Skip to main content

Possible Biomarkers for Frontotemporal Dementia and to Differentiate from Alzheimer’s Disease and Amyotrophic Lateral Sclerosis

  • Protocol
  • First Online:
Neurodegenerative Diseases Biomarkers

Part of the book series: Neuromethods ((NM,volume 173))

  • 1376 Accesses

Abstract

Though not as well-known as Alzheimer’s disease, yet with a prevalence of 15–22/100,000, and an incidence 2.7–4.1/100,000 cases per year, frontotemporal dementia is a grave, chronic neurodegenerative disorder with low life expectancy, a survival comparable to that of Alzheimer’s disease, and a distressing clinical course for patients as well as family and caregivers. Given that some pathological features in many neurodegenerative diseases are convergent, coupled with the fact that treatment for one specific disease may worsen outcome if misdiagnosed for another, the need for sensitive and specific biomarkers has garnered the attention of physicians and neuroscientists alike. Here, we explore the clinical presentation of frontotemporal dementia with a focus on behavioral manifestations. We also discuss neuroanatomy and specific symptomology as a guiding diagnostic tool given that affected regions of the cortex are responsible for certain movements, motivation, reward processing, decision making, executive function, expression, language functions, social inhibition, and many of the complex social functions. Finally, we review the most commonly used biomarkers in the workup and assessment of neurodegenerative disorders, with a focus on both structural and biofluid markers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jellinger KA (2010) Should the word ‘dementia’ be forgotten? J Cell Mol Med 14(10):2415–2416

    Article  PubMed  PubMed Central  Google Scholar 

  2. Graff-Radford NR, Woodruff BK (2007) Frontotemporal dementia. Semin Neurol 27(1):48–57

    Article  PubMed  Google Scholar 

  3. Bain HDC et al (2019) The role of lysosomes and autophagosomes in frontotemporal lobar degeneration. Neuropathol Appl Neurobiol 45(3):244–261

    Article  CAS  PubMed  Google Scholar 

  4. Pick A (1892) Uber die Beziehungen der senilen Hirnatrophie zur Aphasie. Prag Med Wochenschr 17:165–167

    Google Scholar 

  5. Bergeron C, Davis A, Lang AE (1998) Corticobasal ganglionic degeneration and progressive supranuclear palsy presenting with cognitive decline. Brain Pathol 8(2):355–365

    Article  CAS  PubMed  Google Scholar 

  6. Kertesz A, Munoz D (2004) Relationship between frontotemporal dementia and corticobasal degeneration/progressive supranuclear palsy. Dement Geriatr Cogn Disord 17(4):282–286

    Article  PubMed  Google Scholar 

  7. Kertesz A (2003) Pick complex: an integrative approach to frontotemporal dementia: primary progressive aphasia, corticobasal degeneration, and progressive supranuclear palsy. Neurologist 9(6):311–317

    Article  PubMed  Google Scholar 

  8. Onyike CU, Diehl-Schmid J (2013) The epidemiology of frontotemporal dementia. Int Rev Psychiatry 25(2):130–137

    Article  PubMed  PubMed Central  Google Scholar 

  9. Galvin JE et al (2017) The social and economic burden of frontotemporal degeneration. Neurology 89(20):2049–2056

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kaizik C et al (2017) Factors underpinning caregiver burden in frontotemporal dementia differ in spouses and their children. J Alzheimers Dis 56(3):1109–1117

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mioshi E et al (2009) Factors underlying caregiver stress in frontotemporal dementia and Alzheimer’s disease. Dement Geriatr Cogn Disord 27(1):76–81

    Article  PubMed  Google Scholar 

  12. Diehl-Schmid J et al (2013) Caregiver burden and needs in frontotemporal dementia. J Geriatr Psychiatry Neurol 26(4):221–229

    Article  PubMed  Google Scholar 

  13. Riedijk SR et al (2006) Caregiver burden, health-related quality of life and coping in dementia caregivers: a comparison of frontotemporal dementia and Alzheimer’s disease. Dement Geriatr Cogn Disord 22(5–6):405–412

    Article  CAS  PubMed  Google Scholar 

  14. Gossye H, Van Broeckhoven C, Engelborghs S (2019) The use of biomarkers and genetic screening to diagnose frontotemporal dementia: evidence and clinical implications. Front Neurosci 13:757

    Article  PubMed  PubMed Central  Google Scholar 

  15. Boeve BF (2007) Links between frontotemporal lobar degeneration, corticobasal degeneration, progressive supranuclear palsy, and amyotrophic lateral sclerosis. Alzheimer Dis Assoc Disord 21(4):S31–S38

    Article  PubMed  Google Scholar 

  16. Jalilianhasanpour R et al (2019) Functional connectivity in neurodegenerative disorders: Alzheimer’s disease and frontotemporal dementia. Top Magn Reson Imaging 28(6):317–324

    Article  PubMed  Google Scholar 

  17. Bang J, Spina S, Miller BL (2015) Frontotemporal dementia. Lancet 386(10004):1672–1682

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lanata SC, Miller BL (2016) The behavioural variant frontotemporal dementia (bvFTD) syndrome in psychiatry. J Neurol Neurosurg Psychiatry 87(5):501–511

    Article  PubMed  Google Scholar 

  19. Lee GJ et al (2014) Neuroanatomical correlates of emotional blunting in behavioral variant frontotemporal dementia and early-onset Alzheimer’s disease. J Alzheimers Dis 41(3):793–800

    Article  PubMed  PubMed Central  Google Scholar 

  20. Migliaccio R et al (2020) Cognitive and behavioural inhibition deficits in neurodegenerative dementias. Cortex 131:265–283

    Article  PubMed  PubMed Central  Google Scholar 

  21. Daianu M et al (2015) Communication of brain network core connections altered in behavioral variant frontotemporal dementia but possibly preserved in early-onset Alzheimer’s disease. Proc SPIE Int Soc Opt Eng 9413:941322

    PubMed  PubMed Central  Google Scholar 

  22. Nielsen JA et al (2013) An evaluation of the left-brain vs. right-brain hypothesis with resting state functional connectivity magnetic resonance imaging. PLoS One 8(8):e71275–e71275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Haas LF (2001) Phineas gage and the science of brain localisation. J Neurol Neurosurg Psychiatry 71(6):761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Torregrossa MM, Quinn JJ, Taylor JR (2008) Impulsivity, compulsivity, and habit: the role of orbitofrontal cortex revisited. Biol Psychiatry 63(3):253–255

    Article  PubMed  PubMed Central  Google Scholar 

  25. Perry A et al (2016) The role of the orbitofrontal cortex in regulation of interpersonal space: evidence from frontal lesion and frontotemporal dementia patients. Soc Cogn Affect Neurosci 11(12):1894–1901

    Article  PubMed  PubMed Central  Google Scholar 

  26. Moll J et al (2011) Impairment of prosocial sentiments is associated with frontopolar and septal damage in frontotemporal dementia. Neuroimage 54(2):1735–1742

    Article  PubMed  Google Scholar 

  27. Eslinger PJ, Damasio AR (1985) Severe disturbance of higher cognition after bilateral frontal lobe ablation: patient EVR. Neurology 35(12):1731–1741

    Article  CAS  PubMed  Google Scholar 

  28. Edwards-Lee T et al (1997) The temporal variant of frontotemporal dementia. Brain 120(Pt 6):1027–1040

    Article  PubMed  Google Scholar 

  29. Van Horn JD et al (2012) Mapping connectivity damage in the case of Phineas gage. PLoS One 7(5):e37454–e37454

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Strong MJ et al (2017) Amyotrophic lateral sclerosis—frontotemporal spectrum disorder (ALS-FTSD): revised diagnostic criteria. In: Amyotrophic lateral sclerosis & frontotemporal degeneration, vol 18, pp 153–174

    Google Scholar 

  31. Woolley SC, Strong MJ (2015) Frontotemporal dysfunction and dementia in amyotrophic lateral sclerosis. Neurol Clin 33(4):787–805

    Article  PubMed  Google Scholar 

  32. Kumar A et al (2021) Alzheimer disease. In: StatPearls. StatPearls Publishing Copyright © 2021, StatPearls Publishing LLC, Treasure Island, FL

    Google Scholar 

  33. Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3):189–198

    Article  CAS  PubMed  Google Scholar 

  34. Scott KR, Barrett AM (2007) Dementia syndromes: evaluation and treatment. Expert Rev Neurother 7(4):407–422

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bott NT et al (2014) Frontotemporal dementia: diagnosis, deficits and management. Neurodegen Dis Manag 4(6):439–454

    Article  Google Scholar 

  36. Pottier C et al (2018) Potential genetic modifiers of disease risk and age at onset in patients with frontotemporal lobar degeneration and GRN mutations: a genome-wide association study. Lancet Neurol 17(6):548–558

    Article  PubMed  PubMed Central  Google Scholar 

  37. Paulson HL, Igo I (2011) Genetics of dementia. Semin Neurol 31(5):449–460

    Article  PubMed  Google Scholar 

  38. Feng S-M et al (2019) Novel mutation in optineurin causing aggressive ALS+/−frontotemporal dementia. Ann Clin Transl Neurol 6(12):2377–2383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gijselinck I et al (2015) Loss of TBK1 is a frequent cause of frontotemporal dementia in a Belgian cohort. Neurology 85(24):2116–2125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hu WT, Grossman M (2009) TDP-43 and frontotemporal dementia. Curr Neurol Neurosci Rep 9(5):353–358

    Article  CAS  PubMed  Google Scholar 

  41. Rohrer JD et al (2011) Clinical and neuroanatomical signatures of tissue pathology in frontotemporal lobar degeneration. Brain 134(Pt 9):2565–2581

    Article  PubMed  PubMed Central  Google Scholar 

  42. Thordardottir S et al (2017) The effects of different familial Alzheimer’s disease mutations on APP processing in vivo. Alzheimers Res Ther 9(1):9–9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Harper L et al (2016) MRI visual rating scales in the diagnosis of dementia: evaluation in 184 post-mortem confirmed cases. Brain 139(Pt 4):1211–1225

    Article  PubMed  PubMed Central  Google Scholar 

  44. Grossman M (2010) Biomarkers in frontotemporal lobar degeneration. Curr Opin Neurol 23(6):643–648

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bruun M et al (2019) Detecting frontotemporal dementia syndromes using MRI biomarkers. NeuroImage Clin 22:101711–101711

    Article  PubMed  PubMed Central  Google Scholar 

  46. Del Sole A, Malaspina S, Magenta Biasina A (2016) Magnetic resonance imaging and positron emission tomography in the diagnosis of neurodegenerative dementias. Funct Neurol 31(4):205–215

    PubMed  Google Scholar 

  47. Meeter LH et al (2017) Imaging and fluid biomarkers in frontotemporal dementia. Nat Rev Neurol 13(7):406–419

    Article  CAS  PubMed  Google Scholar 

  48. Hohenfeld C, Werner CJ, Reetz K (2018) Resting-state connectivity in neurodegenerative disorders: is there potential for an imaging biomarker? Neuroimage Clin 18:849–870

    Article  PubMed  PubMed Central  Google Scholar 

  49. Moguilner S et al (2018) Weighted symbolic dependence metric (wSDM) for fMRI resting-state connectivity: a multicentric validation for frontotemporal dementia. Sci Rep 8(1):11181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Mahoney CJ et al (2015) Longitudinal diffusion tensor imaging in frontotemporal dementia. Ann Neurol 77(1):33–46

    Article  PubMed  Google Scholar 

  51. Feis RA et al (2019) Multimodal MRI of grey matter, white matter, and functional connectivity in cognitively healthy mutation carriers at risk for frontotemporal dementia and Alzheimer’s disease. BMC Neurol 19(1):343–343

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lu PH et al (2014) Regional differences in white matter breakdown between frontotemporal dementia and early-onset Alzheimer’s disease. J Alzheimers Dis 39:261–269

    Article  PubMed  PubMed Central  Google Scholar 

  53. Mahoney CJ et al (2014) Profiles of white matter tract pathology in frontotemporal dementia. Hum Brain Mapp 35(8):4163–4179

    Article  PubMed  PubMed Central  Google Scholar 

  54. Tsai RM et al (2019) (18)F-flortaucipir (AV-1451) tau PET in frontotemporal dementia syndromes. Alzheimers Res Ther 11(1):13–13

    Article  PubMed  PubMed Central  Google Scholar 

  55. Martínez G et al (2017) 18F PET with florbetapir for the early diagnosis of Alzheimer’s disease dementia and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst Rev 11(11):CD012216–CD012216

    PubMed  Google Scholar 

  56. Deters KD et al (2014) Cerebral hypometabolism and grey matter density in MAPT intron 10 +3 mutation carriers. Am J Neurodegener Dis 3(3):103–114

    PubMed  PubMed Central  Google Scholar 

  57. Cistaro A et al (2014) The metabolic signature of C9ORF72-related ALS: FDG PET comparison with nonmutated patients. Eur J Nucl Med Mol Imaging 41(5):844–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Smith R et al (2016) 18F-AV-1451 tau PET imaging correlates strongly with tau neuropathology in MAPT mutation carriers. Brain 139(9):2372–2379

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ishii K (2014) PET approaches for diagnosis of dementia. Am J Neuroradiol 35(11):2030–2038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rascovsky K et al (2011) Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 134(Pt 9):2456–2477

    Article  PubMed  PubMed Central  Google Scholar 

  61. Lewczuk P et al (2018) Cerebrospinal fluid and blood biomarkers for neurodegenerative dementias: an update of the consensus of the task force on biological markers in psychiatry of the world Federation of Societies of biological psychiatry. World J Biol Psychiatry 19(4):244–328

    Article  PubMed  Google Scholar 

  62. Casoli T et al (2019) Cerebrospinal fluid biomarkers and cognitive status in differential diagnosis of frontotemporal dementia and Alzheimer’s disease. J Int Med Res 47(10):4968–4980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ritchie C et al (2014) Plasma and cerebrospinal fluid amyloid beta for the diagnosis of Alzheimer’s disease dementia and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst Rev 2014(6):CD008782

    PubMed Central  Google Scholar 

  64. Kasai T et al (2009) Increased TDP-43 protein in cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Acta Neuropathol 117(1):55–62

    Article  CAS  PubMed  Google Scholar 

  65. Spotorno N et al (2020) Plasma neurofilament light protein correlates with diffusion tensor imaging metrics in frontotemporal dementia. PLoS One 15(10):e0236384–e0236384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mattsson N et al (2017) Association of plasma neurofilament light with neurodegeneration in patients with Alzheimer disease. JAMA Neurol 74(5):557–566

    Article  PubMed  PubMed Central  Google Scholar 

  67. Sjögren M et al (2000) Cytoskeleton proteins in CSF distinguish frontotemporal dementia from AD. Neurology 54(10):1960–1964

    Article  PubMed  Google Scholar 

  68. Olsson B et al (2019) Association of cerebrospinal fluid neurofilament light protein levels with cognition in patients with dementia, motor neuron disease, and movement disorders. JAMA Neurol 76(3):318–325

    Article  PubMed  Google Scholar 

  69. Kao AW et al (2017) Progranulin, lysosomal regulation and neurodegenerative disease. Nat Rev Neurosci 18(6):325–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kessenbrock K et al (2008) Proteinase 3 and neutrophil elastase enhance inflammation in mice by inactivating antiinflammatory progranulin. J Clin Invest 118(7):2438–2447

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Tolkatchev D et al (2008) Structure dissection of human progranulin identifies well-folded granulin/epithelin modules with unique functional activities. Protein Sci 17(4):711–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nguyen AD et al (2018) Murine knockin model for progranulin-deficient frontotemporal dementia with nonsense-mediated mRNA decay. Proc Natl Acad Sci U S A 115(12):E2849–E2858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Baloh RH (2012) How do the RNA-binding proteins TDP-43 and FUS relate to amyotrophic lateral sclerosis and frontotemporal degeneration, and to each other? Curr Opin Neurol 25(6):701–707

    Article  CAS  PubMed  Google Scholar 

  74. Riku Y et al (2014) Lower motor neuron involvement in TAR DNA-binding protein of 43 kDa-related frontotemporal lobar degeneration and amyotrophic lateral sclerosis. JAMA Neurol 71(2):172–179

    Article  PubMed  Google Scholar 

  75. Steinacker P, Barschke P, Otto M (2019) Biomarkers for diseases with TDP-43 pathology. Mol Cell Neurosci 97:43–59

    Article  CAS  PubMed  Google Scholar 

  76. Shenouda M et al (2018) Mechanisms associated with TDP-43 neurotoxicity in ALS/FTLD. Adv Neurobiol 20:239–263

    Article  PubMed  Google Scholar 

  77. Liu YC, Chiang PM, Tsai KJ (2013) Disease animal models of TDP-43 proteinopathy and their pre-clinical applications. Int J Mol Sci 14(10):20079–20111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Huang C, Yan S, Zhang Z (2020) Maintaining the balance of TDP-43, mitochondria, and autophagy: a promising therapeutic strategy for neurodegenerative diseases. Transl Neurodegener 9(1):40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Huang C, Yan S, Zhang Z (2020) Maintaining the balance of TDP-43, mitochondria, and autophagy: a promising therapeutic strategy for neurodegenerative diseases. Transl Neurodegen 9(1):40

    Article  CAS  Google Scholar 

  80. Bannwarth S et al (2014) A mitochondrial origin for frontotemporal dementia and amyotrophic lateral sclerosis through CHCHD10 involvement. Brain 137(Pt 8):2329–2345

    Article  PubMed  PubMed Central  Google Scholar 

  81. Onesto E et al (2016) Gene-specific mitochondria dysfunctions in human TARDBP and C9ORF72 fibroblasts. Acta Neuropathol Commun 4(1):47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Dottori M et al (2017) Towards affordable biomarkers of frontotemporal dementia: a classification study via network’s information sharing. Sci Rep 7(1):3822

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bridget Martinez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Harker, D.M.R., Martinez, B., Dagda, R.K. (2022). Possible Biomarkers for Frontotemporal Dementia and to Differentiate from Alzheimer’s Disease and Amyotrophic Lateral Sclerosis. In: Peplow, P.V., Martinez, B., Gennarelli, T.A. (eds) Neurodegenerative Diseases Biomarkers. Neuromethods, vol 173. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1712-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1712-0_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1711-3

  • Online ISBN: 978-1-0716-1712-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics