Skip to main content

Pharmacogenetics of Antipsychotic Treatment in Schizophrenia

  • Protocol
Pharmacogenomics in Drug Discovery and Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2547))

Abstract

Antipsychotics are the mainstay treatment for schizophrenia. There is large variability between individuals in their response to antipsychotics, both in efficacy and adverse effects of treatment. While the source of interindividual variability in antipsychotic response is not completely understood, genetics is a major contributing factor. The identification of pharmacogenetic markers that predict antipsychotic efficacy and adverse reactions is a growing area of research and holds the potential to replace the current trial-and-error approach to treatment selection in schizophrenia with a personalized medicine approach.

In this chapter, we provide an overview of the current state of pharmacogenetics in schizophrenia treatment. The most promising pharmacogenetic findings are presented for both antipsychotic response and commonly studied adverse reactions. The application of pharmacogenetics to schizophrenia treatment is discussed, with an emphasis on the clinical utility of pharmacogenetic testing and directions for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kapur S, Seeman P (2001) Does fast dissociation from the dopamine D2 receptor explain the action of atypical antipsychotics?: a new hypothesis. Am J Psychiatr 158:360–369

    Article  CAS  PubMed  Google Scholar 

  2. Perkins DO, Gu H, Boteva K, Lieberman JA (2005) Relationship between duration of untreated psychosis and outcome in first-episode schizophrenia: a critical review and meta-analysis. Am J Psychiatr 162:1785–1804

    Article  PubMed  Google Scholar 

  3. Youssef H, Lyster G, Youssef F (1989) Familial psychosis and vulnerability to tardive dyskinesia. Int Clin Psychopharmacol 4:323–328

    Article  CAS  PubMed  Google Scholar 

  4. Müller DJ, Schulze TG, Knapp M et al (2008) Familial occurrence of tardive dyskinesia. Acta Psychiatr Scand 104:375–379

    Article  Google Scholar 

  5. Vojvoda D, Grimmell K, Sernyak M, Mazure CM (1996) Monozygotic twins concordant for response to clozapine. Lancet 347:61

    Article  CAS  PubMed  Google Scholar 

  6. Mata I, Madoz V, Arranz MJ, Sham P, Murray RM (2001) Olanzapine: concordant response in monozygotic twins with schizophrenia. Br J Psychiatry 178:86–86

    Article  CAS  PubMed  Google Scholar 

  7. Gebhardt S, Theisen FM, Haberhausen M, Heinzel-Gutenbrunner M, Wehmeier PM, Krieg J-C, Kühnau W, Schmidtke J, Remschmidt H, Hebebrand J (2010) Body weight gain induced by atypical antipsychotics: an extension of the monozygotic twin and sib pair study. J Clin Pharm Ther 35:207–211

    Article  CAS  PubMed  Google Scholar 

  8. Hamburg MA, Collins FS (2010) The path to personalized medicine. N Engl J Med 363:301–304

    Article  CAS  PubMed  Google Scholar 

  9. Lavedan C, Licamele L, Volpi S, Hamilton J, Heaton C, Mack K, Lannan R, Thompson A, Wolfgang CD, Polymeropoulos MH (2009) Association of the NPAS3 gene and five other loci with response to the antipsychotic iloperidone identified in a whole genome association study. Mol Psychiatry 14:804–819

    Article  CAS  PubMed  Google Scholar 

  10. Ikeda M, Tomita Y, Mouri A et al (2010) Identification of novel candidate genes for treatment response to risperidone and susceptibility for schizophrenia: integrated analysis among pharmacogenomics, mouse expression, and genetic case-control association approaches. Biol Psychiatry 67:263–269

    Article  CAS  PubMed  Google Scholar 

  11. McClay JL, Adkins DE, Åberg K, Stroup S, Perkins DO, Vladimirov VI, Lieberman JA, Sullivan PF, van den Oord EJCG (2011) Genome-wide pharmacogenomic analysis of response to treatment with antipsychotics. Mol Psychiatry 16:76–85

    Article  CAS  PubMed  Google Scholar 

  12. Malhotra AK (2012) Association between common variants near the melanocortin 4 receptor gene and severe antipsychotic drug–induced weight gain. Arch Gen Psychiatry 69:904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Syu A, Ishiguro H, Inada T et al (2010) Association of the HSPG2 gene with neuroleptic-induced tardive dyskinesia. Neuropsychopharmacology 35:1155–1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Guengerich FP, Peter Guengerich F (2008) Cytochrome P450 and chemical toxicology. Chem Res Toxicol 21:70–83

    Article  CAS  PubMed  Google Scholar 

  15. Moons T, de Roo M, Claes S, Dom G (2011) Relationship between P-glycoprotein and second-generation antipsychotics. Pharmacogenomics 12:1193–1211

    Article  CAS  PubMed  Google Scholar 

  16. Cacabelos R, Hashimoto R, Takeda M (2011) Pharmacogenomics of antipsychotics efficacy for schizophrenia. Psychiatry Clin Neurosci 65:3–19

    Article  CAS  PubMed  Google Scholar 

  17. Yoshida K, Müller DJ (2020) Pharmacogenetics of antipsychotic drug treatment: update and clinical implications. Mol Neuropsychiatry 5:1–26

    PubMed  Google Scholar 

  18. Rodrigues-Silva C, Semedo AT, da Silva Neri HF, Vianello RP, Galaviz-Hernández C, Sosa-Macías M, de Brito RB, Ghedini PC (2020) The CYP2C19*2 and CYP2C19*17 polymorphisms influence responses to clozapine for the treatment of schizophrenia. Neuropsychiatr Dis Treat 16:427–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sim SC, Ingelman-Sundberg M (2010) The Human Cytochrome P450 (CYP) Allele Nomenclature website: a peer-reviewed database of CYP variants and their associated effects. Hum Genomics 4:278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kaur G, Gupta D, Chavan BS et al (2017) Identification of genetic correlates of response to Risperidone: findings of a multicentric schizophrenia study from India. Asian J Psychiatr 29:174–182

    Article  PubMed  Google Scholar 

  21. Ravyn D, Ravyn V, Lowney R, Nasrallah HA (2013) CYP450 Pharmacogenetic treatment strategies for antipsychotics: a review of the evidence. Schizophr Res 149:1–14

    Article  PubMed  Google Scholar 

  22. Center for Drug Evaluation, Research (2021) Table of pharmacogenomic biomarkers. http://www.fda.gov/drugs/scienceresearch/researchareas/pharmacogenetics/ucm083378.htm. Accessed 6 Dec 2021

  23. Perera V, Gross AS, Polasek TM, Qin Y, Rao G, Forrest A, Xu J, McLachlan AJ (2013) Considering CYP1A2 phenotype and genotype for optimizing the dose of olanzapine in the management of schizophrenia. Expert Opin Drug Metab Toxicol 9:1115–1137

    Article  CAS  PubMed  Google Scholar 

  24. Rasmussen BB, Brix TH, Kyvik KO, Brøsen K (2002) The interindividual differences in the 3-demthylation of caffeine alias CYP1A2 is determined by both genetic and environmental factors. Pharmacogenetics 12:473–478

    Article  CAS  PubMed  Google Scholar 

  25. Ingelman-Sundberg M (2004) Human drug metabolising cytochrome P450 enzymes: properties and polymorphisms. Naunyn Schmiedeberg's Arch Pharmacol 369:89–104

    Article  CAS  Google Scholar 

  26. Ozdemir V, Kalow W, Tang BK, Paterson AD, Walker SE, Endrenyi L, Kashuba AD (2000) Evaluation of the genetic component of variability in CYP3A4 activity: a repeated drug administration method. Pharmacogenetics 10:373–388

    Article  CAS  PubMed  Google Scholar 

  27. Amirimani B, Ning B, Deitz AC, Weber BL, Kadlubar FF, Rebbeck TR (2003) Increased transcriptional activity of theCYP3A4*1B promoter variant. Environ Mol Mutagen 42:299–305

    Article  CAS  PubMed  Google Scholar 

  28. Żochowska D, Wyzgał J, Pączek L (2012) Impact of CYP3A4*1B and CYP3A5*3 polymorphisms on the pharmacokinetics of cyclosporine and sirolimus in renal transplant recipients. Ann Transplant 17:36–44

    Article  PubMed  Google Scholar 

  29. Kohlrausch FB, Gama CS, Lobato MI, Belmonte-de-Abreu P, Callegari-Jacques SM, Gesteira A, Barros F, Carracedo Á, Hutz MH (2008) Naturalistic pharmacogenetic study of treatment resistance to typical neuroleptics in European–Brazilian schizophrenics. Pharmacogenet Genomics 18:599–609

    Article  CAS  PubMed  Google Scholar 

  30. Wong M, Evans S, Rivory L, Hoskins J, Mann G, Farlow D, Clarke C, Balleine R, Gurney H (2005) Hepatic technetium Tc 99m-labeled sestamibi elimination rate and () genotype as indicators of ABCB1 (P-glycoprotein) activity in patients with cancer. Clin Pharmacol Ther 77:33–42

    Article  CAS  PubMed  Google Scholar 

  31. Kimchi-Sarfaty C, Oh JM, Kim I-W, Sauna ZE, Calcagno AM, Ambudkar SV, Gottesman MM (2007) A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science 315:525–528

    Article  CAS  PubMed  Google Scholar 

  32. Jafari S, Fernandez-Enright F, Huang X-F (2012) Structural contributions of antipsychotic drugs to their therapeutic profiles and metabolic side effects. J Neurochem 120:371–384

    Article  CAS  PubMed  Google Scholar 

  33. Reynolds GP (2012) The pharmacogenetics of antipsychotic treatment. Curr Antipsychotics:213–239

    Google Scholar 

  34. Blanc O, Brousse G, Meary A, Leboyer M, Llorca P-M (2009) Pharmacogenetic of response efficacy to antipsychotics in schizophrenia: pharmacodynamic aspects. Review and implications for clinical research. Fundam Clin Pharmacol. https://doi.org/10.1111/j.1472-8206.2009.00751.x

  35. Zhang J-P, Malhotra AK (2011) Pharmacogenetics and antipsychotics: therapeutic efficacy and side effects prediction. Expert Opin Drug Metab Toxicol 7:9–37

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhang J-P, Lencz T, Malhotra AK (2010) D2 receptor genetic variation and clinical response to antipsychotic drug treatment: a meta-analysis. Am J Psychiatr 167:763–772

    Article  PubMed  Google Scholar 

  37. Arinami T (1997) A functional polymorphism in the promoter region of the dopamine D2 receptor gene is associated with schizophrenia. Hum Mol Genet 6:577–582

    Article  CAS  PubMed  Google Scholar 

  38. Consortium SWG of TPG, Schizophrenia Working Group of the Psychiatric Genomics Consortium (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature 511:421–427

    Article  Google Scholar 

  39. Morozova MA, Lezheiko TV, Lepilkina TA, Burminskiy DS, Potanin SS, Beniashvili AG, Rupchev GE, Golimbet VE (2021) Treatment response and GWAS risk allele rs2514218 (C) of the dopamine D2 receptor gene in inpatients with schizophrenia. Neuropsychobiology:1–7

    Google Scholar 

  40. Huang E, Maciukiewicz M, Zai CC, Tiwari AK, Li J, Potkin SG, Lieberman JA, Meltzer HY, Müller DJ, Kennedy JL (2016) Preliminary evidence for association of genome-wide significant DRD2 schizophrenia risk variant with clozapine response. Pharmacogenomics 17:103–109

    Article  CAS  PubMed  Google Scholar 

  41. Zhang J-P, Robinson DG, Gallego JA, John M, Yu J, Addington J, Tohen M, Kane JM, Malhotra AK, Lencz T (2015) Association of a schizophrenia risk variant at the DRD2 locus with antipsychotic treatment response in first-episode psychosis. Schizophr Bull 41:1248–1255

    Article  PubMed  PubMed Central  Google Scholar 

  42. Leriche L, Bezard E, Gross C, Guillin O, Foll B, Diaz J, Sokoloff P (2006) The dopamine D3 receptor: a therapeutic target for the treatment of neuropsychiatric disorders. CNS Neurol Disord Drug Targets 5:25–43

    Article  PubMed  Google Scholar 

  43. Joyce JN, Gurevich EV (1999) D3 receptors and the actions of neuroleptics in the ventral striatopallidal system of schizophrenics. Ann N Y Acad Sci 877:595–613

    Article  CAS  PubMed  Google Scholar 

  44. Jeanneteau F, Funalot B, Jankovic J, Deng H, Lagarde J-P, Lucotte G, Sokoloff P (2006) A functional variant of the dopamine D3 receptor is associated with risk and age-at-onset of essential tremor. Proc Natl Acad Sci 103:10753–10758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hwang R, Zai C, Tiwari A et al (2010) Effect of dopamine D3 receptor gene polymorphisms and clozapine treatment response: exploratory analysis of nine polymorphisms and meta-analysis of the Ser9Gly variant. Pharmacogenomics J 10:200–218

    Article  CAS  PubMed  Google Scholar 

  46. Scheller D, Tegtmeier F, Urenjak J, Kolb J, Peters U, Bock A, Höller M (1989) Influence of flunarizine on postischemic flow and energy metabolism in the isolated rat brain. Biomed Biochim Acta 48:S161–S165

    CAS  PubMed  Google Scholar 

  47. Liang W, Yu H, Su Y, Lu T, Yan H, Yue W, Zhang D (2020) Variants of GRM7 as risk factor and response to antipsychotic therapy in schizophrenia. Transl Psychiatry 10:83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sacchetti E, Magri C, Minelli A, Valsecchi P, Traversa M, Calza S, Vita A, Gennarelli M (2017) The GRM7 gene, early response to risperidone, and schizophrenia: a genome-wide association study and a confirmatory pharmacogenetic analysis. Pharmacogenomics J 17:146–154

    Article  CAS  PubMed  Google Scholar 

  49. Wang X, Su Y, Yan H, Huang Z, Huang Y, Yue W (2019) Association study of KCNH7 polymorphisms and individual responses to risperidone treatment in schizophrenia. Front Psych 10:633

    Article  Google Scholar 

  50. Bantick RA, Deakin JFW, Grasby PM (2001) The 5-HT1A receptor in schizophrenia: a promising target for novel atypical neuroleptics? J Psychopharmacol 15:37–46

    Article  CAS  PubMed  Google Scholar 

  51. Reynolds GP, Arranz B, Templeman LA, Fertuzinhos S, San L (2006) Effect of 5-HT1A receptor gene polymorphism on negative and depressive symptom response to antipsychotic treatment of drug-naive psychotic patients. Am J Psychiatr 163:1826–1829

    Article  PubMed  Google Scholar 

  52. Wang L, Fang C, Zhang A, Du J, Yu L, Ma J, Feng G, Xing Q, He L (2008) The —1019 C/G polymorphism of the 5-HT1A receptor gene is associated with negative symptom response to risperidone treatment in schizophrenia patients. J Psychopharmacol 22:904–909

    Article  CAS  PubMed  Google Scholar 

  53. Mössner R, Schuhmacher A, Kühn K-U et al (2009) Functional serotonin 1A receptor variant influences treatment response to atypical antipsychotics in schizophrenia. Pharmacogenet Genomics 19:91–94

    Article  PubMed  Google Scholar 

  54. Lemonde S, Turecki G, Bakish D et al (2003) Impaired repression at a 5-hydroxytryptamine 1A receptor gene polymorphism associated with major depression and suicide. J Neurosci 23:8788–8799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Aghajanian GK, Marek GJ (1999) Serotonin and hallucinogens. Neuropsychopharmacology 21:S16–S23

    Article  Google Scholar 

  56. Arranz MJ, Munro J, Sham P, Kirov G, Murray RM, Collier DA, Kerwin RW (1998) Meta-analysis of studies on genetic variation in 5-HT2A receptors and clozapine response. Schizophr Res 32:93–99

    Article  CAS  PubMed  Google Scholar 

  57. Polesskaya OO, Aston C, Sokolov BP (2006) Allele C-specific methylation of the 5-HT2A receptor gene: evidence for correlation with its expression and expression of DNA methylaseDNMT1. J Neurosci Res 83:362–373

    Article  CAS  PubMed  Google Scholar 

  58. Parsons MJ, D’Souza UM, Arranz M-J, Kerwin RW, Makoff AJ (2004) The –1438A/G polymorphism in the 5-hydroxytryptamine type 2A receptor gene affects promoter activity. Biol Psychiatry 56:406–410

    Article  CAS  PubMed  Google Scholar 

  59. Hazelwood LA, Sanders-Bush E (2004) His452Tyr polymorphism in the human 5-HT2A receptor destabilizes the Signaling conformation. Mol Pharmacol 66:1293–1300

    Article  CAS  PubMed  Google Scholar 

  60. Bunzel R, Blümcke I, Cichon S, Normann S, Schramm J, Propping P, Nöthen MM (1998) Polymorphic imprinting of the serotonin-2A (5-HT2A) receptor gene in human adult brain. Mol Brain Res 59:90–92

    Article  CAS  PubMed  Google Scholar 

  61. Lieberman JA, Mailman RB, Duncan G, Sikich L, Chakos M, Nichols DE, Kraus JE (1998) Serotonergic basis of antipsychotic drug effects in schizophrenia. Biol Psychiatry 44:1099–1117

    Article  CAS  PubMed  Google Scholar 

  62. Veenstra-VanderWeele J, Anderson GM, Cook EH (2000) Pharmacogenetics and the serotonin system: initial studies and future directions. Eur J Pharmacol 410:165–181

    Article  CAS  PubMed  Google Scholar 

  63. Lappalainen J, Long JC, Virkkunen M, Ozaki N, Goldman D, Linnoila M (1999) HTR2C Cys23Ser polymorphism in relation to CSF monoamine metabolite concentrations and DSM-III-R psychiatric diagnoses. Biol Psychiatry 46:821–826

    Article  CAS  PubMed  Google Scholar 

  64. Li J, Hashimoto H, Meltzer HY (2019) Association of serotonin2c receptor polymorphisms with antipsychotic drug response in schizophrenia. Front Psych 10:58

    Article  Google Scholar 

  65. Lane H-Y, Lin C-C, Huang C-H, Chang Y-C, Hsu S-K, Chang W-H (2004) Risperidone response and 5-HT6 receptor gene variance: genetic association analysis with adjustment for nongenetic confounders. Schizophr Res 67:63–70

    Article  PubMed  Google Scholar 

  66. Ikeda M, Yamanouchi Y, Kinoshita Y, Kitajima T, Yoshimura R, Hashimoto S, O’Donovan MC, Nakamura J, Ozaki N, Iwata N (2008) Variants of dopamine and serotonin candidate genes as predictors of response to risperidone treatment in first-episode schizophrenia. Pharmacogenomics 9:1437–1443

    Article  CAS  PubMed  Google Scholar 

  67. Zhou W, Chang W, Yan Y, Shen L, Li W, Yi Z, Qin S (2018) Pharmacogenetics analysis of serotonin receptor gene variants and clinical response to risperidone in Han Chinese schizophrenic patients. Neurosci Lett 683:202–206

    Article  CAS  PubMed  Google Scholar 

  68. Greenberg BD, Tolliver TJ, Huang S-J, Li Q, Bengel D, Murphy DL (1999) Genetic variation in the serotonin transporter promoter region affects serotonin uptake in human blood platelets. Am J Med Genet 88:83–87

    Article  CAS  PubMed  Google Scholar 

  69. Arranz MJ, Munro J, Birkett J et al (2000) Pharmacogenetic prediction of clozapine response. Lancet 355:1615–1616

    Article  CAS  PubMed  Google Scholar 

  70. Wang L, Yu L, He G et al (2007) Response of risperidone treatment may be associated with polymorphisms of HTT gene in Chinese schizophrenia patients. Neurosci Lett 414:1–4

    Article  CAS  PubMed  Google Scholar 

  71. Dolzan V, Serretti A, Mandelli L, Koprivsek J, Kastelic M, Plesnicar BK (2008) Acute antipsychotic efficacy and side effects in schizophrenia: association with serotonin transporter promoter genotypes. Prog Neuro-Psychopharmacol Biol Psychiatry 32:1562–1566

    Article  CAS  Google Scholar 

  72. Arranz MJ, Bolonna AA, Munro J, Curtis CJ, Collier DA, Kerwin RW (2000) The serotonin transporter and clozapine response. Mol Psychiatry 5:124–125

    Article  CAS  PubMed  Google Scholar 

  73. Tsai S-J, Ouyang W-C, Hong C-J (2002) Association for serotonin transporter gene variable number tandem repeat polymorphism and schizophrenic disorders. Neuropsychobiology 45:131–133

    Article  CAS  PubMed  Google Scholar 

  74. Kaiser R, Tremblay P-B, Schmider J, Henneken M, Dettling M, Müller-Oerlinghausen B, Uebelhack R, Roots I, Brockmöller J (2001) Serotonin transporter polymorphisms: no association with response to antipsychotic treatment, but associations with the schizoparanoid and residual subtypes of schizophrenia. Mol Psychiatry 6:179–185

    Article  CAS  PubMed  Google Scholar 

  75. Lachman HM, Papolos DF, Saito T, Yu Y-M, Szumlanski CL, Weinshilboum RM (1996) Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics 6:243–250

    Article  CAS  PubMed  Google Scholar 

  76. Illi A, Mattila KM, Kampman O, Anttila S, Roivas M, Lehtimäki T, Leinonen E (2003) Catechol-O-methyltransferase and monoamine oxidase A genotypes and drug response to conventional neuroleptics in schizophrenia. J Clin Psychopharmacol 23:429–434

    Article  CAS  PubMed  Google Scholar 

  77. Illi A, Kampman O, Hänninen K, Anttila S, Mattila KM, Katila H, Rontu R, Hurme M, Lehtimäki T, Leinonen E (2007) Catechol-O-methyltransferase val108/158met genotype and response to antipsychotic medication in schizophrenia. Hum Psychopharmacol Clin Exp 22:211–215

    Article  CAS  Google Scholar 

  78. Woodward N, Jayathilake K, Meltzer H (2007) COMT val108/158met genotype, cognitive function, and cognitive improvement with clozapine in schizophrenia. Schizophr Res 90:86–96

    Article  PubMed  Google Scholar 

  79. Weickert TW, Goldberg TE, Mishara A, Apud JA, Kolachana BS, Egan MF, Weinberger DR (2004) Catechol-O-methyltransferase val108/158met genotype predicts working memory response to antipsychotic medications. Biol Psychiatry 56:677–682

    Article  CAS  PubMed  Google Scholar 

  80. Bertolino A, Caforio G, Blasi G, Rampino A, Sinibaldi L, Douzgou S, Nardini M, Weinberger DR, Dallapiccola B (2007) COMT Val158Met polymorphism predicts negative symptoms response to treatment with olanzapine in schizophrenia. Schizophr Res 95:253–255

    Article  PubMed  Google Scholar 

  81. Huang E, Zai CC, Lisoway A et al (2016) Catechol-O-methyltransferase Val158Met polymorphism and clinical response to antipsychotic treatment in schizophrenia and schizo-affective disorder patients: a meta-analysis. Int J Neuropsychopharmacol 19:yv132

    Article  Google Scholar 

  82. Baggio LL, Drucker DJ (2014) Glucagon-like peptide-1 receptors in the brain: controlling food intake and body weight. J Clin Invest 124:4223–4226

    Article  PubMed  PubMed Central  Google Scholar 

  83. Ramsey TL, Brennan MD (2014) Glucagon-like peptide 1 receptor (GLP1R) haplotypes correlate with altered response to multiple antipsychotics in the CATIE trial. Schizophr Res 160:73–79

    Article  PubMed  PubMed Central  Google Scholar 

  84. Müller DJ, De Luca V, Sicard T et al (2005) Suggestive association between the C825T polymorphism of the G-protein β3 subunit gene (GNB3) and clinical improvement with antipsychotics in schizophrenia. Eur Neuropsychopharmacol 15:525–531

    Article  PubMed  Google Scholar 

  85. Kohlrausch FB, Salatino-Oliveira A, Gama CS, Lobato MI, Belmonte-de-Abreu P, Hutz MH (2008) G-protein gene 825C>T polymorphism is associated with response to clozapine in Brazilian schizophrenics. Pharmacogenomics 9:1429–1436

    Article  CAS  PubMed  Google Scholar 

  86. Ujike H, Nomura A, Morita Y, Morio A, Okahisa Y, Kotaka T, Kodama M, Ishihara T, Kuroda S (2008) Multiple genetic factors in olanzapine-induced weight gain in schizophrenia patients. J Clin Psychiatry 69:1416–1422

    Article  CAS  PubMed  Google Scholar 

  87. Bishop JR, Ellingrod VL, Moline J, Miller D (2006) Pilot study of the G-protein beta3 subunit gene (C825T) polymorphism and clinical response to olanzapine or olanzapine-related weight gain in persons with schizophrenia. Med Sci Monit 12:BR47–BR50

    CAS  PubMed  Google Scholar 

  88. Anttila S, Kampman O, Illi A, Rontu R, Lehtimäki T, Leinonen E (2007) Association between 5-HT2A, TPH1 and GNB3 genotypes and response to typical neuroleptics: a serotonergic approach. BMC Psychiatry 7:22

    Article  PubMed  PubMed Central  Google Scholar 

  89. Siffert W, Rosskopf D, Siffert G et al (1998) Association of a human G-protein β3 subunit variant with hypertension. Nat Genet 18:45–48

    Article  CAS  PubMed  Google Scholar 

  90. Poo M-M (2001) Neurotrophins as synaptic modulators. Nat Rev Neurosci 2:24–32

    Article  CAS  PubMed  Google Scholar 

  91. Nurjono M, Lee J, Chong S-A (2012) A review of brain-derived neurotrophic factor as a candidate biomarker in schizophrenia. Clin Psychopharmacol Neurosci 10:61–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chen Z-Y (2004) Variant brain-derived neurotrophic factor (BDNF) (Met66) alters the intracellular trafficking and activity-dependent secretion of wild-type BDNF in neurosecretory cells and cortical neurons. J Neurosci 24:4401–4411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chiaruttini C, Vicario A, Li Z, Baj G, Braiuca P, Wu Y, Lee FS, Gardossi L, Baraban JM, Tongiorgi E (2009) Dendritic trafficking of BDNF mRNA is mediated by translin and blocked by the G196A (Val66Met) mutation. Proc Natl Acad Sci 106:16481–16486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang J-P, Lencz T, Geisler S, DeRosse P, Bromet EJ, Malhotra AK (2013) Genetic variation in BDNF is associated with antipsychotic treatment resistance in patients with schizophrenia. Schizophr Res 146:285–288

    Article  PubMed  PubMed Central  Google Scholar 

  95. Zai GCM, Zai CCH, Chowdhury NI, Tiwari AK, Souza RP, Lieberman JA, Meltzer HY, Potkin SG, Müller DJ, Kennedy JL (2012) The role of brain-derived neurotrophic factor (BDNF) gene variants in antipsychotic response and antipsychotic-induced weight gain. Prog Neuro-Psychopharmacol Biol Psychiatry 39:96–101

    Article  CAS  Google Scholar 

  96. Anttila S, Illi A, Kampman O, Mattila KM, Lehtimäki T, Leinonen E (2005) Lack of association between two polymorphisms of brain-derived neurotrophic factor and response to typical neuroleptics. J Neural Transm 112:885–890

    Article  CAS  PubMed  Google Scholar 

  97. Hong C-J, Yu YW-Y, Lin C-H, Tsai S-J (2003) An association study of a brain-derived neurotrophic factor Val66Met polymorphism and clozapine response of schizophrenic patients. Neurosci Lett 349:206–208

    Article  CAS  PubMed  Google Scholar 

  98. Han M, Deng C (2020) BDNF as a pharmacogenetic target for antipsychotic treatment of schizophrenia. Neurosci Lett 726:133870

    Article  CAS  PubMed  Google Scholar 

  99. Li M, Luo X-J, Xiao X, Shi L, Liu X-Y, Yin L, Diao H-B, Su B (2011) Allelic differences between Han Chinese and Europeans for functional variants in ZNF804A and their association with schizophrenia. Am J Psychiatr 168:1318–1325

    Article  PubMed  Google Scholar 

  100. Riley B, Thiselton D, Maher BS et al (2010) Replication of association between schizophrenia and ZNF804A in the Irish Case–Control Study of Schizophrenia sample. Mol Psychiatry 15:29–37

    Article  CAS  PubMed  Google Scholar 

  101. Xiao B, Li W, Zhang H et al (2011) To the editor: Association of ZNF804A polymorphisms with schizophrenia and antipsychotic drug efficacy in a Chinese Han population. Psychiatry Res 190:379–381

    Article  CAS  PubMed  Google Scholar 

  102. Zhang J, Wu X, Diao F, Gan Z, Zhong Z, Wei Q, Guan N (2012) Association analysis of ZNF804A (zinc finger protein 804A) rs1344706 with therapeutic response to atypical antipsychotics in first-episode Chinese patients with schizophrenia. Compr Psychiatry 53:1044–1048

    Article  PubMed  Google Scholar 

  103. Mössner R, Schuhmacher A, Wagner M, Lennertz L, Steinbrecher A, Quednow BB, Rujescu D, Rietschel M, Maier W (2012) The schizophrenia risk gene ZNF804A influences the antipsychotic response of positive schizophrenia symptoms. Eur Arch Psychiatry Clin Neurosci 262:193–197

    Article  PubMed  Google Scholar 

  104. Yu H, Yan H, Wang L et al (2018) Five novel loci associated with antipsychotic treatment response in patients with schizophrenia: a genome-wide association study. Lancet Psychiatry 5:327–338

    Article  PubMed  Google Scholar 

  105. Allen JD, Bishop JR (2019) A systematic review of genome-wide association studies of antipsychotic response. Pharmacogenomics 20:291–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Clark SL, Souza RP, Adkins DE, Åberg K, Bukszár J, McClay JL, Sullivan PF, van den Oord EJCG (2013) Genome-wide association study of patient-rated and clinician-rated global impression of severity during antipsychotic treatment. Pharmacogenet Genomics 23:69–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Stevenson JM, Reilly JL, Harris MSH et al (2016) Antipsychotic pharmacogenomics in first episode psychosis: a role for glutamate genes. Transl Psychiatry 6:e739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Li J, Loebel A, Meltzer HY (2018) Identifying the genetic risk factors for treatment response to lurasidone by genome-wide association study: a meta-analysis of samples from three independent clinical trials. Schizophr Res 199:203–213

    Article  PubMed  Google Scholar 

  109. Drago A, Giegling I, Schäfer M, Hartmann AM, Konte B, Friedl M, Serretti A, Rujescu D (2014) Genome-wide association study supports the role of the immunological system and of the neurodevelopmental processes in response to haloperidol treatment. Pharmacogenet Genomics 24:314

    Article  CAS  PubMed  Google Scholar 

  110. Lisoway AJ, Chen CC, Zai CC, Tiwari AK, Kennedy JL (2021) Toward personalized medicine in schizophrenia: genetics and epigenetics of antipsychotic treatment. Schizophr Res 232:112–124

    Article  CAS  PubMed  Google Scholar 

  111. Murray GK, Lin T, Austin J, McGrath JJ, Hickie IB, Wray NR (2021) Could polygenic risk scores be useful in psychiatry?: a review. JAMA Psychiat 78:210–219

    Article  Google Scholar 

  112. Zhang J-P, Robinson D, Yu J et al (2019) Schizophrenia polygenic risk score as a predictor of antipsychotic efficacy in first-episode psychosis. Am J Psychiatry 176:21–28

    Article  PubMed  Google Scholar 

  113. Ruderfer DM, Charney AW, Readhead B et al (2016) Polygenic overlap between schizophrenia risk and antipsychotic response: a genomic medicine approach. Lancet Psychiatry 3:350–357

    Article  PubMed  PubMed Central  Google Scholar 

  114. Meier SM, Agerbo E, Maier R et al (2016) High loading of polygenic risk in cases with chronic schizophrenia. Mol Psychiatry 21:969–974

    Article  CAS  PubMed  Google Scholar 

  115. Cramer JA, Rosenheck R (1998) Compliance with medication regimens for mental and physical disorders. Psychiatr Serv 49:196–201

    Article  CAS  PubMed  Google Scholar 

  116. Kampman O, Laippala P, Väänänen J, Koivisto E, Kiviniemi P, Kilkku N, Lehtinen K (2002) Indicators of medication compliance in first-episode psychosis. Psychiatry Res 110:39–48

    Article  PubMed  Google Scholar 

  117. Citrome L, Holt RIG, Walker DJ, Hoffmann VP (2011) Weight gain and changes in metabolic variables following olanzapine treatment in schizophrenia and bipolar disorder. Clin Drug Investig 31:455–482

    Article  CAS  PubMed  Google Scholar 

  118. Lett TAP, Wallace TJM, Chowdhury NI, Tiwari AK, Kennedy JL, Müller DJ (2012) Pharmacogenetics of antipsychotic-induced weight gain: review and clinical implications. Mol Psychiatry 17:242–266

    Article  CAS  PubMed  Google Scholar 

  119. Zhang J-P, Malhotra AK (2013) Pharmacogenetics of antipsychotics: recent progress and methodological issues. Expert Opin Drug Metab Toxicol 9:183–191

    Article  CAS  PubMed  Google Scholar 

  120. Sicard MN, Zai CC, Tiwari AK, Souza RP, Meltzer HY, Lieberman JA, Kennedy JL, Müller DJ (2010) Polymorphisms of the HTR2C gene and antipsychotic-induced weight gain: an update and meta-analysis. Pharmacogenomics 11:1561–1571

    Article  CAS  PubMed  Google Scholar 

  121. Hill MJ, Reynolds GP (2011) Functional consequences of two HTR2C polymorphisms associated with antipsychotic-induced weight gain. Pharmacogenomics 12:727–734

    Article  CAS  PubMed  Google Scholar 

  122. Wallace TJ, Zai CC, Brandl EJ, Müller DJ (2011) Role of 5-HT(2C) receptor gene variants in antipsychotic-induced weight gain. Pharmgenomics Pers Med 4:83–93

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Trevaskis JL, Butler AA (2005) Double leptin and melanocortin-4 receptor gene mutations have an additive effect on fat mass and are associated with reduced effects of leptin on weight loss and food intake. Endocrinology 146:4257–4265

    Article  CAS  PubMed  Google Scholar 

  124. Czerwensky F, Leucht S, Steimer W (2013) MC4R rs489693: a clinical risk factor for second generation antipsychotic-related weight gain? Int J Neuropsychopharmacol 16:2103–2109

    Article  CAS  PubMed  Google Scholar 

  125. Czerwensky F, Leucht S, Steimer W (2013) Association of the common MC4R rs17782313 polymorphism with antipsychotic-related weight gain. J Clin Psychopharmacol 33:74–79

    Article  CAS  PubMed  Google Scholar 

  126. Meyre D, Delplanque J, Chèvre J-C et al (2009) Genome-wide association study for early-onset and morbid adult obesity identifies three new risk loci in European populations. Nat Genet 41:157–159

    Article  CAS  PubMed  Google Scholar 

  127. Brandl EJ, Frydrychowicz C, Tiwari AK et al (2012) Association study of polymorphisms in leptin and leptin receptor genes with antipsychotic-induced body weight gain. Prog Neuro-Psychopharmacol Biol Psychiatry 38:134–141

    Article  CAS  Google Scholar 

  128. Hoffstedt J, Eriksson P, Mottagui-Tabar S, Arner P (2002) A polymorphism in the leptin promoter region (-2548 G/A) influences gene expression and adipose tissue secretion of leptin. Horm Metab Res 34:355–359

    Article  CAS  PubMed  Google Scholar 

  129. Waterhouse EG, Xu B (2013) The skinny on brain-derived neurotrophic factor: evidence from animal models to GWAS. J Mol Med 91:1241–1247

    Article  CAS  PubMed  Google Scholar 

  130. Beckers S, Peeters A, Zegers D, Mertens I, Van Gaal L, Van Hul W (2008) Association of the BDNF Val66Met variation with obesity in women. Mol Genet Metab 95:110–112

    Article  CAS  PubMed  Google Scholar 

  131. Lane H-Y, Liu Y-C, Huang C-L, Chang Y-C, Wu P-L, Lu C-T, Chang W-H (2006) Risperidone-related weight gain: genetic and nongenetic predictors. J Clin Psychopharmacol 26:128–134

    Article  CAS  PubMed  Google Scholar 

  132. Zhang XY, Zhou DF, Wu GY, Cao LY, Tan YL, Haile CN, Li J, Lu L, Kosten TA, Kosten TR (2008) BDNF levels and genotype are associated with antipsychotic-induced weight gain in patients with chronic schizophrenia. Neuropsychopharmacology 33:2200–2205

    Article  CAS  PubMed  Google Scholar 

  133. Margolese HC, Chouinard G, Kolivakis TT, Beauclair L, Miller R, Annable L (2005) Tardive dyskinesia in the era of typical and atypical antipsychotics. Part 2: incidence and management strategies in patients with schizophrenia. Can J Psychiatry 50:703–714

    Article  PubMed  Google Scholar 

  134. Kane JM (1982) Research diagnoses for tardive dyskinesia. Arch Gen Psychiatry 39:486

    Article  PubMed  Google Scholar 

  135. Guy W (1976) ECDEU assessment manual for psychopharmacology, revised 1976. National Institutes of Mental Health, Rockville

    Google Scholar 

  136. Lee H-J, Kang S-G (2011) Genetics of tardive dyskinesia. Int Rev Neurobiol 98:231–264

    Article  CAS  PubMed  Google Scholar 

  137. Müller DJ, Shinkai T, De Luca V, Kennedy JL (2004) Clinical implications of pharmacogenomics for tardive dyskinesia. Pharmacogenomics J 4:77–87

    Article  PubMed  Google Scholar 

  138. Fleeman N, Dundar Y, Dickson R, Jorgensen A, Pushpakom S, McLeod C, Pirmohamed M, Walley T (2011) Cytochrome P450 testing for prescribing antipsychotics in adults with schizophrenia: systematic review and meta-analyses. Pharmacogenomics J 11:1–14

    Article  CAS  PubMed  Google Scholar 

  139. Loonen AJM, Ivanova SA (2013) New insights into the mechanism of drug-induced dyskinesia. CNS Spectr 18:15–20

    Article  PubMed  Google Scholar 

  140. Zai CC, De Luca V, Hwang RW, Voineskos A, Müller DJ, Remington G, Kennedy JL (2007) Meta-analysis of two dopamine D2 receptor gene polymorphisms with tardive dyskinesia in schizophrenia patients. Mol Psychiatry 12:794–795

    Article  CAS  PubMed  Google Scholar 

  141. Pohjalainen T, Rinne JO, Någren K, Lehikoinen P, Anttila K, Syvälahti EKG, Hietala J (1998) The A1 allele of the human D2 dopamine receptor gene predicts low D2 receptor availability in healthy volunteers. Mol Psychiatry 3:256–260

    Article  CAS  PubMed  Google Scholar 

  142. Ritchie T, Noble EP (2003) Association of seven polymorphisms of the D2 dopamine receptor gene with brain receptor-binding characteristics. Neurochem Res 28:73–82

    Article  CAS  PubMed  Google Scholar 

  143. Bakker PR, van Harten PN, van Os J (2008) Antipsychotic-induced tardive dyskinesia and polymorphic variations in COMT, DRD2, CYP1A2 and MnSOD genes: a meta-analysis of pharmacogenetic interactions. Mol Psychiatry 13:544–556

    Article  CAS  PubMed  Google Scholar 

  144. Steen VM, Løvlie R, MacEwan T, McCreadie RG (1997) Dopamine D3-receptor gene variant and susceptibility to tardive dyskinesia in schizophrenic patients. Mol Psychiatry 2:139–145

    Article  CAS  PubMed  Google Scholar 

  145. Basile V (1999) Association of the MscI polymorphism of the dopamine D3 receptor gene with tardive dyskinesia in schizophrenia. Neuropsychopharmacology 21:17–27

    Article  CAS  PubMed  Google Scholar 

  146. Bakker PR, Roberto Bakker P, van Harten PN, van Os J (2006) Antipsychotic-induced tardive dyskinesia and the Ser9Gly polymorphism in the DRD3 gene: a meta analysis. Schizophr Res 83:185–192

    Article  PubMed  Google Scholar 

  147. Tsai H-T, North KE, West SL, Poole C (2010) The DRD3 rs6280 polymorphism and prevalence of tardive dyskinesia: a meta-analysis. Am J Med Genet B Neuropsychiatr Genet 153B:57–66

    CAS  PubMed  Google Scholar 

  148. Zai CC, Tiwari AK, De Luca V, Müller DJ, Bulgin N, Hwang R, Zai GC, King N, Voineskos AN, Meltzer HY (2009) Genetic study of BDNF, DRD3, and their interaction in tardive dyskinesia. Eur Neuropsychopharmacol 19:317–328

    Article  CAS  PubMed  Google Scholar 

  149. Lerer B, Segman RH, Tan E-C et al (2005) Combined analysis of 635 patients confirms an age-related association of the serotonin 2A receptor gene with tardive dyskinesia and specificity for the non-orofacial subtype. Int J Neuropsychopharmacol 8:411–425

    Article  CAS  PubMed  Google Scholar 

  150. Zai CC, Tiwari AK, Müller DJ et al (2010) The catechol-O-methyl-transferase gene in tardive dyskinesia. World J Biol Psychiatry 11:803–812

    Article  PubMed  Google Scholar 

  151. Harrison PJ, Tunbridge EM (2008) Catechol-O-methyltransferase (COMT): a gene contributing to sex differences in brain function, and to sexual dimorphism in the predisposition to psychiatric disorders. Neuropsychopharmacology 33:3037–3045

    Article  CAS  PubMed  Google Scholar 

  152. Greenbaum L, Alkelai A, Zozulinsky P, Kohn Y, Lerer B (2012) Support for association of HSPG2 with tardive dyskinesia in Caucasian populations. Pharmacogenomics J 12:513–520

    Article  CAS  PubMed  Google Scholar 

  153. Tsai H-T, Caroff SN, Miller DD, McEvoy J, Lieberman JA, North KE, Scott Stroup T, Sullivan PF (2009) A candidate gene study of tardive dyskinesia in the CATIE schizophrenia trial. Am J Med Genet B Neuropsychiatr Genet. https://doi.org/10.1002/ajmg.b.30981

  154. Zai CC, Tiwari AK, Mazzoco M et al (2013) Association study of the vesicular monoamine transporter gene SLC18A2 with tardive dyskinesia. J Psychiatr Res 47:1760–1765

    Article  PubMed  Google Scholar 

  155. Armstrong MJ, Miyasaki JM (2012) Evidence-based guideline: pharmacologic treatment of chorea in Huntington disease: report of the guideline development subcommittee of the American Academy of Neurology. Neurology 79:597–603

    Article  PubMed  PubMed Central  Google Scholar 

  156. Alvir JMJ, Lieberman JA, Safferman AZ, Schwimmer JL, Schaaf JA (1993) Clozapine-induced agranulocytosis -- incidence and risk factors in the United States. N Engl J Med 329:162–167

    Article  CAS  PubMed  Google Scholar 

  157. Uetrecht J, Zahid N, Tehim A, Mim Fu J, Rakhit S (1997) Structural features associated with reactive metabolite formation in clozapine analogues. Chem Biol Interact 104:117–129

    Article  CAS  PubMed  Google Scholar 

  158. Gerson SL, Meltzer H (1992) Mechanisms of clozapine-induced agranulocytosis. Drug Saf 7:17–25

    Article  PubMed  Google Scholar 

  159. Gründer G, Hippius H, Carlsson A (2009) The “atypicality” of antipsychotics: a concept re-examined and re-defined. Nat Rev Drug Discov 8:197–202

    Article  PubMed  Google Scholar 

  160. Meltzer HY (2012) Clozapine: balancing safety with superior antipsychotic efficacy. Clin Schizophr Relat Psychoses 6:134–144

    Article  PubMed  Google Scholar 

  161. Athanasiou MC, Dettling M, Cascorbi I et al (2011) Candidate gene analysis identifies a polymorphism in HLA-DQB1 associated with clozapine-induced agranulocytosis. J Clin Psychiatry 72:458–463

    Article  CAS  PubMed  Google Scholar 

  162. Yunis JJ, Corzo D, Salazar M, Lieberman JA, Howard A, Yunis EJ (1995) HLA associations in clozapine-induced agranulocytosis. Blood 86:1177–1183

    Article  CAS  PubMed  Google Scholar 

  163. Amar A, Segman RH, Shtrussberg S, Sherman L, Safirman C, Lerer B, Brautbar C (1998) An association between clozapine-induced agranulocytosis in schizophrenics and HLA-DQB1*0201. Int J Neuropsychopharmacol 1:41–44

