Skip to main content

Advertisement

Log in

Genetics of Antipsychotic-induced Side Effects and Agranulocytosis

  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Antipsychotic medication has been enormously helpful in the treatment of psychotic symptoms during the past several decades. Unfortunately, several important side effects that can cause significant morbidity and mortality. The two most common are abnormal involuntary movements (tardive dyskinesia) and weight gain progressing through diabetes to metabolic syndrome. A more rare and life-threatening adverse effect is clozapine-induced agranulocytosis (CIA), which has been linked to clozapine use. Clozapine itself has a unique position among antipsychotic medications, representing the treatment of choice in refractory schizophrenia. Unfortunately, the potential risk of agranulocytosis, albeit small, prevents the widespread use of clozapine. Very few genetic determinants have been clearly associated with CIA due to small sample sizes and lack of replication in subsequent studies. The HLA system has been the main hypothesized region of interest in the study of CIA, and several gene variants in this region have been implicated, particularly variants of the HLA-DQB1 locus. A preliminary genome-wide association study has been conducted on a small sample for CIA, and a signal from the HLA region was noted. However, efforts to identify key gene mechanisms that will be useful in predicting antipsychotic side effects in the clinical setting have not been fully successful, and further studies with larger sample sizes are required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lencz T, Malhotra AK. Pharmacogenetics of antipsychotic-induced side effects. Dialogues Clin Neurosci. 2009;11:405–15.

    PubMed  Google Scholar 

  2. Gebhardt S, Theisen FM, Haberhausen M, et al. Body weight gain induced by atypical antipsychotics: an extension of the monozygotic twin and sib pair study. J Clin Pharm Ther. 2010;35(2):207–11.

    Article  PubMed  CAS  Google Scholar 

  3. Neville MJ, Johnstone EC, Walton RT. Identification and characterization of ANKK1: a novel kinase gene closely linked to DRD2 on chromosome band 11q23.1. Hum Mutat. 2004;23(6):540–5.

    Article  PubMed  CAS  Google Scholar 

  4. Zai CC, Romano-Silva MA, Hwang R, et al. Genetic study of eight AKT1 gene polymorphisms and their interaction with DRD2 gene polymorphisms in tardive dyskinesia. Schizophr Res. 2008;106(2–3):248–52.

    Article  PubMed  Google Scholar 

  5. Thompson J, Thomas N, Singleton A. et al,: D2 dopamine receptor gene (DRD2) Taq1A polymorphism: reduced dopamine D2 receptor binding in the human striatum associated with the A1 allele. Pharmacogenetics. 1997;7:479–84.

    Article  PubMed  CAS  Google Scholar 

  6. Pohjalainen T, Rinne JO, NÂgren K, et al. The A1 allele of the human D2 dopamine receptor gene predicts low D2 receptor availability in healthy volunteers. Mol Psychiatry. 1998;3:256–60.

    Article  PubMed  CAS  Google Scholar 

  7. Schwartz JC, Diaz J, Pilon C, Sokoloff P. Possible implications of the dopamine D receptor in schizophrenia and in antipsychotic drug actions. Brain Res Brain Res Rev. 2000;31:277–87.

    Article  PubMed  CAS  Google Scholar 

  8. Schwartz JC, Levesque D, Martres MP, et al. Dopamine D3 receptor: basic and clinical aspects. Clin Neuropharmacol. 1993;16:295–314.

    Article  PubMed  CAS  Google Scholar 

  9. Badri F, Masellis M, Petronis A, et al. Dopamine and serotonin system genes may predict clinical response to clozapine. Proceedings of the 46th Annual Meeting of the American Society of Human Genetics, vol 59. San Francisco, American Journal of Human Genetics, 1996. p A247.

  10. Steen VM, Løvlie R, MacEwan T, et al. Dopamine D3-receptor gene variant and susceptibility to tardive dyskinesia in schizophrenic patients. Mol Psychiatry. 1997;2(2):139–45.

    Article  PubMed  CAS  Google Scholar 

  11. Basile V, Masellis M, Badri F, et al. Association of the MscI polymorphism of the dopamine D3 receptor gene with tardive dyskinesia in Schizophrenia. Neuropsychopharmacology. 1999;21(1):17–27.

    Article  PubMed  CAS  Google Scholar 

  12. Lerer B, Segman RH, Fangerau H, et al. Pharmacogenetics of tardive dyskinesia: combined analysis of 780 patients supports association with dopamine D3 receptor gene Ser9Gly polymorphism. Neuropsychopharmacology. 2002;27(1):105–19.

    Article  PubMed  CAS  Google Scholar 

  13. Szekeres G, Kéri S, Juhász A, et al. Role of dopamine D3 receptor (DRD3) and dopamine transporter (DAT) polymorphism in cognitive dysfunctions and therapeutic response to atypical antipsychotics in patients with schizophrenia. Am J Med Genet B Neuropsychiatr Genet. 2004;124B(1):1–5.

    Article  PubMed  Google Scholar 

  14. Lane HY, Hsu SK, Liu YC, et al. Dopamine D3 receptor Ser9Gly polymorphism and risperidone response. J Clin Psychopharmacol. 2005;25(1):6–11.

    Article  PubMed  CAS  Google Scholar 

  15. Tsai HT, North KE, West SL, et al. The DRD3 rs6280 polymorphism and prevalence of tardive dyskinesia: a meta-analysis. Am J Med Genet B Neuropsychiatr Genet. 2010;153B(1):57–66.

    PubMed  CAS  Google Scholar 

  16. Zai CC, Tiwari AK, De Luca V, et al. Genetic study of BDNF, DRD3, and their interaction in tardive dyskinesia. Eur Neuropsychopharmacol. 2009;19(5):317–28.

    Article  PubMed  CAS  Google Scholar 

  17. Männistö PT, Ulmanen I, Lundström K, et al. Characteristics of catechol O-methyl-transferase (COMT) and properties of selective COMT inhibitors. Prog Drug Res. 1992;39:291–350.

    PubMed  Google Scholar 

  18. Bakker PR, van Harten PN, van Os J. Antipsychotic-induced tardive dyskinesia and polymorphic variations in COMT, DRD2, CYP1A2 and MnSOD genes: a meta-analysis of pharmacogenetic interactions. Mol Psychiatry. 2008;13(5):544–56.

    Article  PubMed  CAS  Google Scholar 

  19. Hori H, Ohmori O, Shinkai T, et al. Manganese superoxide dismutase gene polymorphism and schizophrenia: relation to tardive dyskinesia. J Neuropsychopharmacology. 2000;23(2):170–7.

    Article  CAS  Google Scholar 

  20. Hitzeroth A, Niehaus DJ, Koen L, et al. Association between the MnSOD Ala-9 Val polymorphism and development of schizophrenia and abnormal involuntary movements in the Xhosa population. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31(3):664–72.

    Article  PubMed  CAS  Google Scholar 

  21. Kang SG, Choi JE, An H, et al. Manganese superoxide dismutase gene Ala- 9Val polymorphism might be related to the severity of abnormal involuntary movements in Korean schizophrenic patients. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(8):1844–7.

    Article  PubMed  CAS  Google Scholar 

  22. Zai CC, Tiwari AK, Basile V, de Luca V, et al. Oxidative stress in tardive dyskinesia: genetic association study and meta-analysis of NADPH quinine oxidoreductase 1 (NQO1) and Superoxide dismutase 2 (SOD2, MnSOD) genes. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34(1):50–6.

    Article  PubMed  CAS  Google Scholar 

  23. Lerer B, Segman RH, Tan EC, et al. Combined analysis of 635 patients confirms an age-related association of the serotonin 2A receptor gene with tardive dyskinesia and specificity for the non-orofacial subtype. Int J Neuropsychopharmacol. 2005;8(3):411–25.

    Article  PubMed  CAS  Google Scholar 

  24. Basile VS, Ozdemir V, Masellis M, et al. Lack of association between serotonin-2A receptor gene (HTR2A) polymorphisms and tardive dyskinesia in schizophrenia. Mol Psychiatry. 2001;6(2):230–4.

    Article  PubMed  CAS  Google Scholar 

  25. Patsopoulos NA, Ntzani EE, Zintzaras E, et al. CYP2D6 polymorphisms and the risk of tardive dyskinesia in schizophrenia: a meta-analysis. Pharmacogenet Genomics. 2005;15(3):151–8.

    Article  PubMed  CAS  Google Scholar 

  26. Allison DB, Mentore JL, Heo M, et al. Antipsychotic-induced weight gain: a comprehensive research synthesis. Am J Psychiatry. 1999;156(11):1686–96.

    PubMed  CAS  Google Scholar 

  27. Müller DJ, Kennedy JL. Genetics of antipsychotic treatment emergent weight gain in schizophrenia. Pharmacogenomics. 2006;7(6):863–87.

    Article  PubMed  Google Scholar 

  28. Reynolds GP, Zhang ZJ, Zhang XB. Association of antipsychotic drug-induced weight gain with a 5-HT2C receptor gene polymorphism. Lancet. 2002;359(9323):2086–7.

    Article  PubMed  CAS  Google Scholar 

  29. De Luca V, Mueller DJ, de Bartolomeis A, et al. Association of the HTR2C gene and antipsychotic induced weight gain: a meta-analysis. Int J Neuropsychopharmacol. 2007;10(5):697–704.

    PubMed  Google Scholar 

  30. Sicard MN, Zai CC, Tiwari AK, et al. Polymorphisms of the HTR2C gene and antipsychotic-induced weight gain: an update and meta-analysis. Pharmacogenomics. 2010;11(11):1561–71.

    Article  PubMed  CAS  Google Scholar 

  31. Mammès O, Betoulle D, Aubert R, et al. Novel polymorphisms in the 59 region of the LEP gene: association with leptin levels and response to low-calorie diet in human obesity. Diabetes. 1998;47:487–9.

    Article  PubMed  Google Scholar 

  32. Templeman LA, Reynolds GP, Arranz B, et al. Polymorphisms of the 5-HT2C receptor and leptin genes are associated with antipsychotic drug-induced weight gain in Caucasian subjects with a first-episode psychosis. Pharmacogenet Genomics. 2005;15(4):195–200.

    Article  PubMed  CAS  Google Scholar 

  33. Zhang XY, Tan YL, Zhou DF, et al. Association of clozapine-induced weight gain with a polymorphism in the leptin promoter region in patients with chronic schizophrenia in a Chinese population. J Clin Psychopharmacol. 2007;27(3):246–51.

    Article  PubMed  Google Scholar 

  34. Sickert L, Müller DJ, Tiwari AK, et al. Association of the alpha 2A adrenergic receptor -1291C/G polymorphism and antipsychotic-induced weight gain in European-Americans. Pharmacogenomics. 2009;10(7):1169–76.

    Article  PubMed  CAS  Google Scholar 

  35. Risselada AJ, Vehof J, Bruggeman R, et al. Association between the 1291-C/G polymorphism in the adrenergic α-2a receptor and the metabolic syndrome. J Clin Psychopharmacol. 2010;30(6):667–71.

    Article  PubMed  CAS  Google Scholar 

  36. Mosyagin I, Cascorbi I, Schaub R, et al. Drug-induced agranulocytosis: impact of different fcgamma receptor polymorphisms? J Clin Psychopharmacol. 2005;25(5):435–40.

    Article  PubMed  CAS  Google Scholar 

  37. Flanagan RJ, Dunk L. Haematological toxicity of drugs used in psychiatry. Hum Psychopharmacol. 2008;1:27–41.

    Article  Google Scholar 

  38. Furst SM, Uetrecht JP. Carbamazepine metabolism to a reactive intermediate by the myeloperoxidase system of activated neutrophils. Biochem Pharmacol. 1993;45(6):1267–75.

    Article  PubMed  CAS  Google Scholar 

  39. Baldessarini RJ, Frankenburg FR. Clozapine. A novel antipsychotic agent. N Engl J Med. 1991;324(11):746–54.

    Article  PubMed  CAS  Google Scholar 

  40. Crilly J. The history of clozapine and its emergence in the US market: a review and analysis. Hist Psychiatry. 2007;18(1):39–60.

    Article  PubMed  Google Scholar 

  41. Meltzer H. Atypical antipsychotic drugs, Psychopharmacology: the Fourth Generation of Progress. New York: Raven; 1995.

    Google Scholar 

  42. Kane J, Honigfeld G, Singer J, et al. Clozapine for the treatment-resistant schizophrenic. A double-blind comparison with chlorpromazine. Arch Gen Psychiatry. 1988;45(9):789–96.

    PubMed  CAS  Google Scholar 

  43. Alvir JM, Lieberman JA, Safferman AZ, et al. Clozapine-induced agranulocytosis. Incidence and risk factors in the United States. N Engl J Med. 1993;329(3):162–7.

    Article  PubMed  CAS  Google Scholar 

  44. Ibáñez L, Vidal X, Ballarín E, et al. Population-based drug-induced agranulocytosis. Arch Intern Med. 2005;165(8):869–74.

    Article  PubMed  Google Scholar 

  45. Meltzer HY, Davidson M, Glassman AH, et al. Assessing cardiovascular risks versus clinical benefits of atypical antipsychotic drug treatment. J Clin Psychiatry. 2002;9:25–9.

    Google Scholar 

  46. Meltzer HY, Bastani B, Kwon KY, et al. A prospective study of clozapine in treatment-resistant schizophrenic patients. I. Preliminary report. Psychopharmacology. 1989;99(Suppl):S68–72.

    Article  PubMed  Google Scholar 

  47. Davis JM, Chen N, Glick ID. A meta-analysis of the efficacy of second-generation antipsychotics. Arch Gen Psychiatry. 2003;60(6):553–64.

    Article  PubMed  CAS  Google Scholar 

  48. Brenner HD, Dencker SJ, Goldstein MJ, et al. Defining treatment refractoriness in schizophrenia. Schizophr Bull. 1990;16(4):563–5.

    Google Scholar 

  49. Chung WH, Hung SI, Hong HS, et al. Medical genetics: a marker for Stevens-Johnson syndrome. Nature. 2004;428(6982):486.

    Article  PubMed  CAS  Google Scholar 

  50. Pereira A, Dean B. Clozapine bioactivation induces dose-dependent, drug-specific toxicity of human bone marrow stromal cells: a potential in vitro system for the study of agranulocytosis. Biochem Pharmacol. 2006;72(6):783–93.

    Article  PubMed  CAS  Google Scholar 

  51. Pirmohamed M, Kitteringham NR, et al. Polymorphism in gene for microsomal epoxide hydrolase and lung disease. Lancet. 1997;350(9090):1553–4.

    Article  PubMed  CAS  Google Scholar 

  52. Dettling M, Sachse C, Müller-Oerlinghausen B, et al. Clozapine-induced agranulocytosis and hereditary polymorphisms of clozapine metabolizing enzymes: no association with myeloperoxidase and cytochrome P4502D6. Pharmacopsychiatry. 2000;33(6):218–20.

    Article  PubMed  CAS  Google Scholar 

  53. Gardner I, Popović M, Zahid N, et al. A comparison of the covalent binding of clozapine, procainamide, and vesnarinone to human neutrophils in vitro and rat tissues in vitro and in vivo. Chem Res Toxicol. 2005;18(9):1384–94.

    Article  PubMed  CAS  Google Scholar 

  54. Hsuanyu Y, Dunford HB. Oxidation of clozapine and ascorbate by myeloperoxidase. Arch Biochem Biophys. 1999;368(2):413–20.

    Article  PubMed  CAS  Google Scholar 

  55. Mosyagin I, Dettling M, Roots I, et al. Impact of myeloperoxidase and NADPH-oxidase polymorphisms in drug-induced agranulocytosis. J Clin Psychopharmacol. 2004;24(6):613–7.

    Article  PubMed  CAS  Google Scholar 

  56. Husain Z, Almeciga I, Delgado JC, et al. Increased FasL expression correlates with apoptotic changes in granulocytes cultured with oxidized clozapine. Toxicol Appl Pharmacol. 2006;214(3):326–34.

    Article  PubMed  CAS  Google Scholar 

  57. de la Chapelle A, Kari C, Nurminen M, et al. Clozapine-induced agranulocytosis. A genetic and epidemiologic study. Hum Genet. 1977;37(2):183–94.

    Article  PubMed  Google Scholar 

  58. Amsler HA, Teerenhovi L, Barth E, et al. Agranulocytosis in patients treated with clozapine. A study of the Finnish epidemic. Acta Psychiatr Scand. 1977;56(4):241–8.

    Article  PubMed  CAS  Google Scholar 

  59. Lieberman JA, Yunis J, Egea E, et al. HLA-B38, DR4, DQw3 and clozapine-induced agranulocytosis in Jewish patients with schizophrenia. Arch Gen Psychiatry. 1990;47(10):945–8.

    PubMed  CAS  Google Scholar 

  60. Yunis JJ, Corzo D, Salazar M, Lieberman, et al. HLA associations in clozapine-induced agranulocytosis. Blood. 1995;86(3):1177–83.

    PubMed  CAS  Google Scholar 

  61. Valevski A, Klein T, Gazit E, et al. HLA-B38 and clozapine-induced agranulocytosis in Israeli Jewish schizophrenic patients. European Journal of Immunogenetics: Official Journal of the British Society for Histocompatibility and Immunogenetics. 1998;25(1):11–3.

    CAS  Google Scholar 

  62. Amar A, Segman RH, Shtrussberg S, et al. An association between clozapine-induced agranulocytosis in schizophrenics and HLA-DQB1*0201. Int J Neuropsychopharmacol. 1998;1(1):41–4.

    Article  PubMed  CAS  Google Scholar 

  63. Dettling M, Schaub RT, Mueller-Oerlinghausen B, et al. Further evidence of human leukocyte antigen-encoded susceptibility to clozapine-induced agranulocytosis independent of ancestry. Pharmacogenetics. 2001;11(2):135–41.

    Article  PubMed  CAS  Google Scholar 

  64. Dettling M, Cascorbi I, Opgen-Rhein C, et al. Clozapine-induced agranulocytosis in schizophrenic Caucasians: confirming clues for associations with human leukocyte class I and II antigens. Pharmacogenomics J. 2007;7(5):325–32.

    Article  PubMed  CAS  Google Scholar 

  65. Miretti MM, Walsh EC, Ke X, et al. A high-resolution linkage-disequilibrium map of the human major histocompatibility complex and first generation of tag single-nucleotide polymorphisms. Am J Hum Genet. 2005;76(4):634–46.

    Article  PubMed  CAS  Google Scholar 

  66. Opgen-Rhein C, Dettling M. Clozapine-induced agranulocytosis and its genetic determinants. Pharmacogenomics. 2008;9(8):1101–11.

    Article  PubMed  CAS  Google Scholar 

  67. Yokoyama T, Hyodo M, Hosoya Y, et al. Aggressive G-CSF-producing gastric cancer complicated by lung and brain abscesses, mimicking metastases. Gastric Cancer. 2005;8(3):198–201.

    Article  PubMed  CAS  Google Scholar 

  68. Hägg S, Rosenius S, Spigset O. Long-term combination treatment with clozapine and filgrastim in patients with clozapine-induced agranulocytosis. Int Clin Psychopharmacol. 2003;18(3):173–4.

    Article  PubMed  Google Scholar 

  69. Lamberti JS, Bellnier TJ, Schwarzkopf SB. Filgrastim treatment of three patients with clozapine-induced agranulocytosis. J Clin Psychiatry. 1995;56(6):256–9.

    PubMed  CAS  Google Scholar 

  70. Nielsen H. Recombinant human granulocyte colony-stimulating factor (rhG-CSF; filgrastim) treatment of clozapine-induced agranulocytosis. J Intern Med. 1993;234(5):529–31.

    Article  PubMed  CAS  Google Scholar 

  71. Athanasiou MC, Cascorbi I, Mosyagin, et al. Candidate gene analysis identifies a polymorphism in HLA-DQB1 associated with clozapine-induced agranulocytosis. J Clin Psychiatry. doi:10.4088/JCP.09m05527yel.

  72. Corzo D, Yunis JJ, Salazar M, et al. The major histocompatibility complex region marked by HSP70-1 and HSP70-2 variants is associated with clozapine-induced agranulocytosis in two different ethnic groups. Blood. 1995;86(10):3835–40.

    PubMed  CAS  Google Scholar 

  73. Turbay D, Lieberman J, Alper CA, Delgado JC, Corzo D, Yunis JJ, et al. Tumor necrosis factor constellation polymorphism and clozapine-induced agranulocytosis in two different ethnic groups. Blood. 1997;89(11):4167–74.

    PubMed  CAS  Google Scholar 

  74. Daëron M. Fc receptor biology. Annu Rev Immunol. 1997;15:203–34.

    Article  PubMed  Google Scholar 

  75. Husain Z, Almeciga I, Delgado JC, et al. Increased FasL expression correlates with apoptotic changes in granulocytes cultured with oxidized clozapine. Toxicol Appl Pharmacol. 2006;214(3):326–34.

    Article  PubMed  CAS  Google Scholar 

  76. Liles WC, Dale DC, Klebanoff SJ. Glucocorticoids inhibit apoptosis of human neutrophils. Blood. 1995;86(8):3181–8.

    PubMed  CAS  Google Scholar 

  77. Nagata S, Golstein P. The Fas death factor. Science. 1995;267(5203):1449–56.

    Article  CAS  Google Scholar 

  78. Ostrousky O, Meged S, Loewenthal R, et al. NQO2 gene is associated with clozapine-induced agranulocytosis. Tissue Antigens. 2003;62(6):483–91.

    Article  PubMed  CAS  Google Scholar 

  79. xDettling M, Sachse C, Müller-Oerlinghausen B, et al. Clozapine-induced agranulocytosis and hereditary polymorphisms of clozapine metabolizing enzymes: no association with myeloperoxidase and cytochrome P4502D6. Pharmacopsychiatry. 2000;33(6):218–20.

    Article  PubMed  CAS  Google Scholar 

  80. Mosyagin I, Dettling M, Roots I, et al. Impact of myeloperoxidase and NADPH-oxidase polymorphisms in drug-induced agranulocytosis. J Clin Psychopharmacol. 2004;24(6):613–7.

    Article  PubMed  CAS  Google Scholar 

  81. Esposito D, Aouillé J, Rouillon F, et al. Two-year follow-up of a patient with successful continuation of clozapine treatment despite morning pseudoneutropenia. J Clin Psychiatry. 2004;65(9):1281.

    Article  PubMed  Google Scholar 

  82. Gründer G, Hippius H, Carlsson A. The ‘atypicality’ of antipsychotics: a concept re-examined and re-defined. Nat Rev Drug Discov. 2009;8(3):197–202.

    Article  PubMed  Google Scholar 

  83. Remington G, Kapur S. Atypical antipsychotics: are some more atypical than others? Psychopharmacology. 2000;148(1):3–15.

    Article  PubMed  CAS  Google Scholar 

  84. Opgen-Rhein C, Dettling M. Clozapine-induced agranulocytosis and its genetic determinants. Pharmacogenomics. 2008;9(8):1101–11.

    Article  PubMed  CAS  Google Scholar 

  85. Dettling M, Cascorbi I, Roots I, et al. Genetic determinants of clozapine-induced agranulocytosis: recent results of HLA subtyping in a non-jewish caucasian sample. B Arch Gen Psychiatry. 2001;58(1):93–4.

    Google Scholar 

Download references

Disclosure

Dr. Gary Remington states that he has no conflict of interest. Dr. James Kennedy has received funding from Eli Lilly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James L. Kennedy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chowdhury, N.I., Remington, G. & Kennedy, J.L. Genetics of Antipsychotic-induced Side Effects and Agranulocytosis. Curr Psychiatry Rep 13, 156–165 (2011). https://doi.org/10.1007/s11920-011-0185-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11920-011-0185-3

Keywords

Navigation