Skip to main content

Synthesis and Assembly of Recombinant Collagen

  • Protocol
  • First Online:
Fibrous Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2347))

Abstract

Collagen represents the major structural protein of the extracellular matrix. The desired mechanical and biological performances of collagen that have led to its broad applications as a building block in a great deal of fields, such as tissue engineering, drug delivery, and nanodevices. The most direct way to obtain collagen is to separate and extract it from biological tissues, but these top-down methods are usually cumbersome, and the structure of collagen is usually destroyed during the preparation process. Moreover, there is currently no effective method to separate some scarce collagens (such as collagen from human beings). Alternatively, bottom-up assembly methods have been developed to obtain collagen assembly or their analogs. The collagen used in this type of method is usually obtained by genetic recombination. A distinct advantage of gene recombination is that the sequence structure of collagen can be directly customized, so its assembly mode can be regulated at the primary structure level, and then a collagen assembly with a predesigned configuration can be achieved. Additionally, insights into the assembly behavior of these specific structures provide a rational approach to understand the pathogenic mechanisms of collagen-associated diseases, such as diabetes. In this chapter, Type I collagen is used as an example to introduce the key methods and procedures of collagen recombination, and on this basis, we will introduce in detail the experimental protocols for further assembly of these recombinant proteins to specific structures, such as fibril.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Di Lullo GA, Sweeney SM, Korkko J, Ala-kokko L, San Antonio JD (2002) Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. J Biol Chem 277(6):4223–4231

    Article  Google Scholar 

  2. Sionkowska A, Skrzynski S, Smiechowski K, Kolodziejczak A (2017) The review of versatile application of collagen. Polym Adv Technol 28(1):4–9

    Article  CAS  Google Scholar 

  3. Cen L, Liu W, Cui L, Zhang W, Cao Y (2008) Collagen tissue engineering: development of novel biomaterials and applications. Pediatr Res 63:492–496

    Article  CAS  Google Scholar 

  4. Song WK, Liu D, Sun L, Li B, Hou H (2019) Physicochemical and biocompatibility properties of type I collagen from the skin of Nile tilapia (Oreochromis niloticus) for biomedical applications. Mar Drugs 17(3):137–151

    Article  CAS  Google Scholar 

  5. Ottani V, Martini D, Franchi M, Ruggeri A, Raspanti M (2002) Hierarchical structures in fibrillar collagens. Micron 33(7-8):587–596

    Article  CAS  Google Scholar 

  6. Liu Y, Kim Y, Dai L, Li N, Khan SO, Pashley DH, Tay FR (2011) Hierarchical and non-hierarchical mineralisation of collagen. Biomaterials 32(5):1291–1300

    Article  Google Scholar 

  7. O’Leary LE, Fallas JA, Bakota EL, Kang MK, Hartgerink JD (2011) Multi-hierarchical self-assembly of a collagen mimetic peptide from triple helix to nanofibre and hydrogel. Nat Chem 3(8):821–828

    Article  Google Scholar 

  8. Fratzl P (2008) Collagen: structure and mechanics. Springer US, New York

    Book  Google Scholar 

  9. Parenteau-Bareil R, Gauvin R, Berthod F (2010) Collagen-based biomaterials for tissue engineering applications. Materials 3(3):1863–1887

    Article  CAS  Google Scholar 

  10. Hafner AE, Gyori NG, Bench CA, Davis L, Saric A (2020) Modelling fibrillogenesis of collagen-mimetic molecules. 119(9):1791-1799

    Google Scholar 

  11. Abou Neel EA, Bozec L, Knowles JC, Syed O, Mudera V, Day R, Hyun JK (2013) Collagen--emerging collagen based therapies hit the patient. Adv Drug Deliv Rev 65(4):429–456

    Article  CAS  Google Scholar 

  12. Gomes S, Leonor IB, Mano JF, Reis RL, Kaplan DL (2012) Natural and genetically engineered proteins for tissue engineering. Prog Polym Sci 37(1):1–17

    Article  CAS  Google Scholar 

  13. Hulmes DJ, Jesior JC, Miller A, Berthet-Colominas C, Wolff C (1981) Electron microscopy shows periodic structure in collagen fibril cross sections. Proc Natl Acad Sci U S A 78(6):3567–3571

    Article  CAS  Google Scholar 

  14. Williams BR, Gelman RA, Poppke DC, Piez KA (1978) Collagen fibril formation. Optimal in vitro conditions and preliminary kinetic results. J Biol Chem 253(18):6578–6585

    Article  CAS  Google Scholar 

  15. Ling S, Chen W, Fan Y, Zheng K, Jin K, Yu H, Buehler MJ, Kaplan DL (2018) Biopolymer nanofibrils: structure, modeling, preparation, and applications. Prog Polym Sci 85:1–56

    Article  CAS  Google Scholar 

  16. Li Y, Asadi A, Monroe MR, Douglas E (2009) pH effects on collagen fibrillogenesis in vitro: electrostatic interactions and phosphate binding. Mater Sci Eng C 29(5):1643–1649

    Article  CAS  Google Scholar 

  17. Myllyharju J, Nokelainen M, Vuorela A, Kivirikko KI (2000) Expression of recombinant human type i-iii collagens in the yeast Pichia pastoris. Biochem Soc Trans 28(3):353–357

    Google Scholar 

  18. Parkinson J, Kadler KE, Brass A (1995) Simple physical model of collagen fibrillogenesis based on diffusion limited aggregation. J Mol Biol 247(4):823–831

    CAS  PubMed  Google Scholar 

  19. Foo CWP, Kaplan DL (2002) Genetic engineering of fibrous proteins: spider dragline silk and collagen. Adv Drug Deliv Rev 54(8):1131–1143

    Article  Google Scholar 

  20. Liu W, Merrett K, Griffith M, Fagerholm P, Dravida S, Heyne B, Scaiano JC, Watsky MA, Shinozaki N, Lagali N, Munger R, Li F (2008) Recombinant human collagen for tissue engineered corneal substitutes. Biomaterials 29(9):1147–1158

    Article  CAS  Google Scholar 

  21. Leikin S, Rau DC, Parsegian VA (1994) Direct measurement of forces between self-assembled proteins: temperature-dependent exponential forces between collagen triple helices. Proc Natl Acad Sci U S A 91(1):276–280

    Article  CAS  Google Scholar 

  22. Jiang F, Horber H, Howard J, Muller DJ (2004) Assembly of collagen into microribbons: effects of pH and electrolytes. J Struct Biol 148(3):268–278

    Article  CAS  Google Scholar 

  23. Han R, Zwiefka A, Caswell CC, Xu Y, Keene DR, Lukomska E, Zhao Z, Hook M, Lukomski S (2006) Assessment of prokaryotic collagen-like sequences derived from streptococcal Scl1 and Scl2 proteins as a source of recombinant GXY polymers. Appl Microbiol Biotechnol 72(1):109–115

    Article  CAS  Google Scholar 

  24. Nokelainen M, Tu H, Vuorela A, Notbohm H, Kivirikko KI, Myllyharju J (2001) High-level production of human type I collagen in the yeast Pichia pastoris. Yeast 18(9):797–806

    Article  CAS  Google Scholar 

  25. Fratzl P, Weinkamer R (2007) Nature’s hierarchical materials. Prog Mater Sci 52(8):1263–1334

    Article  CAS  Google Scholar 

  26. Leo L, Bridelli MG, Polverini E (2019) Insight on collagen self-assembly mechanisms by coupling molecular dynamics and UV spectroscopy techniques. Biophys Chem 253:106224

    Article  CAS  Google Scholar 

  27. Liu X, Zheng C, Luo X, Wang X, Jiang H (2019) Recent advances of collagen-based biomaterials: multi-hierarchical structure, modification and biomedical applications. Mater Sci Eng C 99:1509–1522

    Article  CAS  Google Scholar 

  28. Barthelat F, Yin Z, Buehler MJ (2016) Structure and mechanics of interfaces in biological materials. Nature Rev Mater 1:16007

    Article  CAS  Google Scholar 

  29. Abas M, Masry ME, Elgharably H (2020) Collagen in diabetic wound healing. In: Wound healing, tissue repair, and regeneration in diabetes. Elsevier, Amsterdam, pp 393–401

    Chapter  Google Scholar 

  30. Gu L, Shan T, Ma YX, Tay FR, Niu L (2019) Novel biomedical applications of crosslinked collagen. Trends Biotechnol 37(5):464–491

    Article  CAS  Google Scholar 

  31. Carvalho AM, Marques AP, Silva TH, Reis RL (2018) Evaluation of the potential of collagen from codfish skin as a biomaterial for biomedical applications. Mar Drugs 16(12):495

    Article  CAS  Google Scholar 

  32. Lee BA, Hudson AR, Shiwarski DJ, Tashman JW, Hinton TJ, Yerneni S, Bliley JM, Campbell PG, Feinberg AW (2019) 3D bioprinting of collagen to rebuild components of the human heart. Science 365:482–487

    Article  CAS  Google Scholar 

  33. Zhu S, Yuan Q, Yin T, You J, Gu Z, Xiong S, Hu Y (2018) Self-assembly of collagen-based biomaterials: preparation, characterizations and biomedical applications. J Mater Chem B 6(18):2650–2676

    Article  CAS  Google Scholar 

  34. Cisneros DA, Hung C, Franz CM, Muller DJ (2006) Observing growth steps of collagen self-assembly by time-lapse high-resolution atomic force microscopy. J Struct Biol 154(3):232–245

    Article  CAS  Google Scholar 

  35. Yang W, Meyers MA, Ritchie RO (2019) Structural architectures with toughening mechanisms in nature: a review of the materials science of type-I collagenous materials. Prog Mater Sci 103(6):425–483

    Article  Google Scholar 

  36. Vuorela A, Myllyharju J, Nissi R, Pihlajaniemi T, Kivirikko KI (1997) Assembly of human prolyl 4-hydroxylase and type III collagen in the yeast pichia pastoris: formation of a stable enzyme tetramer requires coexpression with collagen and assembly of a stable collagen requires coexpression with prolyl 4-hydroxylase. EMBO J 16(22):6702–6712

    Article  CAS  Google Scholar 

  37. Vuorela A, Myllyharju J, Pihlajaniemi T, Kivirikko KI (1999) Coexpression with collagen markedly increases the half-life of the recombinant human prolyl 4-hydroxylase tetramer in the yeast Pichia pastoris. Matrix Biol 18(5):519–522

    Article  CAS  Google Scholar 

  38. Myllyharju J, Lamberg A, Notbohm H, Fietzek PP, Pihlajaniemi T, Kivirikko KI (1997) Expression of wild-type and modified proα chains of human type I procollagen in insect cells leads to the formation of stable [α1(I)]2α2(I) collagen heterotrimers and [α1(I)]3 homotrimers but not [α2(I)]3 homotrimers. J Biol Chem 272(35):21824–21830

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China [grant numbers. 51973116, U1832109, 21935002], the Users with Excellence Program of Hefei Science Center CAS [grant number 2019HSC-UE003], the starting grant of ShanghaiTech University, and State Key Laboratory for Modification of Chemical Fibers and Polymer Materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Ren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhao, C., Xiao, Y., Ling, S., Pei, Y., Ren, J. (2021). Synthesis and Assembly of Recombinant Collagen. In: Ling, S. (eds) Fibrous Proteins. Methods in Molecular Biology, vol 2347. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1574-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1574-4_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1573-7

  • Online ISBN: 978-1-0716-1574-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics