Skip to main content

Molecular Biology Methods in Streptomyces rimosus, a Producer of Oxytetracycline

  • Protocol
  • First Online:
Antimicrobial Therapies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2296))

Abstract

Streptomyces rimosus is used for production of the broad-spectrum antibiotic oxytetracycline (OTC). S. rimosus belongs to Actinomyces species, a large group of microorganisms that produce diverse set of natural metabolites of high importance in many aspects of our life. In this chapter, we describe specific molecular biology methods and a classical homologous recombination approach for targeted in-frame deletion of a target gene or entire operon in S. rimosus genome. The presented protocols will guide you through the design of experiment and construction of homology arms and their cloning into appropriate vectors, which are suitable for gene-engineering work with S. rimosus. Furthermore, two different protocols for S. rimosus transformation are described including detailed procedure for targeted gene replacement via double crossover recombination event. Gene deletion is confirmed by colony PCR, and colonies are further characterized by cultivation and metabolite analysis. As the final step, we present in trans complementation of the deleted gene, to confirm functionality of the engineering approach achieved by gene disruption. A number of methodological steps and protocols are optimized for S. rimosus strains including the use of the selected reporter genes. Protocols described in this chapter can be applied for studying function of any individual gene product in diverse OTC-producing Streptomyces rimosus strains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baltz RH (2007) Antimicrobials from actinomycetes: back to the future. Microbe 2(3):125–131

    Google Scholar 

  2. Nelson ML, Levy SB (2011) The history of the tetracyclines. Ann N Y Acad Sci 1241:17–32. https://doi.org/10.1111/j.1749-6632.2011.06354.x

    Article  CAS  PubMed  Google Scholar 

  3. Petkovic H, Lukezic T, Suskovic J (2017) Biosynthesis of oxytetracycline by Streptomyces rimosus: past, present and future directions in the development of tetracycline antibiotics. Food Technol Biotechnol 55(1):3–13. https://doi.org/10.17113/ftb.55.01.17.4617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Church RF, Schaub RE, Weiss MJ (1971) Synthesis of 7-dimethylamino-6-demethyl-6-deoxytetracycline (minocycline) via 9-nitro-6-demethyl-6-deoxytetracycline. J Org Chem 36(5):723–725. https://doi.org/10.1021/jo00804a025

    Article  CAS  PubMed  Google Scholar 

  5. Nguyen F, Starosta AL, Arenz S, Sohmen D, Donhofer A, Wilson DN (2014) Tetracycline antibiotics and resistance mechanisms. Biol Chem 395(5):559–575. https://doi.org/10.1515/hsz-2013-0292

    Article  CAS  PubMed  Google Scholar 

  6. Schafer JJ, Goff DA (2008) Establishing the role of tigecycline in an era of antimicrobial resistance. Expert Rev Anti-Infect Ther 6(5):557–567. https://doi.org/10.1586/14787210.6.5.557

    Article  CAS  PubMed  Google Scholar 

  7. Chopra I, Roberts M (2001) Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 65(2): 232–260. https://doi.org/10.1128/mmbr.65.2.232-260.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. McCormick JRD, Reichenthal J, Johnson S, Sjolander NO (1963) Biosynthesis of the tetracyclines. VI. Total synthesis of a naphthacenic precursor: 1,3,10,11,12-pentahydroxynaphthacene-2-carboxamide. J Am Chem Soc 85(11):1694–1695

    Article  CAS  Google Scholar 

  9. McCormick JR, Joachim UH, Jensen ER, Johnson S, Sjolander NO (1965) Biosynthesis of the tetracyclines. VII. 4-Hydroxy-6-methylpretetramid, an intermediate accumulated by a blocked mutant of Streptomyces aureofaciens. J Am Chem Soc 87:1793–1794

    Article  CAS  PubMed  Google Scholar 

  10. McCormick JR, Jensen ER (1969) Biosynthesis of the tetracyclines. XII. Anhydrodemethylchlortetracycline from a mutant of Streptomyces aureofacients. J Am Chem Soc 91(1):206

    Article  CAS  PubMed  Google Scholar 

  11. Petkovic H, Cullum J, Hranueli D, Hunter IS, Peric-Concha N, Pigac J, Thamchaipenet A, Vujaklija D, Long PF (2006) Genetics of Streptomyces rimosus, the oxytetracycline producer. Microbiol Mol Biol Rev 70(3):704–728. https://doi.org/10.1128/mmbr.00004-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang W, Ames BD, Tsai SC, Tang Y (2006) Engineered biosynthesis of a novel amidated polyketide, using the malonamyl-specific initiation module from the oxytetracycline polyketide synthase. Appl Environ Microbiol 72(4):2573–2580. https://doi.org/10.1128/aem.72.4.2573-2580.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Petkovic H, Thamchaipenet A, Zhou LH, Hranueli D, Raspor P, Waterman PG, Hunter IS (1999) Disruption of an aromatase/ cyclase from the oxytetracycline gene cluster of Streptomyces rimosus results in production of novel polyketides with shorter chain lengths. J Biol Chem 274(46):32829–32834

    Article  CAS  PubMed  Google Scholar 

  14. Wang P, Bashiri G, Gao X, Sawaya MR, Tang Y (2013) Uncovering the enzymes that catalyze the final steps in oxytetracycline biosynthesis. J Am Chem Soc 135(19):7138–7141. https://doi.org/10.1021/ja403516u

    Article  CAS  PubMed  Google Scholar 

  15. Zhang W, Watanabe K, Wang CC, Tang Y (2007) Investigation of early tailoring reactions in the oxytetracycline biosynthetic pathway. J Biol Chem 282(35):25,717–25,725. https://doi.org/10.1074/jbc.M703437200

    Article  CAS  Google Scholar 

  16. Zhang W, Watanabe K, Cai X, Jung ME, Tang Y, Zhan J (2008) Identifying the minimal enzymes required for anhydrotetracycline biosynthesis. J Am Chem Soc 130(19):6068–6069. https://doi.org/10.1021/ja800951e

    Article  CAS  PubMed  Google Scholar 

  17. Pickens LB, Tang Y (2010) Oxytetracycline biosynthesis. J Biol Chem 285(36): 27509–27515. https://doi.org/10.1074/jbc.R110.130419R110.130419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Petković H, Lukežič T, Šušković J (2017) Biosynthesis of oxytetracycline by Streptomyces rimosus. Past, present and future directions in the development of tetracycline antibiotics. Food Technol Biotechnol 55(1):3–13. https://doi.org/10.17113/ftb.55.01.17.4617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang X, Yin S, Bai J, Liu Y, Fan K, Wang H, Yuan F, Zhao B, Li Z, Wang W (2019) Heterologous production of chlortetracycline in an industrial grade Streptomyces rimosus host. Appl Microbiol Biotechnol 103(16):6645–6655. https://doi.org/10.1007/s00253-019-09970-1

    Article  CAS  PubMed  Google Scholar 

  20. Carrillo Rincón AF, Magdevska V, Kranjc L, Fujs Š, Müller R, Petković H (2018) Production of extracellular heterologous proteins in Streptomyces rimosus, producer of the antibiotic oxytetracycline. Appl Microbiol Biotechnol 102(6):2607–2620. https://doi.org/10.1007/s00253-018-8793-z

    Article  CAS  PubMed  Google Scholar 

  21. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. John Innes Foundation, Norwich

    Google Scholar 

  22. Imamoto F, Schlessinger D (1974) Bearing of some recent results on the mechanisms of polarity and messenger RNA stability. Mol Gen Genet 135(1):29–38. https://doi.org/10.1007/bf00433898

    Article  CAS  PubMed  Google Scholar 

  23. Muttucumaru DG, Parish T (2004) The molecular biology of recombination in mycobacteria: what do we know and how can we use it? Curr Issues Mol Biol 6(2):145–157

    CAS  PubMed  Google Scholar 

  24. Bierman M, Logan R, O’Brien K, Seno ET, Rao RN, Schoner BE (1992) Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116(1):43–49

    Article  CAS  PubMed  Google Scholar 

  25. Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7(6): 1513–1523. https://doi.org/10.1093/nar/7.6.1513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pigac J, Schrempf H (1995) A simple and rapid method of transformation of Streptomyces rimosus R6 and other Streptomycetes by electroporation. Appl Environ Microbiol 61(1): 352–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chuang LY, Cheng YH, Yang CH (2013) Specific primer design for the polymerase chain reaction. Biotechnol Lett 35(10):1541–1549. https://doi.org/10.1007/s10529-013-1249-8

    Article  CAS  PubMed  Google Scholar 

  28. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12):1647–1649. https://doi.org/10.1093/bioinformatics/bts199

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bibb MJ, Ward JM, Hopwood DA (1978) Transformation of plasmid DNA into Streptomyces at high frequency. Nature 274(5669):398–400. https://doi.org/10.1038/274398a0

    Article  CAS  PubMed  Google Scholar 

  30. Pigac J, Hranueli D, Smokvina T, Alacević M (1982) Optimal cultural and physiological conditions for handling Streptomyces rimosus protoplasts. Appl Environ Microbiol 44(5): 1178–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mazy-Servais C, Baczkowski D, Dusart J (1997) Electroporation of intact cells of Streptomyces parvulus and Streptomyces vinaceus. FEMS Microbiol Lett 151(2):135–138. https://doi.org/10.1111/j.1574-6968.1997.tb12561.x

    Article  CAS  PubMed  Google Scholar 

  32. Hranueli D, Pigac J, Smokvina T, Alacevic M (1983) Genetic interactions in Streptomyces rimosus mediated by conjugation and by protoplast fusion. J Gen Microbio 129(5): 1415–1422. https://doi.org/10.1099/00221287-129-5-1415

    Article  CAS  Google Scholar 

  33. Phornphisutthimas S, Sudtachat N, Bunyoo C, Chotewutmontri P, Panijpan B, Thamchaipenet A (2010) Development of an intergeneric conjugal transfer system for rimocidin-producing Streptomyces rimosus. Lett Appl Microbiol 50(5):530–536. https://doi.org/10.1111/j.1472-765X.2010.02835.x

    Article  CAS  PubMed  Google Scholar 

  34. MacNeil DJ (1988) Characterization of a unique methyl-specific restriction system in Streptomyces avermitilis. J Bacteriol 170(12): 5607–5612. https://doi.org/10.1128/jb.170.12.5607-5612.1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rebets Y, Kormanec J, Luzhetskyy A, Bernaerts K, Anné J (2017) Cloning and expression of metagenomic DNA in Streptomyces lividans and subsequent fermentation for optimized production. Methods Mol Biol (Clifton, NJ) 1539:99–144. https://doi.org/10.1007/978-1-4939-6691-2_8

    Article  CAS  Google Scholar 

  36. Muth G, Wohlleben W, Pühler A (1988) The minimal replicon of the Streptomyces ghanaensis plasmid pSG5 identified by subcloning and Tn5 mutagenesis. Mol Gen Genet 211(3):424–429. https://doi.org/10.1007/bf00425695

    Article  CAS  PubMed  Google Scholar 

  37. Muth G, Nußbaumer B, Wohlleben W, Pühler A (1989) A vector system with temperature-sensitive replication for gene disruption and mutational cloning in streptomycetes. Mol Gen Genet 219(3):341–348. https://doi.org/10.1007/bf00259605

    Article  CAS  Google Scholar 

  38. Hranueli D, Pigac J, Vesligaj M (1979) Characterization and persistence of actinophage RP2 isolated from Streptomyces rimosus ATCC 10970. J Gen Microbiol 114(2):295–303

    Article  CAS  PubMed  Google Scholar 

  39. Goranovic D, Kosec G, Mrak P, Fujs S, Horvat J, Kuscer E, Kopitar G, Petkovic H (2010) Origin of the allyl group in FK506 biosynthesis. J Biol Chem 285(19): 14,292–14,300. https://doi.org/10.1074/jbc.M109.059600

    Article  CAS  Google Scholar 

  40. Durajlija S, Pigac J, Gamulin V (1991) Construction of two stable bifunctional plasmids for Streptomyces spp. and Escherichia coli. FEMS Microbiol Lett 67(3):317–321. https://doi.org/10.1016/0378-1097(91)90495-v

    Article  CAS  PubMed  Google Scholar 

  41. Lydiate DJ, Malpartida F, Hopwood DA (1985) The Streptomyces plasmid SCP2*: its functional analysis and development into useful cloning vectors. Gene 35(3):223–235

    Article  CAS  PubMed  Google Scholar 

  42. Kieser T, Hopwood DA, Wright HM, Thompson CJ (1982) pIJ101, a multi-copy broad host-range Streptomyces plasmid: functional analysis and development of DNA cloning vectors. Mol Gen Genet 185(2):223–228

    Article  CAS  PubMed  Google Scholar 

  43. Magdevska V, Gaber R, Goranovic D, Kuscer E, Boakes S, Duran Alonso MB, Santamaria RI, Raspor P, Leadlay PF, Fujs S, Petkovic H (2010) Robust reporter system based on chalcone synthase rppA gene from Saccharopolyspora erythraea. J Microbiol Methods 83(2):111–119. https://doi.org/10.1016/j.mimet.2010.08.001S0167-7012(10)00253-8

    Article  CAS  PubMed  Google Scholar 

  44. Yin S, Wang X, Shi M, Yuan F, Wang H, Jia X, Sun J, Liu T, Yang K, Zhang Y, Fan K, Li Z (2017) Improvement of oxytetracycline production mediated via cooperation of resistance genes in Streptomyces rimosus. Sci China Life Sci 60(9):992–999. https://doi.org/10.1007/s11427-017-9121-4

    Article  CAS  PubMed  Google Scholar 

  45. Yin S, Wang W, Wang X, Zhu Y, Jia X, Li S, Yuan F, Zhang Y, Yang K (2015) Identification of a cluster-situated activator of oxytetracycline biosynthesis and manipulation of its expression for improved oxytetracycline production in Streptomyces rimosus. Microb Cell Factories 14(1):46. https://doi.org/10.1186/s12934-015-0231-7

    Article  CAS  Google Scholar 

  46. Myronovskyi M, Luzhetskyy A (2016) Native and engineered promoters in natural product discovery. Nat Prod Rep 33(8):1006–1019. https://doi.org/10.1039/c6np00002a

    Article  CAS  PubMed  Google Scholar 

  47. Wang X, Yin S, Bai J, Liu Y, Fan K, Wang H, Yuan F, Zhao B, Li Z, Wang W (2019) Heterologous production of chlortetracycline in an industrial grade Streptomyces rimosus host. App Microbiol Biotech. https://doi.org/10.1007/s00253-019-09970-1

  48. Horbal L, Siegl T, Luzhetskyy A (2018) A set of synthetic versatile genetic control elements for the efficient expression of genes in Actinobacteria. Sci Rep 8(1):491. https://doi.org/10.1038/s41598-017-18846-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Siegl T, Tokovenko B, Myronovskyi M, Luzhetskyy A (2013) Design, construction and characterisation of a synthetic promoter library for fine-tuned gene expression in actinomycetes. Metab Eng 19:98–106. https://doi.org/10.1016/j.ymben.2013.07.006

    Article  CAS  PubMed  Google Scholar 

  50. Myronovskyi M, Welle E, Fedorenko V, Luzhetskyy A (2011) Beta-glucuronidase as a sensitive and versatile reporter in actinomycetes. App Microbiol Biotech 77(15):5370–5383. https://doi.org/10.1128/aem.00434-11

    Article  CAS  Google Scholar 

  51. Sambrook J, Russell DW (2001) Molecular cloning. A laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  52. MacNeil DJ, Gewain KM, Ruby CL, Dezeny G, Gibbons PH, MacNeil T (1992) Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111(1):61–68

    Article  CAS  PubMed  Google Scholar 

  53. Skeggs PA, Holmes DJ, Cundliffe E (1987) Cloning of aminoglycoside-resistance determinants from Streptomyces tenebrarius and comparison with related genes from other actinomycetes. J Gen Microbiol 133(4): 915–923. https://doi.org/10.1099/00221287-133-4-915

    Article  CAS  PubMed  Google Scholar 

  54. Bechthold A, Floss HG (1994) Overexpression of the thiostrepton-resistance gene from Streptomyces azureus in Escherichia coli and characterization of recognition sites of the 23S rRNA A1067 2′-methyltransferase in the guanosine triphosphatase center of 23S ribosomal RNA. Eur J Biochem 224(2):431–437. https://doi.org/10.1111/j.1432-1033.1994.00431.x

    Article  CAS  PubMed  Google Scholar 

  55. Bibb MJ, White J, Ward JM, Janssen GR (1994) The mRNA for the 23S rRNA methylase encoded by the ermE gene of Saccharopolyspora erythraea is translated in the absence of a conventional ribosome-binding site. Mol Microbiol 14(3):533–545. https://doi.org/10.1111/j.1365-2958.1994.tb02187.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by European Union’s Horizon 2020 Research and Innovation Programme TOPCAPI (grant no. 720793) and by the project MISSION founded by the ERA CoBioTech partners, BMBF, MIZS, CDTI, and European Union. This work was also funded by the Slovenian Research Agency (ARRS) (grant no. J4-8226) and ARRS young research grant (grant no. 35220200570). We thank Vasilka Magdevska for figures demonstrating the use of reporter genes in S. rimosus .

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina Avbelj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Slemc, L., Pikl, Š., Petković, H., Avbelj, M. (2021). Molecular Biology Methods in Streptomyces rimosus, a Producer of Oxytetracycline. In: Barreiro, C., Barredo, JL. (eds) Antimicrobial Therapies. Methods in Molecular Biology, vol 2296. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1358-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1358-0_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1357-3

  • Online ISBN: 978-1-0716-1358-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics