Skip to main content
Log in

Out with the old and in with the new: rapid specimen preparation procedures for electron microscopy of sectioned biological material

  • Special Issue: New/Emerging Techniques in Biological Microscopy
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

This article presents the best current practices for preparation of biological samples for examination as thin sections in an electron microscope. The historical development of fixation, dehydration, and embedding procedures for biological materials are reviewed for both conventional and low temperature methods. Conventional procedures for processing cells and tissues are usually done over days and often produce distortions, extractions, and other artifacts that are not acceptable for today’s structural biology standards. High-pressure freezing and freeze substitution can minimize some of these artifacts. New methods that reduce the times for freeze substitution and resin embedding to a few hours are discussed as well as a new rapid room temperature method for preparing cells for on-section immunolabeling without the use of aldehyde fixatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CF:

Conventional fixation

CLEM:

Correlative light and electron microscopy

EM:

Electron microscopy

FS:

Freeze substitution

HPF:

High-pressure freezing

LN2 :

Liquid nitrogen

LRW:

LR White

RF–FS:

Rapid freezing–freeze substitution

RT:

Room temperature

RTS:

Rapid Transfer System

UA:

Uranyl acetate

References

  • Al-Amoudi A et al (2004) Cryo-electron microscopy of vitreous sections. EMBO J 23:3583–3588

    CAS  PubMed Central  PubMed  Google Scholar 

  • Altman LG, Schneider BG, Papermaster DS (1984) Rapid embedding of tissues in Lowicryl K4M for immunoelectron microscopy. J Histochem Cytochem 32:1217–1223

    CAS  PubMed  Google Scholar 

  • Altmann R (1890) Die Elementarorganismen und ihre Beziehungen zu den Zellen. Veit, Leipzig

    Google Scholar 

  • Armbruster BL, Carlemalm E, Chiovetti R, Garavito RM, Hobot JA, Kellenberger E, Villiger W (1982) Specimen preparation for electron microscopy using low temperature embedding resins. J Microsc (Oxford) 126:77–85

    CAS  Google Scholar 

  • Bain JM, Gove DW (1971) Rapid preparation of plant tissues for electron microscopy. J Microsc 93:159

    Google Scholar 

  • Bajer A, Mole-Bajer J (1972) Spindle dynamics and chromosome movements. Academic, New York

    Google Scholar 

  • Boekema EJ, Folea M, Kouril R (2009) Single particle electron microscopy. Photosynth Res 102:189–196

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bozzola JJ, Russell LD (1999) Electron microscopy: principles and techniques for biologists, 2nd edn. Jones and Bartlett, Salisbury

    Google Scholar 

  • Bretschneider LD, Elders PF (1952) Elektronenmikroskopishe Zellanalyse nach der Gefriertrocknungmethode. Proc Kon Ned Akad v Wet 55:675–688

    Google Scholar 

  • Brightman MW, Reese TS (1969) Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 40:648–677

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bullivant S (1960) The staining of thin sections of mouse pancreas prepared by the Fernández-Moran helium II freeze-substitution method. J Biophys Biochem Cytol 8:639–647

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buser C, Walther P (2008) Freeze-substitution: the addition of water to polar solvents enhances the retention of structure and acts at temperatures around −60 °C. J Microsc 230:268–277

    CAS  PubMed  Google Scholar 

  • Craig S, Gilkey JC, Staehelin LA (1987) Improved specimen support cups and auxiliary devices for the Balzers high pressure freezing apparatus. J Microsc 48:103–106

    Google Scholar 

  • Dubochet J (2007) The physics of rapid cooling and its implications for cryoimmobilization of cells. Meth Cell Biol 79:7–21

    CAS  Google Scholar 

  • Echlin P (1992) Low temperature microscopy and analysis. Plenum, New York

    Google Scholar 

  • Erickson PA, Anderson DH, Fisher SK (1987) Use of uranyl acetate en bloc to improve tissue preservation and labeling for post-embedding immunoelectron microscopy. J Electron Microsc Technol 5:303–314

    CAS  Google Scholar 

  • Farquhar MG, Palade GE (1965) Cell junctions in amphibian skin. J Cell Biol 26:263–291

    CAS  PubMed Central  PubMed  Google Scholar 

  • Feder N, Sidman RL (1958) Methods and principles of fixation by freeze-substitution. J Biophys Biochem Cytol 4:593–600

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fernandez Moran H (1952) Application of the ultrathin freezing-sectioning technique to the study of cell structures with the electron microscope. Ark f Fysik 4:471–483

    Google Scholar 

  • Fernandez-Moran H (1959) Cryofixation and supplementary low temperature preparation techniques applied to the study of tissue ultrastructure. J Appl Phys 30:2038

    Google Scholar 

  • Fernandez-Moran H (1960) Low temperature preparation techniques for electron microscopy of biological specimens based on rapid freezing with liquid helium II. Ann N Y Acad Sci 8(5):689–713

    Google Scholar 

  • Frank J (2006) Three-dimensional electron microscopy of macromolecular assemblies: visualization of biological molecules in their native state. Oxford University Press, Oxford

    Google Scholar 

  • Franzini-Armstrong C, Porter KR (1964) Sarcolemmal invaginations constituting the T system in fish muscle fibers. J Cell Biol 22:675–696

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gan L, Jensen GJ (2012) Electron tomography of cells. Q Rev Biophys 45:27–56

    CAS  PubMed  Google Scholar 

  • Giberson RT, Demaree RS (2001) Microwave techniques and protocols. Humana, Totowa

    Google Scholar 

  • Giberson RT, Smith RL, Demaree RS (1995) Three hour microwave tissue processing for transmission electron microscopy: from unfixed tissues to sections. Scanning 17(suppl 5):26–27

    Google Scholar 

  • Gilkey JC, Staehelin LA (1986) Advances in ultrarapid freezing for the preservation of cellular ultrastructure. J Electron Microsc Technol 3:177–210

    Google Scholar 

  • Glauert AM (1975) Fixation, dehydration and embedding of biological specimens. In: Glauert AM (ed) Practical methods in electron microscopy. North-Holland, Amsterdam

  • Glauert AM, Rogers GE, Glauert RH (1956) A new embedding medium for electron microscopy. Nature 178:803

    CAS  PubMed  Google Scholar 

  • Han H-M, Huebinger J, Grabenbauer M (2012) Self-pressurized rapid freezing (SPRF) as a simple fixation method for cryo-electron microscopy of vitreous sections. J Struct Biol 178:84–87

    PubMed  Google Scholar 

  • Hawes P, Netherton CL, Mueller M, Wileman T, Monaghan P (2007) Rapid freeze-substitution preserves membranes in high-pressure frozen tissue culture cells. J Microsc 226:182–189

    CAS  PubMed  Google Scholar 

  • Hayat MA (1981) Fixation for electron microscopy. Academic, San Diego

    Google Scholar 

  • Hayat MA (2000) Principles and techniques of electron microscopy, 4th edn. CRC, Boca Raton

    Google Scholar 

  • Hayat MA, Giaquinta R (1970) Rapid fixation and embedding for electron microscopy. Tissue Cell 2:191–195

    CAS  PubMed  Google Scholar 

  • Hess MW (2007) Cryopreparation methodology for plant cell biology. Meth Cell Biol 79:57–100

    CAS  Google Scholar 

  • Hippe-Sanwald S (1993) Impact of freeze substitution on biological electron microscopy. Microsc Res Tech 24:400–422

    CAS  PubMed  Google Scholar 

  • Hobot JA, Newman GR (1991) Strategies for improving the cytochemical and immunocytochemical sensitivity of ultrastructurally well-preserved, resin embedded biological tissue for light and electron microscopy. In: Roomans G, Edelmann L (eds) Scanning microscopy supplement 5. Scanning Microscopy International, AMF O’Hare, pp S27–S41

    Google Scholar 

  • Humbel BM, Mueller M (1986) Freeze substitution and low temperature embedding, Science of Biological Specimen Preparation 1985. SEM, AMF O’Hare

    Google Scholar 

  • Humbel BM, Schwarz H (1989) Freeze-substitution for immunochemistry. In: Verkleij AJ, Leunissen JLM (eds) Immuno-gold labeling in cell biology. CRC, Boca Raton

    Google Scholar 

  • Humbel BM, Marti T, Mueller M (1983) Improved structural preservation by combining freeze substitution and low temperature embedding. Beitr Elektronenmikrosk Direktabb Oberfl 16:585–594

    Google Scholar 

  • Hurbain I, Saches M (2011) The future is cold: cryo-preparation methods for transmission electron microscopy of cells. Biol Cell 103:405–420

    PubMed  Google Scholar 

  • Kaech A (2009) BAL-TEC HPM 010 high-pressure freezing machine. In: Cavalier A, Spehner D, Humbel BM (eds) Handbook of Cryo-Preparation Methods for Electron Microscopy, CRC Press, Boca Raton, FL, pp 101–128

  • Karnovsky MJ (1967) The ultrastructural basis of capillary permeability studied with peroxidase as a tracer. J Cell Biol 35:213–236

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kellenberger E (1987) The response of biological macromolecules and supramolecular structures to the physics of specimen cryopreparation. In: Steinbrecht RA, Zierold K (eds) Cryotechniques in biological electron microscopy. Springer, Berlin

    Google Scholar 

  • Kellenberger E, Carlemalm E, Villiger W, Roth J, Garavito RM (1980) Low denaturation embedding for electron microscopy of thin sections. Chemische Werke Löwi, Waldkraiburg

  • Kellenberger E, Ryter A, Sechaud J (1958) Electron microscope study of DNA-containing plasms. II. Vegetative and mature phage DNA as compared with normal bacterial nucleoids in different physiological states. J Biophys Biochem Cytol 4:671–678

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kukulski W, Schorb M, Welsch S, Picco A, Kaksonen M, Briggs JA (2011) Correlated fluorescence and 3D electron microscopy with high sensitivity and spatial precision. J Cell Biol 192:111–119

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kukulski W, Schorb M, Welsch S, Picco A, Kaksonen M, Briggs JA (2012) Precise, correlated fluorescence microscopy and electron microscopy of Lowicryl sections using fluorescent fiducial markers. Meth Cell Biol 111:235–257

    CAS  Google Scholar 

  • Lancelle S, Hepler PK (1989) Immunogold labelling of actin on sections of freeze-substituted plant cells. Protoplasma 150:72–74

    Google Scholar 

  • Leunissen JL, Yi H (2009) Self-pressurized rapid freezing (SPRF): a novel cryofixation method for specimen preparation in electron microscopy. J Microsc 235:25–35

    CAS  PubMed  Google Scholar 

  • Login GR, Dvorak AM (1994) Methods of microwave fixation for microscopy: a review of research and clinical applications. In: Graumann W, Lojda Z, Pearse AGE, Schiebler TH (eds) Progress in histochemistry and cytochemistry. Fischer, New York, pp 1970–1992

    Google Scholar 

  • Luft JH (1961) Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol 9:409–414

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maaløe O, Birch-Anderson A (1956) On the organization of the ‘nuclear material’ in Salmonella typhimurium. Symp Soc Gen Microbiol 6:261–278

    Google Scholar 

  • MacKenzie AP (1967) The “collapse phenomenon” in the freeze-substitution process. Cryobiology 3:387

    Google Scholar 

  • McCurdy DW, Pratt LH (1986) Immunogold electron microscopy of phytochrome in Avena: identification of intracellular sites responsible for phytochrome sequestering and enhanced pelletability. J Cell Biol 103:2541–2550

    CAS  PubMed  Google Scholar 

  • McDonald KL (1999) High pressure freezing for preservation of high resolution fine structure and antigenicity for immunolabeling. Meth Mol Biol 117:77–97

    CAS  Google Scholar 

  • McDonald KL (2007) Cryopreparation methods for electron microscopy of selected model systems. Meth Cell Biol 79:23–55

    CAS  Google Scholar 

  • McDonald K (2009) A review of high-pressure freezing preparation techniques for correlative light and electron microscopy of the same cells and tissues. J Microsc 235:273–281

    CAS  PubMed  Google Scholar 

  • McDonald KL (2013) Rapid embedding methods into epoxy and LR White resins for morphological and immunological analysis of cryofixed biological specimens. Microsc Microanal 20:1–12. doi:10.1017/S1431927613013846

    Google Scholar 

  • McDonald KL (1994) Electron microscopy and EM immunocytochemistry. In: Goldstein LSB, Fyrberg E (eds) Drosophila melanogaster: practical uses in cell and molecular biology. Meth Cell Biol 44:411–444

  • McDonald K, Müller-Reichert T (2002) Cryomethods for thin section electron microscopy. In: Guthrie C, Fink G (eds) Guide to yeast genetics and molecular and cell biology parts B and C. Meth Enzymol 351:96–123

  • McDonald KL, Webb RI (2011) Freeze substitution in 3 hours or less. J Microsc 243:227–233

    CAS  PubMed  Google Scholar 

  • McDonald KL, Morphew M, Verkade P, Müller-Reichert T (2007) Recent advances in high pressure freezing: equipment and specimen loading methods. Meth Mol Biol 369:143–173

    CAS  Google Scholar 

  • McDonald KL, Schwarz H, Mueller-Reichert T, Webb R, Buser C, Morphew M (2010) Tips and tricks for high pressure freezing. Meth Cell Biol 96:671–693

    Google Scholar 

  • Mersey B, McCully ME (1978) Monitoring the course of fixation in plant cells. J Microsc 116:49–76

    Google Scholar 

  • Moberg C (2012) Entering an unseen world. Rockefeller University Press, New York

    Google Scholar 

  • Mobius W (2009) Cryopreparation of biological specimens for immunoelectron microscopy. Ann Anat 191:231–247

    PubMed  Google Scholar 

  • Monaghan P, Robertson D (1990) Freeze substitution without aldehyde or osmium fixatives: ultrastructure and implications for immnocytochemistry. J Microsc 158:355–363

    CAS  PubMed  Google Scholar 

  • Monaghan P, Perusinghe N, Müller M (1998) High-pressure freezing for immunocytochemistry. J Microsc 192:248–258

    CAS  PubMed  Google Scholar 

  • Moor H (1987) Theory and practice of high pressure freezing. In: Steinbrecht R, Zierold K (eds) Cryotechniques in biological electron microscopy. Springer, Berlin, pp 175–191

    Google Scholar 

  • Moor H, Hoechli M (1970) The influence of high-pressure freezing on living cells. In: Favard P (ed) Proceedings of the 7th International Congress on Electron Microscopy, Grenoble. Societe Francaise de Microscopie Electronique, Paris

    Google Scholar 

  • Moor H, Muhlethaler K, Waldner H, Frey-Wyssling A (1961) A new freezing-ultramicrotome. J Biophys Biochem Cytol 10:1–13

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mueller M, Moor H (1984) Cryofixation of thick specimens by high pressure freezing. In: Revel J-P, Barnard T, Haggis GH (eds) The science of biological specimen preparation. SEM, AMF O’Hare, pp. 131–138

  • Mueller-Reichert T, O’Toole E, Hohenberg H, McDonald KL (2003) Cryoimmobilization and three-dimensional visualization of C. elegans ultrastructure. J Microscopy 212:71–80

    Google Scholar 

  • Muhlethaler K (1973) History of freeze-etching. In: Benedetti L, Favard P (eds) Freeze-etching techniques and applications. Societe Francaise de Microscopie Electronique, Paris, pp 1–10

    Google Scholar 

  • Müller HO (1942) Die Ausmessung der Tiefe übermikroskopischer Objekte. Kolloid-Z 99:6–28

    Google Scholar 

  • Newman GR, Hobot JA (1993) Resin microscopy and on-section immunocytochemistry. Springer, Berlin

    Google Scholar 

  • Newman GR, Hobot JA (1999) Resins for combined light and electron microscopy: a half century of development. Histochem J 31:495–505

    CAS  PubMed  Google Scholar 

  • Newman JB, Borysko E, Swerdlow M (1949) New sectioning techniques for light and electron microscopy. Science 110:66–68

    CAS  PubMed  Google Scholar 

  • Newman GR, Jasani B, Williams ED (1982) The preservation of ultrastructure and antigenicity. J Microsc 127:RP5–RP6

    Google Scholar 

  • Newman GR, Jasani B, Williams ED (1983) A simple post-embedding system for the rapid demonstration of tissue antigens under the electron microscope. Histochem J 15:543–555

    CAS  PubMed  Google Scholar 

  • Nicolas M-T, Bassot J-M (1993) Freeze substitution after fast-freeze fixation in preparation for immunocytochemistry. Microsc Res Tech 24:474–487

    CAS  PubMed  Google Scholar 

  • Nixon SJ, Webb RI, Floetenmeyer M, Schieber N, Lo HP, Parton RG (2009) A single method for cryofixation and correlative light, electron microscopy and tomography of zebrafish embryos. Traffic 10:131–136

    CAS  PubMed  Google Scholar 

  • O’Toole ET (2002) Electron tomography of yeast cells. In: Guthrie C, Fink G (eds) Guide to yeast genetics and molecular and cell biology parts B and C. Meth Enzymol 351:81–95

  • Oprins A, Geuze HJ, Slot JW (1994) Cryosubstitution dehydration of aldehyde-fixed tissue: a favorable approach to quantitative immunocytochemistry. J Histochem Cytochem 42:497–503

    CAS  PubMed  Google Scholar 

  • Palade GE (1952) A study of fixation for electron microscopy. J Exp Med 95:285–298

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pease DC (1973) Substitution techniques. In: Koehler JK (ed) Advanced techniques in biological electron microscopy. Springer, Berlin, pp 35–66

    Google Scholar 

  • Pease DC, Porter KR (1981) Electron microscopy and ultramicrotomy. J Cell Biol 91:287s–292s

    CAS  PubMed  Google Scholar 

  • Porta D, Lopez-Iglesias C (1998) A comparison of cryo- versus chemical fixation in the soil green algae Jaagiella. Tissue Cell 30:368–376

    CAS  PubMed  Google Scholar 

  • Rasmussen N (1997) Picture control. Stanford University Press, Stanford

    Google Scholar 

  • Rebhun LI (1961) Applications of freeze-substitution to electron microscope studies of invertebrate oocytes. J Biophys Biochem Cytol 9:785–798

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rebhun LI (1972) Freeze-substitution and freeze-drying. In: Hayat MA (ed) Principles and techniques of electron microscopy, vol II. Van Nostrand Reinhold, New York, pp 3–49

    Google Scholar 

  • Reymond OL, Pickett-Heaps JD (1983) A routine flat embedding method for electron microscopy of microorganisms allowing selection and precisely orientated sectioning of single cells by light microscopy. J Microsc 130:79–84

    CAS  PubMed  Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J Cell Biol 16:208–212

    Google Scholar 

  • Riehle U (1968) Über die Vitrifizierung verdünnter wässeriger Lösungen. Techn Wiss Diss Eidgen Tech Hochschule Zürich

  • Riehle U, Hoechli M (1973) The theory and technique of high pressure freezing. In: Benedetti L, Favard P (eds) Freeze-etching techniques and applications. Societe Francaise de Microscopie Electronique, Paris, pp 32–61

    Google Scholar 

  • Robards AW, Sleytr UB (1985) Low temperature methods in biological electron microscopy. In: Glauert AM (ed) Practical methods in electron microscopy, vol 10. Elsevier, Amsterdam

    Google Scholar 

  • Robbins E, Jentzsch G (1967) Rapid embedding of cell culture monolayers and suspensions for electron microscopy. J Histochem Cytochem 15:181–182

    CAS  PubMed  Google Scholar 

  • Sabatini DD, Bensch K, Barrnett RJ (1963) Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymic activity by aldehyde fixation. J Cell Biol 17:19–58

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sawaguchi A, Ide S, Suganuma T (2005) Application of 10-μm thin stainless foil to a new assembly of the specimen carrier in high-pressure freezing. J Electron Microsc (Tokyo) 54:143146

    Google Scholar 

  • Shepherd B, Clark C (1976) Structure of the anterior alimentary tract of the passively feeding nematode Pratylenchus penetrans (Nematoda: Pratylenchidae). Nematologica 31:321–334

    Google Scholar 

  • Shimoni E, Mueller M (1998) On optimizing high-pressure freezing: from heat transfer theory to a new microbiopsy device. J Microsc 192:236–247

    CAS  PubMed  Google Scholar 

  • Shiurba R (2001) Freeze-substitution: origins and applications. Int Rev Cytol 206:45–96

    CAS  PubMed  Google Scholar 

  • Silva MT, Carvalho Guerra F, Magalhaes MM (1968) The fixative action of uranyl acetate in electron microscopy. Experientia 24:1074

    CAS  PubMed  Google Scholar 

  • Silva MT, Santos Mota JM, Melo JVC, Carvalho Guerra F (1971) Uranyl salts as fixatives for electron microscopy. Study of the membrane ultrastructure and phospholipid loss in bacilli. Biochim Biophys Acta 233:513–520

    CAS  PubMed  Google Scholar 

  • Simpson WL (1941) An experimental analysis of the Altmann technique of freezing-drying. Anat Rec 80:173–189

    Google Scholar 

  • Sosinsky GE et al (2008) The combination of chemical fixation procedures with high pressure freezing and freeze substitution preserves highly labile tissue ultrastructure for electron tomography applications. J Struct Biol 161:359–371

    CAS  PubMed Central  PubMed  Google Scholar 

  • Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43

    CAS  PubMed  Google Scholar 

  • Steere RL (1957) Electron microscopy of structural detail in frozen biological specimens. J Biophy Biochem Cytol 3:45–60

    CAS  Google Scholar 

  • Steinbrecht RA (1982) Experiments on freezing damage with freeze substitution using moth antennae as test objects. J Microsc 125:187–192

    Google Scholar 

  • Steinbrecht RA, Mueller M, Steinbrecht RA, Mueller M (1987) Freeze substitution and freeze drying. In: Steinbrecht R, Zierold K (eds) Cryotechniques in biological electron microscopy. Springer, Berlin, pp 150–172

    Google Scholar 

  • Studer D, Michel M, Müller M (1993) High pressure freezing comes of age. Scanning Microsc Suppl 3:253–269

    Google Scholar 

  • Studer D, Graber W, Al-Amoudi A, Eggli P (2001) A new approach for cryofixation by high-pressure freezing. J Microsc 203:285–294

    CAS  PubMed  Google Scholar 

  • Terzakis JA (1968) Uranyl acetate, a stain and a fixative. J Ultrastruct Res 22:168–184

    CAS  PubMed  Google Scholar 

  • Tormey JMD (1964) Differences in membrane configuration between osmium tetroxide-fixed and glutaraldehyde-fixed ciliary epithelium. J Cell Biol 23:658–664

    CAS  PubMed Central  PubMed  Google Scholar 

  • Valentino KL, Crumrine DA, Reichardt LF (1985) Lowicryl K4M embedding of brain tissue for immunogold electron microscopy. J Histochem Cytochem 33:969–973

    CAS  PubMed  Google Scholar 

  • van Genderen IL, vanMeer G, Slot JW, Geuze HJ, Voorhout WF (1991) Subcellular localization of Forssman glycolipid in epithelial MDCK cells by immuno-electronmicroscopy after freeze-substitution. J Cell Biol 115:1009–1019

    PubMed  Google Scholar 

  • van Harreveld A, Crowell J (1964) Electron microscopy after rapid freezing on a metal surface and substitution fixation. Anat Rec 149:381–386

    Google Scholar 

  • van Lookeren CM, Van der Oestreicher AB, Krift TP, Gispen WH, Verkleij AJ (1991) Freeze-substitution and Lowicryl HM20 embedding of fixed rat brain: suitability for immunogold ultrastructural localization of neural antigens. J Histochem Cytochem 39:1267–1279

    Google Scholar 

  • Vanhecke D, Studer D (2009) High pressure freezing Leica EM PACT. In: Cavalier A, Spehner D, Humbel BM (eds) Handbook of cryo-preparation methods for electron microscopy. CRC, Boca Raton, pp 129–156

    Google Scholar 

  • Vanhecke D, Graber W, Studer D (2008) Close-to-native ultrastructural preservation by high pressure freezing. Meth Cell Biol 88:151–164

    Google Scholar 

  • Verkade P (2008) Moving EM: the rapid transfer system as a new tool for correlative light and electron microscopy and high throughput for high pressure freezing. J Microsc 230:317–328

    CAS  PubMed  Google Scholar 

  • Voorhout WF, Veenendaal T, Haagsman HP, van Verkleij AJ, Golde LM, Geuze HJ (1991) Surfactant protein A is localized at the corners of the pulmonary tubular myelin lattice. J Histochem Cytochem 39:1331–1336

    CAS  PubMed  Google Scholar 

  • Walther P, Ziegler A (2002) Freeze-substitution of high-pressure frozen samples: the visibility of biological membranes is improved when the substitution medium contains water. J Microsc 208:3–10

    CAS  PubMed  Google Scholar 

  • Weibull C, Villiger W, Carlemalm E (1984) Extraction of lipids during freeze-substitution of Acholeplasma laidlawii-cells for electron microscopy. J Microsc 134:213–216

    CAS  PubMed  Google Scholar 

  • Williams RC, Wyckoff RWG (1944) The thickness of electron microscope objects. J Appl Phys 15:713

    Google Scholar 

  • Wyckoff RWG (1946) Frozen-dried preparations for the electron microscope. Science 104:36–37

    CAS  Google Scholar 

  • Yakovlev S, Downing KH (2011) Freezing in sealed capillaries for preparation of frozen hydrated sections. J Microsc 244:235–247

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zalokar M (1966) A simple freeze-substitution method for electron microscopy. J Utrastruct Res 15:469–479

    CAS  Google Scholar 

Download references

Acknowledgments

The author wishes to thank all those friends and collaborators who have provided materials used for these studies. Special thanks go to Richard I. Webb at the Microscopy and Microanalysis Centre, University of Queensland, Australia for helpful discussions and suggestions throughout the development of all the new rapid procedures reported here.

Conflict of interest

The author declares that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kent L. McDonald.

Additional information

Handling Editor: David Robinson

Rights and permissions

Reprints and permissions

About this article

Cite this article

McDonald, K.L. Out with the old and in with the new: rapid specimen preparation procedures for electron microscopy of sectioned biological material. Protoplasma 251, 429–448 (2014). https://doi.org/10.1007/s00709-013-0575-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-013-0575-y

Keywords

Navigation