Skip to main content

Advertisement

Log in

Murine Cytomegalovirus (MCMV) Infection Upregulates P38 MAP kinase in Aortas of Apo E KO Mice: a Molecular Mechanism for MCMV-Induced Acceleration of Atherosclerosis

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Multiple studies suggest an association between cytomegalovirus (CMV) infection and atherogenesis; however, the molecular mechanisms by which viral infection might exacerbate atherosclerosis are not well understood. Aortas of MCMV-infected and uninfected Apo E knockout (KO) mice were analyzed for atherosclerotic lesion development and differential gene expression. Lesions in the infected mice were larger and showed more advanced disease compared to the uninfected mice. Sixty percent of the genes in the MAPK pathway were upregulated in the infected mice. p38 and ERK 1/2 MAPK genes were 5.6- and 2.0-fold higher, respectively, in aortas of infected vs. uninfected mice. Levels of VCAM-1, ICAM-1, and MCP-1 were ~2.0–2.6-fold higher in aortas of infected vs. uninfected mice. Inhibition of p38 with SB203580 resulted in lower levels of pro-atherogenic molecules and MCMV viral load in aortas of infected mice. MCMV-induced upregulation of p38 may drive the virus-induced acceleration of atherogenesis observed in our model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ross, R. (1993). The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature, 362, 801–809.

    Article  PubMed  CAS  Google Scholar 

  2. Glass, C. K., & Witztum, J. L. (2001). Atherosclerosis. The road ahead. Cell, 104, 503–516.

    Article  PubMed  CAS  Google Scholar 

  3. Hansson, G. K., & Libby, P. (2006). The immune response in atherosclerosis: a double-edged sword. Nature Reviews Immunology, 6, 508–519.

    Article  PubMed  CAS  Google Scholar 

  4. Orange, J. S., & Biron, C. A. (1996). Characterization of early IL-12, IFN-alphabeta, and TNF effects on antiviral state and NK cell responses during murine cytomegalovirus infection. Journal of Immunology, 156, 4746–4756.

    CAS  Google Scholar 

  5. Tang-Feldman, Y. J., Wojtowicz, A., Lochhead, G. R., Hale, M. A., Li, Y., & Pomeroy, C. (2006). Use of quantitative real-time PCR (qRT-PCR) to measure cytokine transcription and viral load in murine cytomegalovirus infection. Journal of Virological Methods, 131, 122–129.

    Article  PubMed  CAS  Google Scholar 

  6. Ritter, J. T., Tang-Feldman, Y. J., Lochhead, G. R., Estrada, M., Lochhead, S., Yu, C., et al. (2010). In vivo characterization of cytokine profiles and viral load during murine cytomegalovirus-induced acute myocarditis. Cardiovascular Pathology, 19, 83–93.

    Article  PubMed  CAS  Google Scholar 

  7. Blum, A., Giladi, M., Weinberg, M., Kaplan, G., Pasternack, H., Laniado, S., et al. (1998). High anti-cytomegalovirus (CMV) IgG antibody titer is associated with coronary artery disease and may predict post-coronary balloon angioplasty restenosis. The American Journal of Cardiology, 81, 866–868.

    Article  PubMed  CAS  Google Scholar 

  8. Grattan, M. T., Moreno-Cabral, C. E., Starnes, V. A., Oyer, P. E., Stinson, E. B., & Shumway, N. E. (1989). Cytomegalovirus infection is associated with cardiac allograft rejection and atherosclerosis. Journal of the American Medical Association, 261, 3561–3566.

    Article  PubMed  CAS  Google Scholar 

  9. Espinola-Klein, C., Rupprecht, H. J., Blankenberg, S., Bickel, C., Kopp, H., Victor, A., et al. (2002). Impact of infectious burden on progression of carotid atherosclerosis. Stroke, 33, 2581–2586.

    Article  PubMed  CAS  Google Scholar 

  10. Hendrix, M. G., Dormans, P. H., Kitslaar, P., Bosman, F., & Bruggeman, C. A. (1989). The presence of cytomegalovirus nucleic acids in arterial walls of atherosclerotic and nonatherosclerotic patients. American Journal of Pathology, 134, 1151–1157.

    PubMed  CAS  Google Scholar 

  11. Zhou, Y. F., Guetta, E., Yu, Z. X., Finkel, T., & Epstein, S. E. (1996). Human cytomegalovirus increases modified low density lipoprotein uptake and scavenger receptor mRNA expression in vascular smooth muscle cells. The Journal of Clinical Investigation, 98, 2129–2138.

    Article  PubMed  CAS  Google Scholar 

  12. Hsich, E., Zhou, Y. F., Paigen, B., Johnson, T. M., Burnett, M. S., & Epstein, S. E. (2001). Cytomegalovirus infection increases development of atherosclerosis in Apolipoprotein-E knockout mice. Atherosclerosis, 156, 23–28.

    Article  PubMed  CAS  Google Scholar 

  13. Rodems, S. M., & Spector, D. H. (1998). Extracellular signal-regulated kinase activity is sustained early during human cytomegalovirus infection. Journal of Virology, 72, 9173–9180.

    PubMed  CAS  Google Scholar 

  14. Johnson, R. A., Ma, X. L., Yurochko, A. D., & Huang, E. S. (2001). The role of MKK1/2 kinase activity in human cytomegalovirus infection. Journal of General Virology, 82, 493–497.

    PubMed  CAS  Google Scholar 

  15. Johnson, R. A., Huong, S. M., & Huang, E. S. (2000). Activation of the mitogen-activated protein kinase p38 by human cytomegalovirus infection through two distinct pathways: a novel mechanism for activation of p38. Journal of Virology, 74, 1158–1167.

    Article  PubMed  CAS  Google Scholar 

  16. Hu, Y., Cheng, L., Hochleitner, B. W., & Xu, Q. (1997). Activation of mitogen-activated protein kinases (ERK/JNK) and AP-1 transcription factor in rat carotid arteries after balloon injury. Arteriosclerosis, Thrombosis, and Vascular Biology, 17, 2808–2816.

    Article  PubMed  CAS  Google Scholar 

  17. Fledderus, J. O., van Thienen, J. V., Boon, R. A., Dekker, R. J., Rohlena, J., Volger, O. L., et al. (2007). Prolonged shear stress and KLF2 suppress constitutive proinflammatory transcription through inhibition of ATF2. Blood, 109, 4249–4257.

    Article  PubMed  CAS  Google Scholar 

  18. Pomeroy, C., Hilleren, P. J., & Jordan, M. C. (1991). Latent murine cytomegalovirus DNA in splenic stromal cells of mice. Journal of Virology, 65, 3330–3334.

    PubMed  CAS  Google Scholar 

  19. Henry, S. C., Schmader, K., Brown, T. T., Miller, S. E., Howell, D. N., Daley, G. G., et al. (2000). Enhanced green fluorescent protein as a marker for localizing murine cytomegalovirus in acute and latent infection. Journal of Virological Methods, 89, 61–73.

    Article  PubMed  CAS  Google Scholar 

  20. Heise, M. T., & Virgin, H. W. (1995). The T-cell-independent role of gamma interferon and tumor necrosis factor alpha in macrophage activation during murine cytomegalovirus and herpes simplex virus infections. Journal of Virology, 69, 904–909.

    PubMed  CAS  Google Scholar 

  21. Kipar, A., Leutenegger, C. M., Hetzel, U., Akens, M. K., Mislin, C. N., Reinacher, M., et al. (2001). Cytokine mRNA levels in isolated feline monocytes. Veterinary Immunology and Immunopathology, 78, 305–315.

    Article  PubMed  CAS  Google Scholar 

  22. da Huang, W., Sherman, B. T., & Lempicki, R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 4, 44–57.

    Article  CAS  Google Scholar 

  23. da Huang, W., Sherman, B. T., & Lempicki, R. A. (2009). Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Research, 37, 1–13.

    Article  Google Scholar 

  24. Mayr, M., Kiechl, S., Willeit, J., Wick, G., & Xu, Q. (2000). Infections, immunity, and atherosclerosis: associations of antibodies to Chlamydia pneumoniae, Helicobacter pylori, and cytomegalovirus with immune reactions to heat-shock protein 60 and carotid or femoral atherosclerosis. Circulation, 102, 833–839.

    Article  PubMed  CAS  Google Scholar 

  25. Leskov, I. L., Whitsett, J., Vasquez-Vivar, J., & Stokes, K. Y. (2011). NAD(P)H oxidase and eNOS play differential roles in cytomegalovirus infection-induced microvascular dysfunction. Free Radical Biology & Medicine, 51, 2300–2308.

    Article  CAS  Google Scholar 

  26. Burnett, M. S., Durrani, S., Stabile, E., Saji, M., Lee, C. W., Kinnaird, T. D., et al. (2004). Murine cytomegalovirus infection increases aortic expression of proatherosclerotic genes. Circulation, 109, 893–897.

    Article  PubMed  CAS  Google Scholar 

  27. Vliegen, I., Stassen, F., Grauls, G., Blok, R., & Bruggeman, C. (2002). MCMV infection increases early T-lymphocyte influx in atherosclerotic lesions in apoE knockout mice. Journal of Clinical Virology, 25(Suppl 2), S159–S171.

    Article  PubMed  CAS  Google Scholar 

  28. Vliegen, I., Duijvestijn, A., Stassen, F., & Bruggeman, C. (2004). Murine cytomegalovirus infection directs macrophage differentiation into a pro-inflammatory immune phenotype: implications for atherogenesis. Microbes and Infection, 6, 1056–1062.

    Article  PubMed  CAS  Google Scholar 

  29. Vliegen, I., Herngreen, S. B., Grauls, G. E., Bruggeman, C. A., & Stassen, F. R. (2005). Mouse cytomegalovirus antigenic immune stimulation is sufficient to aggravate atherosclerosis in hypercholesterolemic mice. Atherosclerosis, 181, 39–44.

    Article  PubMed  CAS  Google Scholar 

  30. Stassen, F. R., Vega-Cordova, X., Vliegen, I., & Bruggeman, C. A. (2006). Immune activation following cytomegalovirus infection: more important than direct viral effects in cardiovascular disease? Journal of Clinical Virology, 35, 349–353.

    Article  PubMed  CAS  Google Scholar 

  31. Chen, Y., & Currie, R. W. (2005). Heat shock treatment suppresses angiotensin II-induced SP-1 and AP-1 and stimulates Oct-1 DNA-binding activity in heart. Inflammation Research, 54, 338–343.

    Article  PubMed  CAS  Google Scholar 

  32. Goebeler, M., Kilian, K., Gillitzer, R., Kunz, M., Yoshimura, T., Brocker, E. B., et al. (1999). The MKK6/p38 stress kinase cascade is critical for tumor necrosis factor-alpha-induced expression of monocyte-chemoattractant protein-1 in endothelial cells. Blood, 93, 857–865.

    PubMed  CAS  Google Scholar 

  33. Marin, V., Farnarier, C., Gres, S., Kaplanski, S., Su, M. S., Dinarello, C. A., et al. (2001). The p38 mitogen-activated protein kinase pathway plays a critical role in thrombin-induced endothelial chemokine production and leukocyte recruitment. Blood, 98, 667–673.

    Article  PubMed  CAS  Google Scholar 

  34. Domoto, K., Taniguchi, T., Takaishi, H., Takahashi, T., Fujioka, Y., Takahashi, A., et al. (2003). Chylomicron remnants induce monocyte chemoattractant protein-1 expression via p38 MAPK activation in vascular smooth muscle cells. Atherosclerosis, 171, 193–200.

    Article  PubMed  CAS  Google Scholar 

  35. Mei, S., Gu, H., Ward, A., Yang, X., Guo, H., He, K., et al. (2012). p38 mitogen-activated protein kinase (MAPK) promotes cholesterol ester accumulation in macrophages through inhibition of macroautophagy. Journal of Biological Chemistry, 287, 11761–11768.

    Article  PubMed  CAS  Google Scholar 

  36. Hall-Jackson, C. A., Goedert, M., Hedge, P., & Cohen, P. (1999). Effect of SB 203580 on the activity of c-Raf in vitro and in vivo. Oncogene, 18, 2047–2054.

    Article  PubMed  CAS  Google Scholar 

  37. Badger, A. M., Bradbeer, J. N., Votta, B., Lee, J. C., Adams, J. L., & Griswold, D. E. (1996). Pharmacological profile of SB 203580, a selective inhibitor of cytokine suppressive binding protein/p38 kinase, in animal models of arthritis, bone resorption, endotoxin shock and immune function. Journal of Pharmacology and Experimental Therapeutics, 279, 1453–1461.

    PubMed  CAS  Google Scholar 

  38. Hollenbach, E., Neumann, M., Vieth, M., Roessner, A., Malfertheiner, P., & Naumann, M. (2004). Inhibition of p38 MAP kinase- and RICK/NF-kappaB-signaling suppresses inflammatory bowel disease. The FASEB Journal, 18, 1550–1552.

    CAS  Google Scholar 

  39. Renda, T., Baraldo, S., Pelaia, G., Bazzan, E., Turato, G., Papi, A., et al. (2008). Increased activation of p38 MAPK in COPD. European Respiratory Journal, 31, 62–69.

    Article  PubMed  CAS  Google Scholar 

  40. Matsumoto, T., Yokote, K., Tamura, K., Takemoto, M., Ueno, H., Saito, Y., et al. (1999). Platelet-derived growth factor activates p38 mitogen-activated protein kinase through a Ras-dependent pathway that is important for actin reorganization and cell migration. Journal of Biological Chemistry, 274, 13954–13960.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Lucy Whittier Molecular Core Facility at the School of Veterinary Medicine, UC Davis, for excellent technical assistance with the RNA extraction and cDNA synthesis. We are grateful to Mr. Matthew Rolston at the UC Davis School of Medicine DNA Microarray Core Facility for assistance with the DNA microarray analyses.

This work was supported in part by an Innovative Development Award (YTF) from UC Davis Academic Federation and by grant UL1 RRO24146 from the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH) and NIH Road Map for Medical Research (CP), and the Frances Lazda Endowment in Women’s Cardiovascular Medicine (ACV).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yajarayma J. Tang-Feldman or Claire Pomeroy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

Canonical signaling pathways upregulated in Apo E Knockout mice compared to wild-type, C57BL/6. Figure is generated by the Ingenuity Pathway Analysis Software. (JPEG 143 kb)

Supplementary Figure 2

Effect of p38 inhibitor, SB203580, on c-Raf/MEK/ERK1/2 pathway. a mRNA levels of c-Raf in aortas of MCMV-infected, SB203580 treated and untreated Apo E KO mice; b mRNA levels of Map2K1 in aortas of MCMV-infected, SB203580 treated and untreated Apo E KO mice; c mRNA levels of ERK1/2 in aortas of MCMV-infected, SB203580 treated and untreated Apo E KO mice. (n = 5 mice treated vs. untreated). Mice were treated as described in “Materials and Methods”. (JPEG 25 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang-Feldman, Y.J., Lochhead, S.R., Lochhead, G.R. et al. Murine Cytomegalovirus (MCMV) Infection Upregulates P38 MAP kinase in Aortas of Apo E KO Mice: a Molecular Mechanism for MCMV-Induced Acceleration of Atherosclerosis. J. of Cardiovasc. Trans. Res. 6, 54–64 (2013). https://doi.org/10.1007/s12265-012-9428-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-012-9428-x

Keywords

Navigation