    Article  CAS  PubMed  Google Scholar 

  164. Dettling M, Cascorbi I, Roots I, Mueller-Oerlinghausen B (2001) Genetic determinants of clozapine-induced agranulocytosis: recent results of HLA subtyping in a non-Jewish Caucasian sample. Arch Gen Psychiatry 58:93

    Article  CAS  PubMed  Google Scholar 

  165. Tiwari AK, Need AC, Lohoff FW et al (2014) Exome sequence analysis of Finnish patients with clozapine-induced agranulocytosis. Mol Psychiatry 19:403–405

    Article  CAS  PubMed  Google Scholar 

  166. Chowdhury NI, Remington G, Kennedy JL (2011) Genetics of antipsychotic-induced side effects and agranulocytosis. Curr Psychiatry Rep 13:156–165

    Article  PubMed  Google Scholar 

  167. Rajagopal V, Sundaresan L, Rajkumar AP, Chittybabu C, Kuruvilla A, Srivastava A, Balasubramanian P, Jacob KS, Jacob M (2014) Genetic association between the DRD4 promoter polymorphism and clozapine-induced sialorrhea. Psychiatr Genet 24:273–276

    Article  CAS  PubMed  Google Scholar 

  168. Bishop JR, Reilly JL, Harris MSH, Patel SR, Kittles R, Badner JA, Prasad KM, Nimgaonkar VL, Keshavan MS, Sweeney JA (2015) Pharmacogenetic associations of the type-3 metabotropic glutamate receptor (GRM3) gene with working memory and clinical symptom response to antipsychotics in first-episode schizophrenia. Psychopharmacology 232:145–154

    Article  CAS  PubMed  Google Scholar 

  169. Jose de Leon MD, Susce MT, Pan R-M, Fairchild M, Koch WH, Wedlund PJ (2005) The CYP2D6 poor metabolizer phenotype may be associated with risperidone adverse drug reactions and discontinuation. J Clin Psychiatry 66:15–27

    Article  PubMed  Google Scholar 

  170. Müller DJ, Brandl EJ, Hwang R, Tiwari AK, Sturgess JE, Zai CC, Lieberman JA, Kennedy JL, Richter MA (2012) The AmpliChip® CYP450 test and response to treatment in schizophrenia and obsessive compulsive disorder: a pilot study and focus on cases with abnormal CYP2D6 drug metabolism. Genet Test Mol Biomarkers 16:897–903

    Article  PubMed  Google Scholar 

  171. Dunbar L, Butler R, Wheeler A, Pulford J, Miles W, Sheridan J (2012) Clinician experiences of employing the AmpliChip® CYP450 test in routine psychiatric practice. J Psychopharmacol 26:390–397

    Article  PubMed  Google Scholar 

  172. Winner J, Allen JD, Altar CA, Spahic-Mihajlovic A (2013) Psychiatric pharmacogenomics predicts health resource utilization of outpatients with anxiety and depression. Transl Psychiatry 3:e242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Hall-Flavin DK, Winner JG, Allen JD, Jordan JJ, Nesheim RS, Snyder KA, Drews MS, Eisterhold LL, Biernacka JM, Mrazek DA (2012) Using a pharmacogenomic algorithm to guide the treatment of depression. Transl Psychiatry 2:e172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. McKnight C, Guirgis H, Votolato N (2011) Clozapine rechallenge after excluding the high-risk clozapine-induced agranulocytosis genotype of HLA-DQB1 6672G>C. Am J Psychiatr 168:1120–1120

    Article  PubMed  Google Scholar 

  175. Gershon ES, Alliey-Rodriguez N (2013) New ethical issues for genetic counseling in common mental disorders. Am J Psychiatry 170:968–976

    Article  PubMed  Google Scholar 

  176. Whirl-Carrillo M, McDonagh EM, Hebert JM, Gong L, Sangkuhl K, Thorn CF, Altman RB, Klein TE (2012) Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther 92:414–417

    Article  CAS  PubMed  Google Scholar 

  177. Relling MV, Klein TE (2011) CPIC: clinical pharmacogenetics implementation consortium of the pharmacogenomics research network. Clin Pharmacol Ther 89:464–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Altman RB (2011) Pharmacogenomics: “noninferiority” is sufficient for initial implementation. Clin Pharmacol Ther 89:348–350

    Article  CAS  PubMed  Google Scholar 

  179. Mrazek DA, Lerman C (2011) Facilitating clinical implementation of pharmacogenomics. JAMA 306:304–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Kirchheiner J, Fuhr U, Brockmöller J (2005) Pharmacogenetics-based therapeutic recommendations--ready for clinical practice? Nat Rev Drug Discov 4:639–647

    Article  CAS  PubMed  Google Scholar 

  181. Huddart R, Sangkuhl K, Whirl-Carrillo M, Klein TE (2019) Are randomized controlled trials necessary to establish the value of implementing pharmacogenomics in the clinic? Clin Pharmacol Ther 106:284–286

    Article  PubMed  Google Scholar 

  182. Volpi S, Potkin SG, Malhotra AK, Licamele L, Lavedan C (2009) Applicability of a genetic signature for enhanced iloperidone efficacy in the treatment of schizophrenia. J Clin Psychiatry 70:801–809

    Article  CAS  PubMed  Google Scholar 

  183. Tunis SR, Stryer DB, Clancy CM (2003) Practical clinical trials: increasing the value of clinical research for decision making in clinical and health policy. JAMA 290:1624–1632

    Article  CAS  PubMed  Google Scholar 

  184. Müller DJ, Kekin I, Kao ACC, Brandl EJ (2013) Towards the implementation of CYP2D6 and CYP2C19 genotypes in clinical practice: update and report from a pharmacogenetic service clinic. Int Rev Psychiatry 25:554–571

    Article  PubMed  Google Scholar 

  185. Herbert D, Neves-Pereira M, Baidya R et al (2018) Genetic testing as a supporting tool in prescribing psychiatric medication: design and protocol of the IMPACT study. J Psychiatr Res 96:265–272

    Article  PubMed  Google Scholar 

  186. Müller DJ, De Luca V, Kennedy JL (2003) Overview: towards individualized treatment in schizophrenia. Drug Dev Res 60:75–94

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Elsheikh, S.S.M., Müller, D.J., Pouget, J.G. (2022). Pharmacogenetics of Antipsychotic Treatment in Schizophrenia. In: Yan, Q. (eds) Pharmacogenomics in Drug Discovery and Development. Methods in Molecular Biology, vol 2547. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2573-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2573-6_14

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2572-9

  • Online ISBN: 978-1-0716-2573-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics