Skip to main content
Log in

Serial block face scanning electron microscopy—the future of cell ultrastructure imaging

  • Special Issue: New/Emerging Techniques in Biological Microscopy
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

One of the major drawbacks in transmission electron microscopy has been the production of three-dimensional views of cells and tissues. Currently, there is no one suitable 3D microscopy technique that answers all questions and serial block face scanning electron microscopy (SEM) fills the gap between 3D imaging using high-end fluorescence microscopy and the high resolution offered by electron tomography. In this review, we discuss the potential of the serial block face SEM technique for studying the three-dimensional organisation of animal, plant and microbial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Armer HE, Mariggi G, Png KM, Genoud C, Monteith AG, Bushby AJ, Gerhardt H, Collinson LM (2009) Imaging transient blood vessel fusion events in zebrafish by correlative volume electron microscopy. PLoS One 4(11):e7716

    Article  PubMed Central  PubMed  Google Scholar 

  • Bang BH, Bang FB (1957) Graphic reconstruction of the third dimension from serial electron microphotographs. J Ultrastruct Res 1:138–139

    Article  CAS  PubMed  Google Scholar 

  • Birch-Andersen A (1955) Reconstruction of the nuclear sites of Salmonella typhimurium from electron micrographs of serial sections. J Gen Microbiol 13:327–329

    Article  CAS  PubMed  Google Scholar 

  • Briggman KL, Bock DD (2012) Volume electron microscopy for neuronal circuit reconstruction. Curr Opin Neurobiol 22:154–161

    Article  CAS  PubMed  Google Scholar 

  • Briggman KL, Helmstaedter M, Denk W (2011) Wiring specificity in the direction-selectivity circuit of the retina. Nature 471:183–188

    Article  CAS  PubMed  Google Scholar 

  • Cong Y, Ludtke SJ (2010) Single particle analysis at high resolution. Methods Enzymol 482:211–235

    Article  CAS  PubMed  Google Scholar 

  • Denk W, Horstmann H (2004) Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol 2:e329

    Article  PubMed Central  PubMed  Google Scholar 

  • Donohoe BE, Mogelsvang S, Staehelin LA (2006) Electron tomography of ER, Golgi and related membrane systems. Methods 39:154–162

    Article  CAS  PubMed  Google Scholar 

  • Ellisman MH, Deerinck TJ, Shu X, Sosinsky GE (2012) Picking faces out of a crowd: genetic labels for identification of proteins in correlated light and electron microscopy imaging. Methods Cell Biol 111:139–155

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Erdman N, Bell D (2012) Low voltage electron microscopy—principles and applications. Wiley, New York

    Google Scholar 

  • Favard P, Carasso N (1973) The preparation and observation of thick biological sections in the high voltage electron microscope. J Microsc 97:59–81

    Article  CAS  PubMed  Google Scholar 

  • Friend D, Murray M (1965) Osmium impregnation of the Golgi apparatus. Am J Anat 117:135–150

    Article  CAS  PubMed  Google Scholar 

  • Giuly RJ, Kim KY, Ellisman MH (2013) DP2: Distributed 3D image segmentation using micro-labor workforce. Bioinformatics 29(10):1359–1360

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harris N (1979) Endoplasmic reticulum in developing seeds of Vicia faba. A high voltage electron microscope study. Planta 146:63–69

    Article  CAS  PubMed  Google Scholar 

  • Hawes CR (1981) High voltage electron microscopy of biological materials. Micron 12:159–160

    Google Scholar 

  • Hawes C (1991) Stereo-electron microscopy. Chp. 2. In: Hawes C, Hall JL (eds) Electron microscopy of plant cells. Academic, London, pp 67–84

    Chapter  Google Scholar 

  • Hawes CR, Horne JC (1983) Staining plant cells for thick sectioning: uranyl acetate, copper and lead citrate impregnation. Biol Cell 48:207–210

    Google Scholar 

  • Hawes CR, Juniper B, Horn JC (1981) Low and high voltage electron microscopy of mitosis and cytokinesis in maize. Planta 152:397–407

    Article  CAS  PubMed  Google Scholar 

  • Helmstaedter M, Briggman KL, Denk W (2008) 3D structural imaging of the brain with photons and electrons. Curr Opin Neurobiol 18(6):633–641

    Google Scholar 

  • Helmstaedter M, Briggman KL, Turaga SC, Jain V, Seung HS, Denk W (2013) Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature 500:168–174

    Article  CAS  PubMed  Google Scholar 

  • Hepler PK (1980) Membranes of the mitotic apparatus of barley cells. J Cell Biol 86:490–499

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hughes LC, Archer CW, ap Gwynn I (2005) The ultrastructure of mouse articular cartilage: collagen orientation and implications for tissue functionality. A polarised light and scanning electron microscope study and review. Eur Cell Mater 9:68–84

    CAS  PubMed  Google Scholar 

  • Hughes L, Towers K, Starbourg T, Gull K, Vaughan S (2013) A cell body groove housing the new flagellul tip suggests an adaptation of cellular morphogeneisis for parasitism in bloodstream from of Trypanosoma brucei. J Cell Sci. doi:10.1242/jcs.139139

  • Jurrus E, Hardy M, Tasdizen T, Fletcher PT, Koshevoy P, Chien CB, Denk W, Whitaker R (2009) Axon tracking in serial block-face scanning electron microscopy. Med Image Anal 1:180–188

    Article  Google Scholar 

  • Kremer JR, Mastronarde DN, McIntosh JR (1996) Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116:71–76

    Article  CAS  PubMed  Google Scholar 

  • Lučič V, Rigort A, Baumeister W (2013) Cryo-electron tomography: the challenge of doing structural biology in situ. J Cell Biol 202(3):407–419

    Article  PubMed Central  PubMed  Google Scholar 

  • Marsh BJ (2007) Reconstructing mammalian membrane architecture by large area cellular tomography. Chp. 8. In: McIntosh JR (ed) Methods in cell biology 79, cellular electron microscopy. Elsevier, Amsterdam, pp 193–220

    Chapter  Google Scholar 

  • Martell JD, Deerinck TJ, Sancak Y, Poulos TL, Mootha VK, Sosinsky GE, Ellisman MH, Ting AY (2012) Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy. Nat Biotechnol 30(11):1143–1148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Micheva KD, Smith SJ (2007) Array tomography: a new tool for imaging the molecular architecture and ultrastructure of neural circuits. Neuron 55:25–36

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nicastro D, Schwartz C, Pierson J, Gaudette R, Porter ME, McIntosh JR (2006) The molecular architecture of axonemes revealed by cryoelectron tomography. Science 313:944–948

    Article  CAS  PubMed  Google Scholar 

  • Ou HD, Kwiatkowski W, Deerinck TJ, Noske A, Blain KY, Land HS, Soria C, Powers CJ, May AP, Shu X, Tsien RY, Fitzpatrick JA, Long JA, Ellisman MH, Choe S, O'Shea CC (2012) A structural basis for the assembly and functions of a viral polymer that inactivates multiple tumor suppressors. Cell 151:304–319

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Porter KR, Claude A, Fullam EF (1945) A study of tissue culture cells by electron microscopy. J Exp Med 81:233–246

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Puhka M, Joensuu M, Vihinen H, Belevich I, Jokitalo E (2012) Progressive sheet-to-tubule transformation is a general mechanism for endoplasmic reticulum partitioning in dividing mammalian cells. Mol Biol Cell 23(13):2424–2432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rouquette J, Genoud C, Vazquez-Nin GH, Kraus B, Cremer T, Fakan S (2009) Revealing the high-resolution three-dimensional network of chromatin and interchromatin space: a novel electron-microscopic approach to reconstructing nuclear architecture. Chromosome Res 17:801–810

    Article  CAS  PubMed  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  Google Scholar 

  • Schnepf E, Hausmann K, Herth W (1982) The osmium tetroxide-potassium ferro cyanide OSFeCN staining technique for electron microscopy: a critical evaluation using ciliates, algae, mosses and higher plants. Histochemistry 76:261–271

    Article  CAS  PubMed  Google Scholar 

  • Segretain D, Rambourg A, Cleremont Y (1981) Three dimensional arrangement of mitochondria and endoplasmic reticulum in the heart muscle fibre of the rat. Anat Rec 200:139–151

    Article  CAS  PubMed  Google Scholar 

  • Shu X, Lev-Ram V, Deerinck TJ, Qi Y, Ramko EB, Davidson MW, Jin Y, Ellisman MH, Tsien RY (2011) A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms. PLoS Biol 9:e1001041

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Soto GE, Young SJ, Martone ME, Deerinck TJ, Lamont S, Carragher BO, Hama K, Ellisman MH (1994) Serial section electron tomography: a method for three-dimensional reconstruction of large structures. Neuroimage 1:230–243

    Article  CAS  PubMed  Google Scholar 

  • Starborg T, Kalson NS, Lu Y, Mironov A, Cootes TF, Holmes DF, Kadler KE (2013) Using transmission electron microscopy and 3View to determine collagen fibril size and three-dimensional organization. Nat Protoc 8:1433–1448

    Article  PubMed  Google Scholar 

  • Testillano PS, Sanchez-Pina MA, Olmedilla A, Ollacarizqueta MA, Tandler CJ, Risueño MC (1991) A specific ultrastructural method to reveal DNA: the NAMA-Ur. J Histochem Cytochem 39:1427–1438

    Article  CAS  PubMed  Google Scholar 

  • Thiéry G, Rambourg A (1976) A new staining technique for studying thick sections in the electron microscope. J Microsc Biol Cell 26:103–106

    Google Scholar 

  • Wacker I, Schroeder RR (2013) Array tomography. J Microsc 252(2):93–99

    Article  CAS  PubMed  Google Scholar 

  • White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Phil Trans R Soc London B 314:1–340

    Article  CAS  Google Scholar 

  • Wilke SA, Antonios JK, Bushong EA, Badkoobehi A, Malek E, Hwang M, Terada M, Ellisman MH, Ghosh A (2013) Deconstructing complexity: serial block-face electron microscopic analysis of the hippocampal mossy fiber synapse. J Neurosci 33:507–522

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Williams ME, Wilke SA, Daggett A, Davis E, Otto S, Ravi D, Ripley B, Bushong EA, Ellisman MH, Klein G, Ghosh A (2011) Cadherin-9 regulates synapse-specific differentiation in the developing hippocampus. Neuron 71:640–655

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang X, Jin L, Fang Q, Hui WH, Zhou ZH (2010) 3.3 A cryo-EM structure of a nonenveloped virus reveals a priming mechanism for cell entry. Cell 141:472–482

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou ZH (2011) Atomic resolution cryo electron microscopy of macromolecular complexes. Adv Protein Chem Struct Biol 82:1–35

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Work here was supported by BBSRC new investigator grant to Dr Sue Vaughan.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sue Vaughan.

Additional information

Handling Editor: David Robinson

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hughes, L., Hawes, C., Monteith, S. et al. Serial block face scanning electron microscopy—the future of cell ultrastructure imaging. Protoplasma 251, 395–401 (2014). https://doi.org/10.1007/s00709-013-0580-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-013-0580-1

Keywords

Navigation