Skip to main content

Micro-CT–Based Bone Microarchitecture Analysis of the Murine Skull

  • Protocol
  • First Online:
Craniofacial Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2403))

Abstract

X-ray micro-computed tomography (micro-CT) imaging has important applications in microarchitecture analysis of cortical and trabecular bone structure. While standardized protocols exist for micro-CT–based microarchitecture assessment of long bones, specific protocols need to be developed for different types of skull bones taking into account differences in embryogenesis, organization, development, and growth compared to the rest of the body. This chapter describes the general principles of bone microarchitecture analysis of murine craniofacial skeleton to accommodate for morphological variations in different regions of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Faot F, Chatterjee M, de Camargos GV et al (2015) Micro-CT analysis of the rodent jaw bone micro-architecture: a systematic review. Bone Rep 2:14–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Labrinidis A, Diamond P, Martin S et al (2009) Apo2L/TRAIL inhibits tumor growth and bone destruction in a murine model of multiple myeloma. Clin Cancer Res 15(6):1998–2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Torcasio A, Zhang X, Van Oosterwyck H, Duyck J, van Lenthe GH (2012) Use of micro-CT-based finite element analysis to accurately quantify peri-implant bone strains: a validation in rat tibiae. Biomech Model Mechanobiol 11(5):743–750

    Article  PubMed  Google Scholar 

  4. Tsafnat N, Wroe S (2011) An experimentally validated micromechanical model of a rat vertebra under compressive loading. J Anat 218(1):40–46

    Article  PubMed  Google Scholar 

  5. Cengiz IF, Oliveira JM, Reis RL (2018) Micro-CT—a digital 3D microstructural voyage into scaffolds: a systematic review of the reported methods and results. Biomater Res 22:26

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lee A, Hudson AR, Shiwarski DJ et al (2019) 3D bioprinting of collagen to rebuild components of the human heart. Science 365(6452):482–487

    Article  CAS  PubMed  Google Scholar 

  7. Lai LP, Lotinun S, Bouxsein ML et al (2014) Stk11 (Lkb1) deletion in the osteoblast lineage leads to high bone turnover, increased trabecular bone density and cortical porosity. Bone 69:98–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. He T, Cao C, Xu Z et al (2017) A comparison of microCT and histomorphometry for evaluation of osseointegration of PEO-coated titanium implants in a rat model. Sci Rep 7(1):16270

    Article  PubMed  PubMed Central  Google Scholar 

  9. Muller R (2009) Hierarchical microimaging of bone structure and function. Nat Rev Rheumatol 5(7):373–381

    Article  PubMed  Google Scholar 

  10. Nooh N, Abdullah WA, Mohammed El-Awady Grawish MEA et al (2014) Evaluation of bone regenerative capacity following distraction osteogenesis of goat mandibles using two different bone cutting techniques. J Craniomaxillofac Surg 42(3):255–261

    Article  PubMed  Google Scholar 

  11. Miyazaki M, Yonemitsu I, Takei M et al (2016) The imbalance of masticatory muscle activity affects the asymmetric growth of condylar cartilage and subchondral bone in rats. Arch Oral Biol 63:22–31

    Article  PubMed  Google Scholar 

  12. Soares MQS, Van Dessel J, Jacobs R et al (2018) Zoledronic acid induces site-specific structural changes and decreases vascular area in the alveolar bone. J Oral Maxillofac Surg 76(9):1893–1901

    Article  PubMed  Google Scholar 

  13. He T, Cao C, Xu Z et al (2017) A comparison of micro-CT and histomorphometry for evaluation of osseointegration of PEO-coated titanium implants in a rat model. Sci Rep 7(1):16270

    Article  PubMed  PubMed Central  Google Scholar 

  14. Márton K, Tamás SB, Orsolya N et al (2018) Microarchitecture of the augmented bone following sinus elevation with an albumin impregnated demineralized freeze-dried bone allograft (bonealbumin) versus anorganic bovine bone mineral: a randomized prospective clinical, histomorphometric, and micro-computed tomography study. Materials 11(2):202

    Article  PubMed Central  Google Scholar 

  15. Mancini M, Casamitjana A, Peter L et al (2020) A multimodal computational pipeline for 3D histology of the human brain. Sci Rep 10(1):13839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Herisson F, Frodermann V, Courties G et al (2018) Direct vascular channels connect skull bone marrow and the brain surface enabling myeloid cell migration. Nat Neurosci 21(9):1209–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bouxsein ML, Boyd SK, Christiansen BA et al (2010) Guidelines for assessment of bone microstructure in rodents using micro–computed tomography. J Bone Miner Res 25(7):1468–1486

    Article  PubMed  Google Scholar 

  18. Vieira AE, Repeke CE, Ferreira Junior SB et al (2015) Intramembranous bone healing process subsequent to tooth extraction in mice: micro-computed tomography, histomorphometric and molecular characterization. PLoS One 10(5):e0128021

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wilkie AO, Morriss-Kay GM (2001) Genetics of craniofacial development and malformation. Nat Rev Genet 2(6):458–468

    Article  CAS  PubMed  Google Scholar 

  20. Coutel X, Olejnik C, Marchandise P et al (2018) A novel microCT method for bone and marrow adipose tissue alignment identifies key differences between mandible and tibia in rats. Calcif Tissue Int 103(2):189–197

    Article  CAS  PubMed  Google Scholar 

  21. Zhou S, Yang Y, Ha N et al (2018) The specific morphological features of alveolar bone. J Craniofac Surg 29(5):1216–1219

    Article  PubMed  Google Scholar 

  22. Chatterjee M, Faot F, Correa C et al (2017) A robust methodology for the quantitative assessment of the rat jawbone microstructure. Int J Oral Sci 9(2):87–94

    Article  PubMed  PubMed Central  Google Scholar 

  23. Odgaard A (1997) Three-dimensional methods for quantification of cancellous bone architecture. Bone 20(4):315–328

    Article  CAS  PubMed  Google Scholar 

  24. Liu Y, Li Z, Arioka M et al (2019) WNT3A accelerates delayed alveolar bone repair in ovariectomized mice. Osteoporos Int 30(9):1873–1885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mohsin S, Kaimala S, Sunny JJ et al (2019) Type 2 diabetes mellitus increases the risk to hip fracture in postmenopausal osteoporosis by deteriorating the trabecular bone microarchitecture and bone mass. J Diabetes Res 2019:3876957

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hopson MB, Onishi M, Awad D et al (2020) Prospective study evaluating changes in bone quality in premenopausal women with breast cancer undergoing adjuvant chemotherapy. Clin Breast Cancer 20(3):e327–e333

    Article  CAS  PubMed  Google Scholar 

  27. Han X, Cui J, Xie K et al (2020) Association between knee alignment, osteoarthritis disease severity, and subchondral trabecular bone microarchitecture in patients with knee osteoarthritis: a cross-sectional study. Arthritis Res Ther 22(1):203

    Article  PubMed  PubMed Central  Google Scholar 

  28. Deng T-G, Liu C-K, Liu P et al (2016) Influence of the lateral pterygoid muscle on traumatic temporomandibular joint bony ankylosis. BMC Oral Health 16(1):62

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chen J, Gupta T, Barasz JA et al (2009) Analysis of microarchitectural changes in a mouse temporomandibular joint osteoarthritis model. Arch Oral Biol 54(12):1091–1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bouloux GF (2018) The use of synovial fluid analysis for diagnosis of temporomandibular joint disorders. Oral Maxillofac Surg Clin North Am 30(3):251–256

    Article  PubMed  Google Scholar 

  31. Hasin Y, Seldin M, Lusis A (2017) Multi-omics approaches to disease. Genome Biol 18(1):83

    Article  PubMed  PubMed Central  Google Scholar 

  32. Tommasini SM, Hu B, Nadeau JH et al (2009) Phenotypic integration among trabecular and cortical bone traits establishes mechanical functionality of inbred mouse vertebrae. J Bone Miner Res 24(4):606–620

    Article  PubMed  Google Scholar 

  33. Hahn M, Vogel M, Pompesius-Kempa M et al (1992) Trabecular bone pattern factor—a new parameter for simple quantification of bone microarchitecture. Bone 13(4):327–330

    Article  CAS  PubMed  Google Scholar 

  34. Whittier DE, Boyd SK, Burghardt AJ (2020) Guidelines for the assessment of bone density and microarchitecture in vivo using high-resolution peripheral quantitative computed tomography. Osteoporos Int 31(9):1607–1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Donnelly E (2011) Methods for assessing bone quality: a review. Clin Orthop Relat Res 469(8):2128–2138

    Article  PubMed  Google Scholar 

  36. Henning AL, Jiang MX, Yalcin HC, Butcher JT (2011) Quantitative three-dimensional imaging of live avian embryonic morphogenesis via micro-computed tomography. Dev Dyn 240:1949–1957

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gregg CL, Recknagel AK, Butcher JT (2015) Micro/nano-computed tomography technology for quantitative dynamic, multi-scale imaging of morphogenesis. Methods Mol Biol 1189:47–61

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gregg CL, Butcher JT (2016) Comparative analysis of metallic nanoparticles as exogenous soft tissue contrast for live in vivo micro-computed tomography imaging of avian embryonic morphogenesis. Dev Dyn 245:1001–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Peyrin F, Dong P, Pacureanu A, Langer M (2014) Micro- and nano-CT for the study of bone ultrastructure. Curr Osteoporos Rep 12(4):465–474

    Article  PubMed  Google Scholar 

  40. Langer M, Peyrin F (2016) 3D X-ray ultra-microscopy of bone tissue. Osteoporos Int 27(2):441–455

    Article  CAS  PubMed  Google Scholar 

  41. Tu SJ, Wang SP, Cheng FC et al (2017) Attenuating trabecular morphology associated with low magnesium diet evaluated using micro computed tomography. PLoS One 12(4):e0174806

    Article  PubMed  PubMed Central  Google Scholar 

  42. Papageorgiou M, Föger-Samwald U, Wahl K et al (2020) Age- and strain-related differences in bone microstructure and body composition during development in inbred male mouse strains. Calcif Tissue Int 106:431–443

    Article  CAS  PubMed  Google Scholar 

  43. Thomas CDL, Feik SA, Clement JG (2006) Increase in pore area, and not pore density, is the main determinant in the development of porosity in human cortical bone. J Anat 209:219–230

    Article  PubMed  PubMed Central  Google Scholar 

  44. Nakashima D, Ishii K, Nishiwaki Y et al (2019) Quantitative CT-based bone strength parameters for the prediction of novel spinal implant stability using resonance frequency analysis: a cadaveric study involving experimental micro-CT and clinical multislice CT. Eur Radiol Exp 3(1):1

    Article  PubMed  PubMed Central  Google Scholar 

  45. Nazarian A, von Stechow D, Zurakowski D et al (2008) Bone volume fraction explains the variation in strength and stiffness of cancellous bone affected by metastatic cancer and osteoporosis. Calcif Tissue Int 83(6):368–379

    Article  CAS  PubMed  Google Scholar 

  46. Cesara R, Boffaa RS, Fachineb LT et al (2013) Evaluation of trabecular microarchitecture of normal osteoporotic and osteopenic human vertebrae. Procedia Eng 59:6–15

    Article  Google Scholar 

  47. Samelson EJ, Broe KE, Xu H (2019) Cortical and trabecular bone microarchitecture as an independent predictor of incident fracture risk in older women and men in the Bone Microarchitecture International Consortium (BoMIC): a prospective study. Lancet Diabetes Endocrinol 7(1):34–43

    Article  PubMed  Google Scholar 

  48. Salmon PL, Ohlsson C, Shefelbine SJ et al (2015) Structure model index does not measure rods and plates in trabecular bone. Front Endocrinol 6:162

    Article  Google Scholar 

  49. QRM (2020) Phantoms for your needs. https://www.qrm.de/content/products/microct/microct_ha.htm. Accessed 20 Nov 2020

  50. Hayman JA, Callahan JW, Herschtal A et al (2011) Distribution of proliferating bone marrow in adult cancer patients determined using FLT-PET imaging. Int J Radiat Oncol Biol Phys 79(3):847–852

    Article  CAS  PubMed  Google Scholar 

  51. Lindhe J, Bressan E, Cecchinato D et al (2013) Bone tissue in different parts of the edentulous maxilla and mandible. Clin Oral Implants Res 24(4):372–377

    Article  PubMed  Google Scholar 

  52. Nicholson EK, Stock SR, Hamrick MW et al (2006) Biomineralization and adaptive plasticity of the temporomandibular joint in myostatin knockout mice. Arch Oral Biol 51(1):37–49

    Article  CAS  PubMed  Google Scholar 

  53. Sriram D, Jones A, Alatli-Burt I et al (2009) Effects of mechanical stimuli on adaptive remodeling of condylar cartilage. J Dent Res 88(5):466–470

    Article  CAS  PubMed  Google Scholar 

  54. Coutel X, Delattre J, Marchandise P et al (2019) Mandibular bone is protected against microarchitectural alterations and bone marrow adipose conversion in ovariectomized rats. Bone 2019(127):343–352

    Article  Google Scholar 

  55. Zhuang L, Bai Y, Meng X (2011) Three-dimensional morphology of root and alveolar trabecular bone during tooth movement using micro-computed tomography. Angle Orthod 81(3):420–425

    Article  PubMed  Google Scholar 

  56. Kabel J, Odgaard A, Van Rietbergen B et al (1999) Connectivity and the elastic properties of cancellous bone. Bone 24(2):115–120

    Article  CAS  PubMed  Google Scholar 

  57. Mann C, Ranjitkar S, Lekkas D et al (2014) Three-dimensional profilometric assessment of early enamel erosion simulating gastric regurgitation. J Dent 42(11):1411–1421

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been supported by grants from the Australian Dental Research Foundation and the Australian Craniomaxillofacial Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarbin Ranjitkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tan, J., Labrinidis, A., Williams, R., Mian, M., Anderson, P.J., Ranjitkar, S. (2022). Micro-CT–Based Bone Microarchitecture Analysis of the Murine Skull. In: Dworkin, S. (eds) Craniofacial Development. Methods in Molecular Biology, vol 2403. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1847-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1847-9_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1846-2

  • Online ISBN: 978-1-0716-1847-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics