Skip to main content

Focused Ion Beam-Scanning Electron Microscopy for Investigating Plasmodesmal Densities

  • Protocol
  • First Online:
Plasmodesmata

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2457))

Abstract

Plasmodesmata (PD) facilitate the exchange of nutrients and signaling molecules between neighboring plant cells, and they are therefore essential for proper growth and development. PD have been studied extensively in efforts to elucidate the ultrastructure of individual PD nanopores and the distribution of PD in a variety of cell walls. These studies often involved the use of serial ultrathin sections and manual quantification of PD by transmission electron microscopy (TEM). In recent years, a variety of techniques that offer more amenable approaches for quantifying PD distribution have been reported. Here, we describe the quantification of PD densities using the serial scanning electron microscopy technique called focused ion beam-scanning electron microscopy (FIB-SEM). For this, resin-embedded samples prepared by standard TEM methods undergo successive rounds of imaging by SEM interspersed with milling of the sample surface by a focused beam of gallium ions to reveal a new surface. In this way, the details of the sample are sequentially revealed and imaged. Over the course of a few hours, repetitive milling and imaging facilitates the automated collection of nanometer-resolution data of several μm of sample depth. FIB-SEM can be targeted to interrogate specific cell walls and cell wall junctions, and the subsequent three-dimensional renderings of the data can be used to visualize the ultrastructural details of the sample. PD densities can then be rapidly quantified by calculating the number of PD per μm2 of cell wall observed in the renderings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guenoune-Gelbart D, Elbaum M, Sagi G, Levy A, Epel BL (2008) Tobacco mosaic virus (TMV) replicase and movement protein function synergistically in facilitating TMV spread by lateral diffusion in the plasmodesmal desmotubule of Nicotiana benthamiana. Mol Plant-Microbe Interact 21:335–345. https://doi.org/10.1094/MPMI-21-3-0335

    Article  CAS  PubMed  Google Scholar 

  2. Epel BL (2009) Plant viruses spread by diffusion on ER-associated movement-protein-rafts through plasmodesmata gated by viral induced host beta-1,3-glucanases. Semin Cell Dev Biol 20:1074–1081. https://doi.org/10.1016/j.semcdb.2009.05.010

    Article  CAS  PubMed  Google Scholar 

  3. Crawford KM, Zambryski PC (2001) Non-targeted and targeted protein movement through plasmodesmata in leaves in different developmental and physiological states. Plant Physiol 125:1802–1812

    Google Scholar 

  4. Schonknecht G, Brown JE, Verchot-Lubicz J (2008) Plasmodesmata transport of GFP alone or fused to potato virus X TGBp1 is diffusion driven. Protoplasma 232:143–152

    Google Scholar 

  5. Brunkard JO, Burch-Smith TM, Runkel AM, Zambryski P (2015) Investigating plasmodesmata genetics with virus-induced gene silencing and an agrobacterium-mediated GFP movement assay. Methods Mol Biol 1217:185–198. https://doi.org/10.1007/978-1-4939-1523-1_13

    Article  CAS  PubMed  Google Scholar 

  6. Nicolas WJ, Grison MS, Trepout S, Gaston A, Fouche M, Cordelieres FP, Oparka K, Tilsner J, Brocard L, Bayer EM (2017) Architecture and permeability of post-cytokinesis plasmodesmata lacking cytoplasmic sleeves. Nat Plants 3:17082. https://doi.org/10.1038/nplants.2017.82

    Article  CAS  PubMed  Google Scholar 

  7. Bell K, Oparka K (2011) Imaging plasmodesmata. Protoplasma 248:9–25. https://doi.org/10.1007/s00709-010-0233-6

    Article  PubMed  Google Scholar 

  8. Faulkner C, Akman OE, Bell K, Jeffree C, Oparka K (2008) Peeking into pit fields: a multiple twinning model of secondary plasmodesmata formation in tobacco. Plant Cell 20:1504–1518. https://doi.org/10.1105/tpc.107.056903

    Article  CAS  PubMed  Google Scholar 

  9. Ding B, Turgeon R, Parthasarathy MV (1992) Substructure of freeze-substituted plasmodesmata. Protoplasma 169:28–41

    Article  Google Scholar 

  10. Oparka KJ, Roberts AG, Boevink P, Santa Cruz S, Roberts I, Pradel KS, Imlau A, Kotlizky G, Sauer N, Epel B (1999) Simple, but not branched, plasmodesmata allow the nonspecific trafficking of proteins in developing tobacco leaves. Cell 97:743–754

    Google Scholar 

  11. Roberts IM, Boevink P, Roberts AG, Sauer N, Reichel C, Oparka KJ (2001) Dynamic changes in the frequency and architecture of plasmodesmata during the sink-source transition in tobacco leaves. Protoplasma 218:31–44

    Google Scholar 

  12. Burch-Smith TM, Zambryski PC (2010) Loss of INCREASED SIZE EXCLUSION LIMIT (ISE)1 or ISE2 increases the formation of secondary plasmodesmata. Curr Biol 20:989–993. https://doi.org/10.1016/j.cub.2010.03.064

    Article  CAS  PubMed  Google Scholar 

  13. Seagull RW (1983) Differences in the frequency and disposition of plasmodesmata resulting from root cell elongation. Planta 159:497–504. https://doi.org/10.1007/BF00409138

    Article  CAS  PubMed  Google Scholar 

  14. Danila FR, Quick WP, White RG, Furbank RT, von Caemmerer S (2016) The metabolite pathway between bundle sheath and mesophyll: quantification of plasmodesmata in leaves of C3 and C4 monocots. Plant Cell 28:1461–1471. https://doi.org/10.1105/tpc.16.00155

    Article  CAS  PubMed  Google Scholar 

  15. Zambryski P (1995) Plasmodesmata: plant channels for molecules on the move. Science 270:1943–1944

    Google Scholar 

  16. Dmitrieva VA, Ivanova AN, Tyutereva EV, Evkaikina AI, Klimova EA, Voitsekhovskaja OV (2017) Chlorophyllide-a-oxygenase (CAO) deficiency affects the levels of singlet oxygen and formation of plasmodesmata in leaves and shoot apical meristems of barley. Plant Signal Behav 12:e1300732. https://doi.org/10.1080/15592324.2017.1300732

    Article  CAS  PubMed  Google Scholar 

  17. Ganusova EE, Reagan BC, Fernandez JC, Azim MF, Sankoh AF, Freeman KM, McCray TN, Patterson K, Kim C, Burch-Smith TM (2020) Chloroplast-to-nucleus retrograde signalling controls intercellular trafficking via plasmodesmata formation. Philos Trans R Soc Lond Ser B Biol Sci 375:20190408. https://doi.org/10.1098/rstb.2019.0408

    Article  CAS  Google Scholar 

  18. Livingston LG (1935) The nature and distribution of plasmodesmata in the tobacco plant. Am J Bot 22:75–87. https://doi.org/10.1002/j.1537-2197.1935.tb05009.x

    Article  Google Scholar 

  19. Juniper BE, Barlow PW (1969) The distribution of plasmodesmata in the root tip of maize. Planta 89:352–360. https://doi.org/10.1007/BF00387235

    Article  CAS  PubMed  Google Scholar 

  20. Evert RF, Eschrich W, Heyser W (1977) Distribution and structure of the plasmodesmata in mesophyll and bundle-sheath cells of Zea mays L. Planta 136:77–89. https://doi.org/10.1007/BF00387929

    Article  CAS  PubMed  Google Scholar 

  21. Tilney LG, Cooke TJ, Connelly PS, Tilney MS (1991) The structure of plasmodesmata as revealed by plasmolysis, detergent extraction, and protease digestion. J Cell Biol 112:739–747

    Google Scholar 

  22. Schubert M, Koteyeva NK, Wabnitz PW, Santos P, Buttner M, Sauer N, Demchenko K, Pawlowski K (2011) Plasmodesmata distribution and sugar partitioning in nitrogen-fixing root nodules of Datisca glomerata. Planta 233:139–152. https://doi.org/10.1007/s00425-010-1285-8

    Article  CAS  PubMed  Google Scholar 

  23. Fitzgibbon J, Beck M, Zhou J, Faulkner C, Robatzek S, Oparka K (2013) A developmental framework for complex plasmodesmata formation revealed by large-scale imaging of the Arabidopsis leaf epidermis. Plant Cell 25:57–70. https://doi.org/10.1105/tpc.112.105890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ross-Elliott TJ, Jensen KH, Haaning KS, Wager BM, Knoblauch J, Howell AH, Mullendore DL, Monteith AG, Paultre D, Yan D, Otero S, Bourdon M, Sager R, Lee JY, Helariutta Y, Knoblauch M, Oparka KJ (2017) Phloem unloading in Arabidopsis roots is convective and regulated by the phloem-pole pericycle. eLife 6:e24125. https://doi.org/10.7554/eLife.24125

    Article  PubMed  PubMed Central  Google Scholar 

  25. Reagan BC, Kim PJ, Perry PD, Dunlap JR, Burch-Smith TM (2018) Spatial distribution of organelles in leaf cells and soybean root nodules revealed by focused ion beam-scanning electron microscopy. Funct Plant Biol 45:180–191. https://doi.org/10.1071/FP16347

    Article  CAS  PubMed  Google Scholar 

  26. Yan D, Yadav SR, Paterlini A, Nicolas WJ, Petit JD, Brocard L, Belevich I, Grison MS, Vaten A, Karami L, El-Showk S, Lee JY, Murawska GM, Mortimer J, Knoblauch M, Jokitalo E, Markham JE, Bayer EM, Helariutta Y (2019) Sphingolipid biosynthesis modulates plasmodesmal ultrastructure and phloem unloading. Nat Plants 5:604–615. https://doi.org/10.1038/s41477-019-0429-5

    Article  PubMed  PubMed Central  Google Scholar 

  27. Denk W, Horstmann H (2004) Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol 2:e329. https://doi.org/10.1371/journal.pbio.0020329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Deerinck TJ, Bushong EA, Lev-Ram V, Shu X, Tsien RY, Ellisman MH (2010) Enhancing serial block-face scanning electron microscopy to enable high resolution 3-D nanohistology of cells and tissues. Microsc Microanal 16:1138–1139. https://doi.org/10.1017/S1431927610055170

    Article  CAS  Google Scholar 

  29. Hughes L, Hawes C, Monteith S, Vaughan S (2014) Serial block face scanning electron microscopy—the future of cell ultrastructure imaging. Protoplasma 251:395–401. https://doi.org/10.1007/s00709-013-0580-1

    Article  PubMed  Google Scholar 

  30. Kremer A, Lippens S, Bartunkova S, Asselbergh B, Blanpain C, Fendrych M, Goossens A, Holt M, Janssens S, Krols M, Larsimont JC, Mc Guire C, Nowack MK, Saelens X, Schertel A, Schepens B, Slezak M, Timmerman V, Theunis C, VAN Brempt R, Visser Y, Guerin CJ (2015) Developing 3D SEM in a broad biological context. J Microsc 259:80–96. https://doi.org/10.1111/jmi.12211

    Article  CAS  PubMed  Google Scholar 

  31. Kittelmann M, Hawes C, Hughes L (2016) Serial block face scanning electron microscopy and the reconstruction of plant cell membrane systems. J Microsc 263:200–211. https://doi.org/10.1111/jmi.12424

    Article  CAS  PubMed  Google Scholar 

  32. Paterlini A, Belevich I, Jokitalo E, Helariutta Y (2020) Computational tools for serial block electron microscopy reveal plasmodesmata distributions and wall environments. Plant Physiol 184:53–64. https://doi.org/10.1104/pp.20.00396

    Article  CAS  PubMed  Google Scholar 

  33. Milani M, Drobne D, Tatti F, Batani D, Poletti G, Orsini F, Zullini A, Zrimec A (2005) Read-out of soft X-ray contact microscopy microradiographs by focused ion beam/scanning electron microscope. Scanning 27:249–253

    Google Scholar 

  34. Drobne D, Milani M, Zrimec A, Zrimec MB, Tatti F, Draslar K (2005) Focused ion beam/scanning electron microscopy studies of Porcellio scaber (Isopoda, Crustacea) digestive gland epithelium cells. Scanning 27:30–34

    Google Scholar 

  35. Kremer JR, Mastronarde DN, McIntosh JR (1996) Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116:71–76. https://doi.org/10.1006/jsbi.1996.0013

    Article  CAS  PubMed  Google Scholar 

  36. Bobik K, Dunlap JR, Burch-Smith TM (2014) Tandem high-pressure freezing and quick freeze substitution of plant tissues for transmission electron microscopy. J Vis Exp 92:e51844. https://doi.org/10.3791/51844

    Article  CAS  Google Scholar 

  37. Lonsdale JE, McDonald KL, Jones RL (1999) High pressure freezing and freeze substitution reveal new aspects of fine structure and maintain protein antigenicity in barley aleurone cells. Plant J 17:221–229. https://doi.org/10.1046/j.1365-313X.1999.00362.x

    Article  CAS  Google Scholar 

  38. McDonald KL (2014) Out with the old and in with the new: rapid specimen preparation procedures for electron microscopy of sectioned biological material. Protoplasma 251:429–448. https://doi.org/10.1007/s00709-013-0575-y

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation through MCB 1846245.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tessa M. Burch-Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Reagan, B.C., Dunlap, J.R., Burch-Smith, T.M. (2022). Focused Ion Beam-Scanning Electron Microscopy for Investigating Plasmodesmal Densities. In: Benitez-Alfonso, Y., Heinlein, M. (eds) Plasmodesmata. Methods in Molecular Biology, vol 2457. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2132-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2132-5_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2131-8

  • Online ISBN: 978-1-0716-2132-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics