustain Chem Eng 9:8919–8945

    Article  Google Scholar 

  5. Rehm FB, Chen S, Rehm BH (2016) Enzyme engineering for in situ immobilization. Molecules 21:1370

    Article  Google Scholar 

  6. Schmidt-Dannert S, Zhang G, Johnston T et al (2018) Building a toolbox of protein scaffolds for future immobilization of biocatalysts. Appl Microbiol Biotechnol 102:8373–8388

    Article  CAS  Google Scholar 

  7. Steinmann B, Christmann A, Heiseler T et al (2010) In vivo enzyme immobilization by inclusion body display. Appl Environ Microbiol 76:5563–5569

    Article  CAS  Google Scholar 

  8. De Marco A, Ferrer-Miralles N, Garcia-Fruitos E et al (2019) Bacterial inclusion bodies are industrially exploitable amyloids. FEMS Microbiol Rev 43:53–72

    Article  Google Scholar 

  9. Garcia-Fruitos E, Gonzalez-Montalban N, Morell M et al (2005) Aggregation as bacterial inclusion bodies does not imply inactivation of enzymes and fluorescent proteins. Microb Cell Factories 4:27

    Google Scholar 

  10. Garcia-Fruitos E, Vazquez E, Diez-Gil C et al (2012) Bacterial inclusion bodies: making gold from waste. Trends Biotechnol 30:65–70

    Article  CAS  Google Scholar 

  11. Rinas U, Garcia-Fruitos E, Corchero JL et al (2017) Bacterial inclusion bodies: discovering their better half. Trends Biochem Sci 42:726–737

    Article  CAS  Google Scholar 

  12. Jäger VD, Lamm R, Küsters K et al (2020) Catalytically-active inclusion bodies for biotechnology-general concepts, optimization, and application. Appl Microbiol Biotechnol 104:7313–7329

    Article  Google Scholar 

  13. Krauss U, Jäger VD, Diener M et al (2017) Catalytically-active inclusion bodies carrier-free protein immobilizates for application in biotechnology and biomedicine. J Biotechnol 258:136–147

    Article  CAS  Google Scholar 

  14. Diener M, Kopka B, Pohl M et al (2016) Fusion of a coiled-coil domain facilitates the high-level production of catalytically active enzyme inclusion bodies. ChemCatChem 8:142–152

    Article  CAS  Google Scholar 

  15. Jäger VD, Kloss R, Grünberger A et al (2019) Tailoring the properties of (catalytically)-active inclusion bodies. Microb Cell Factories 18:33

    Google Scholar 

  16. Jäger VD, Lamm R, Kloss R et al (2018) A synthetic reaction cascade implemented by colocalization of two proteins within catalytically active inclusion bodies. ACS Synth Biol 7:2282–2295

    Article  Google Scholar 

  17. Kloss R, Karmainski T, Jäger VD et al (2018) Tailor-made catalytically active inclusion bodies for different applications in biocatalysis. Cat Sci Technol 8:5816–5826

    Article  CAS  Google Scholar 

  18. Kloss R, Limberg MH, Mackfeld U et al (2018) Catalytically active inclusion bodies of L-lysine decarboxylase from E. coli for 1,5-diaminopentane production. Sci Rep 8:5856

    Article  Google Scholar 

  19. Küsters K, Pohl M, Krauss U et al (2021) Construction and comprehensive characterization of an EcLDCc-CatIB set-varying linkers and aggregation inducing tags. Microb Cell Factories 20:49

    Article  Google Scholar 

  20. Arie JP, Miot M, Sassoon N et al (2006) Formation of active inclusion bodies in the periplasm of Escherichia coli. Mol Microbiol 62:427–437

    Article  CAS  Google Scholar 

  21. Huang Z, Zhang C, Chen S et al (2013) Active inclusion bodies of acid phosphatase PhoC: aggregation induced by GFP fusion and activities modulated by linker flexibility. Microb Cell Factories 12:25

    Article  CAS  Google Scholar 

  22. Köszagová R, Krajcovic T, Palencarova-Talafova K et al (2018) Magnetization of active inclusion bodies: comparison with centrifugation in repetitive biotransformations. Microb Cell Factories 17:139

    Article  Google Scholar 

  23. Wang R, Li J, Dang D et al (2020) Bacterial production of maize and human serine racemases as partially active inclusion bodies for d-serine synthesis. Enzym Microb Technol 137:109547

    Article  CAS  Google Scholar 

  24. Wang X, Zhou BH, Hu WK et al (2015) Formation of active inclusion bodies induced by hydrophobic self-assembling peptide GFIL8. Microb Cell Fact 14:88

    Article  Google Scholar 

  25. Du J, Rehm BHA (2017) Purification of target proteins from intracellular inclusions mediated by intein cleavable polyhydroxyalkanoate synthase fusions. Microb Cell Factories 16:184

    Article  Google Scholar 

  26. Xing L, Wu W, Zhou B et al (2011) Streamlined protein expression and purification using cleavable self-aggregating tags. Microb Cell Factories 10:42

    Article  CAS  Google Scholar 

  27. Villaverde A, Garcia-Fruitos E, Rinas U et al (2012) Packaging protein drugs as bacterial inclusion bodies for therapeutic applications. Microb Cell Factories 11:76

    Article  CAS  Google Scholar 

  28. García-Fruitós E, Rodríguez-Carmona E, Díez-Gil C et al (2009) Surface cell growth engineering assisted by a novel bacterial nanomaterial. Adv Mat 21:4249–4253

    Article  Google Scholar 

  29. García-Fruitós E, Seras-Franzoso J, Vazquez E et al (2010) Tunable geometry of bacterial inclusion bodies as substrate materials for tissue engineering. Nanotechnology 21:205101

    Article  Google Scholar 

  30. Gil-Garcia M, Navarro S, Ventura S (2020) Coiled-coil inspired functional inclusion bodies. Microb Cell Factories 19:117

    Article  CAS  Google Scholar 

  31. Choi SL, Lee SJ, Ha JS et al (2011) Generation of catalytic protein particles in Escherichia coli cells using the cellulose-binding domain from Cellulomonas fimi as a fusion partner. Biotechnol Bioproc E 16:1173–1179

    Article  CAS  Google Scholar 

  32. Nahalka J, Nidetzky B (2007) Fusion to a pull-down domain: a novel approach of producing Trigonopsis variabilis D-amino acid oxidase as insoluble enzyme aggregates. Biotechnol Bioeng 97:454–461

    Article  CAS  Google Scholar 

  33. Park SY, Park SH, Choi SK (2012) Active inclusion body formation using Paenibacillus polymyxa PoxB as a fusion partner in Escherichia coli. Anal Biochem 426:63–65

    Article  CAS  Google Scholar 

  34. Lin ZL, Zhou BH, Wu W et al (2013) Self-assembling amphipathic alpha-helical peptides induce the formation of active protein aggregates in vivo. Faraday Discuss 166:243–256

    Article  CAS  Google Scholar 

  35. Zhou BH, Xing L, Wu W et al (2012) Small surfactant-like peptides can drive soluble proteins into active aggregates. Microb Cell Factories 11:10

    Article  CAS  Google Scholar 

  36. Gifre-Renom L, Cano-Garrido O, Fabregas F et al (2018) A new approach to obtain pure and active proteins from Lactococcus lactis protein aggregates. Sci Rep 8:13917

    Article  CAS  Google Scholar 

  37. Lamm R, Jager VD, Heyman B et al (2020) Detailed small-scale characterization and scale-up of active YFP inclusion body production with Escherichia coli induced by a tetrameric coiled coil domain. J Biosci Bioeng 129:730–740

    Article  CAS  Google Scholar 

  38. Berman HM, Westbrook J, Feng Z et al (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  Google Scholar 

  39. Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372:774–797

    Article  CAS  Google Scholar 

  40. Kuriata A, Iglesias V, Pujols J et al (2019) Aggrescan3D (A3D) 2.0: prediction and engineering of protein solubility. Nucleic Acids Res 47:W300–W307

    Article  CAS  Google Scholar 

  41. Ferruz N, Schmidt S, Hocker B (2021) ProteinTools: a toolkit to analyze protein structures. Nucleic Acids Res 49:W559–W566

    Article  CAS  Google Scholar 

  42. Jacak R, Leaver-Fay A, Kuhlman B (2012) Computational protein design with explicit consideration of surface hydrophobic patches. Proteins 80:825–838

    Article  CAS  Google Scholar 

  43. Kuhlman B, Baker D (2000) Native protein sequences are close to optimal for their structures. Proc Natl Acad Sci U S A 97:10383–10388

    Article  CAS  Google Scholar 

  44. Rohl CA, Strauss CE, Misura KM et al (2004) Protein structure prediction using Rosetta. Methods Enzymol 383:66–93

    Article  CAS  Google Scholar 

  45. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF chimera--a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  Google Scholar 

  46. Schrödinger L, Delano W (2020) PyMOL [Internet]. Available from: http://www.pymol.org/pymol

  47. Studier FW (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr Purif 41:207–234

    Article  CAS  Google Scholar 

  48. Fox BG, Blommel PG (2009) Autoinduction of protein expression. Curr Protoc Protein Sci Chapter 5:Unit 5.23

    Google Scholar 

  49. Blommel PG, Becker KJ, Duvnjak P et al (2007) Enhanced bacterial protein expression during auto-induction obtained by alteration of lac repressor dosage and medium composition. Biotechnol Prog 23:585–598

    Article  CAS  Google Scholar 

  50. Swinehart DF (1962) The Beer-Lambert Law. J Chem Educ 39:333

    Article  CAS  Google Scholar 

  51. Gasteiger E, Hoogland C, Gattiker A et al (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, Totowa, New Jersey, USA, pp 571–607

    Google Scholar 

  52. Hameduh T, Haddad Y, Adam V et al (2020) Homology modeling in the time of collective and artificial intelligence. Comput Struct Biotechnol J 18:3494–3506

    Article  CAS  Google Scholar 

  53. Lu Y, Xiao S, Yuan M et al (2018) Using overlap-extension PCR technique to fusing genes for constructing recombinant plasmids. J Basic Microbiol 58:273–276

    Article  CAS  Google Scholar 

  54. Engler C, Kandzia R, Marillonnet S (2008) A one pot, one step, precision cloning method with high throughput capability. PLoS One 3:e3647

    Article  Google Scholar 

  55. Kulig J, Frese A, Kroutil W et al (2013) Biochemical characterization of an alcohol dehydrogenase from Ralstonia sp. Biotechnol Bioeng 110:1838–1848

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was financially supported by the CLIB Competence Center Biotechnology (CKB) funded by the European Regional Development Fund ERDF (34.EFRE 0300096 and 34.EFRE 0300097).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gizem Ölçücü or Ulrich Krauss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ölçücü, G., Jaeger, KE., Krauss, U. (2023). Design, Production, and Characterization of Catalytically Active Inclusion Bodies. In: Kopp, J., Spadiut, O. (eds) Inclusion Bodies. Methods in Molecular Biology, vol 2617. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2930-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2930-7_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2929-1

  • Online ISBN: 978-1-0716-2930-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics