Skip to main content

Construction and Engineering of Large Biochemical Pathways via DNA Assembler

  • Protocol
  • First Online:
Synthetic Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1073))

Abstract

DNA assembler enables rapid construction and engineering of biochemical pathways in a one-step fashion by exploitation of the in vivo homologous recombination mechanism in Saccharomyces cerevisiae. It has many applications in pathway engineering, metabolic engineering, combinatorial biology, and synthetic biology. Here we use two examples including the zeaxanthin biosynthetic pathway and the aureothin biosynthetic gene cluster to describe the key steps in the construction of pathways containing multiple genes using the DNA assembler approach. Methods for construct design, pathway assembly, pathway confirmation, and functional analysis are shown. The protocol for fine genetic modifications such as site-directed mutagenesis for engineering the aureothin gene cluster is also illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hjersted JL, Henson MA, Mahadevan R (2007) Genome-scale analysis of Saccharomyces cerevisiae metabolism and ethanol production in fed-batch culture. Biotechnol Bioeng 97:1190–1204

    Article  CAS  Google Scholar 

  2. Keasling JD (2008) Synthetic biology for synthetic chemistry. ACS Chem Biol 3:64–76

    Article  CAS  Google Scholar 

  3. Menzella HG, Reid R et al (2005) Combinatorial polyketide biosynthesis by de novo design and rearrangement of modular polyketide synthase genes. Nat Biotechnol 23:1171–1176

    Article  CAS  Google Scholar 

  4. Pitera DJ, Paddon CJ et al (2007) Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Metab Eng 9:193–207

    Article  CAS  Google Scholar 

  5. Ro DK, Paradise EM et al (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943

    Article  CAS  Google Scholar 

  6. Szczebara FM, Chandelier C et al (2003) Total biosynthesis of hydrocortisone from a simple carbon source in yeast. Nat Biotechnol 21:143–149

    Article  CAS  Google Scholar 

  7. Dejong JM, Liu Y et al (2006) Genetic engineering of taxol biosynthetic genes in Saccharomyces cerevisiae. Biotechnol Bioeng 93:212–224

    Article  CAS  Google Scholar 

  8. Yan Y, Kohli A, Koffas MA (2005) Biosynthesis of natural flavanones in Saccharomyces cerevisiae. Appl Environ Microbiol 71:5610–5613

    Article  CAS  Google Scholar 

  9. Gunyuzlu PL, Hollis GF, Toyn JH (2001) Plasmid construction by linker-assisted homologous recombination in yeast. Biotechniques 31:1250–1252

    Google Scholar 

  10. Ma H, Kunes S et al (1987) Plasmid construction by homologous recombination in yeast. Gene 58:201–216

    Article  CAS  Google Scholar 

  11. Oldenburg KR, Vo KT et al (1997) Recombination-mediated PCR-directed plasmid construction in vivo in yeast. Nucleic Acids Res 25:451–452

    Article  CAS  Google Scholar 

  12. Raymond CK, Pownder TA, Sexson SL (1999) General method for plasmid construction using homologous recombination. Biotechniques 26(134–138):140–131

    Google Scholar 

  13. Shao Z, Zhao H, Zhao H (2009) DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res 37:e16

    Article  Google Scholar 

  14. Shao Z, Luo Y, Zhao H (2011) Rapid characterization and engineering of natural product biosynthetic pathways via DNA assembler. Mol Biosyst 7:1056–1059

    Article  CAS  Google Scholar 

  15. Dewick PM (2002) Medical natural products. A biosynthetic approach, 2nd edn. Wiley, Chichester, UK

    Google Scholar 

  16. Herbert RB (1989) The biosynthesis of secondary metabolites, 2nd edn. Chapman and Hall, London, UK

    Book  Google Scholar 

  17. Li JW, Vederas JC (2009) Drug discovery and natural products: end of an era or an endless frontier? Science 325:161–165

    Article  Google Scholar 

  18. Challis GL (2008) Mining microbial genomes for new natural products and biosynthetic pathways. Microbiology 154:1555–1569

    Article  CAS  Google Scholar 

  19. Zerikly M, Challis GL (2009) Strategies for the discovery of new natural products by genome mining. ChemBioChem 10:625–633

    Article  CAS  Google Scholar 

  20. Horton RM, Hunt HD et al (1989) Engineering hybrid genes without the use of restriction enzymes - gene-splicing by overlap extension. Gene 77:61–68

    Article  CAS  Google Scholar 

  21. Lee FW, Da Silva NA (1997) Sequential delta-integration for the regulated insertion of cloned genes in Saccharomyces cerevisiae. Biotechnol Prog 13:368–373

    Article  CAS  Google Scholar 

  22. Chemler JA, Yan Y, Koffas MA (2006) Biosynthesis of isoprenoids, polyunsaturated fatty acids and flavonoids in Saccharomyces cerevisiae. Microb Cell Fact 5:20

    Article  Google Scholar 

  23. Misawa N, Nakagawa M et al (1990) Elucidation of the Erwinia uredovora carotenoid biosynthetic pathway by functional analysis of gene products expressed in Escherichia coli. J Bacteriol 172:6704–6712

    CAS  Google Scholar 

  24. Misawa N, Shimada H (1997) Metabolic engineering for the production of carotenoids in non-carotenogenic bacteria and yeasts. J Biotechnol 59:169–181

    Article  CAS  Google Scholar 

  25. Kieser T, Bibb JM et al (2000) Practical streptomyces genetics. The John Innes Foundation, Norwich

    Google Scholar 

  26. Blodgett JA, Thomas PM et al (2007) Unusual transformations in the biosynthesis of the antibiotic phosphinothricin tripeptide. Nat Chem Biol 3:480–485

    Article  CAS  Google Scholar 

  27. Ito T, Roongsawang N et al (2009) Deciphering pactamycin biosynthesis and engineered production of new pactamycin analogues. ChemBioChem 10:2253–2265

    Article  CAS  Google Scholar 

  28. Karray F, Darbon E et al (2010) Regulation of the biosynthesis of the macrolide antibiotic spiramycin in Streptomyces ambofaciens. J Bacteriol 192:5813–5821

    Article  CAS  Google Scholar 

  29. Keatinge-Clay A (2008) Crystal structure of the erythromycin polyketide synthase dehydratase. J Mol Biol 384:941–953

    Article  CAS  Google Scholar 

  30. Moriguchi T, Kezuka Y et al (2010) Hidden function of catalytic domain in 6-methylsalicylic acid synthase for product release. J Biol Chem 285:15637–15643

    Article  CAS  Google Scholar 

  31. Pawlik K, Kotowska M et al (2007) A cryptic type I polyketide synthase (cpk) gene cluster in Streptomyces coelicolor A3(2). Arch Microbiol 187:87–99

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Shao, Z., Zhao, H. (2013). Construction and Engineering of Large Biochemical Pathways via DNA Assembler. In: Polizzi, K., Kontoravdi, C. (eds) Synthetic Biology. Methods in Molecular Biology, vol 1073. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-625-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-625-2_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-624-5

  • Online ISBN: 978-1-62703-625-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics