Skip to main content

Advertisement

Log in

The Viral Connection to Glioblastoma

  • Neurological Infections (J Lyons, Section Editor)
  • Published:
Current Infectious Disease Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The high incidence of and mortality from glioblastoma are matched by a lack of effective therapies. Previous research suggests an association between viral infection and glioma formation. In this manuscript, we review the available evidence for this association and the efficacy of treatment strategies targeted against viral infection.

Recent Findings

We find that while a wide array of viruses can drive glioma tumor formation in vitro and in xenograft models, the most convincing association is with the human Cytomegalovirus (HCMV). Detection of HCMV in glioblastoma resected from living patients suggests it may either drive gliomagenesis, support tumor growth, or reactivate silently in these tumors. However, there is conflicting evidence on its ubiquity and its role in tumor formation. Valganciclovir may extend survival in glioblastoma patients, though adequate data on its efficacy and mechanism of action are lacking. Immunotherapy provides the opportunity to specifically target the virus and possibly, glioblastoma, though there are no large, randomized trials testing its efficacy to date.

Summary

Overall, despite mounting evidence for an association between HCMV and glioblastoma, its role as an oncogenic factor and a therapeutic target remains controversial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ostrom QT, Gittleman H, Fulop J, Liu M, Blanda R, Kromer C, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008-2012. Neuro-Oncology. 2015;17 Suppl 4:iv1–62.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ostrom QT, Bauchet L, Davis FG, Deltour I, Fisher JL, Langer CE, et al. The epidemiology of glioma in adults: a “state of the science” review. Neuro-Oncology. 2014;16:896–913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shein HM. Neoplastic transformation of hamster astrocytes in vitro by simian virus 40 and polyoma virus. Science. 1968;159:1476–7.

    Article  CAS  PubMed  Google Scholar 

  4. Rabotti GF, Anderson WR, Sellers RL. Oncogenic activity of Mill Hill (Harris) strain of Rous sarcoma virus for hamsters. Nature. 1965;206:946–7.

    Article  CAS  PubMed  Google Scholar 

  5. Rapp F, Pauluzzi S, Waltz TA, Burdine JA, Matsen FA, Levy B. Induction of brain tumors in newborn hamsters by simian adenovirus SA7. Cancer Res. 1969;29:1173–8.

    CAS  PubMed  Google Scholar 

  6. Yung WK, Blank NK, Vick NA. “Glioblastoma”. Induction of a reproducible autochonous tumor in rats with murine sarcoma virus. Neurology. 1976;26:76–83.

    Article  CAS  PubMed  Google Scholar 

  7. Cobbs CS, Harkins L, Samanta M, Gillespie GY, Bharara S, King PH, et al. Human cytomegalovirus infection and expression in human malignant glioma. Cancer Res. 2002;62:3347–50. This study first detected human cytomegalovirus DNA, RNA and proteins in human glioblastoma post-surgical samples.

    CAS  PubMed  Google Scholar 

  8. Mitchell DA, Xie W, Schmittling R, Learn C, Friedman A, McLendon RE, et al. Sensitive detection of human cytomegalovirus in tumors and peripheral blood of patients diagnosed with glioblastoma. Neuro-Oncology. 2008;10:10–8.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lucas KG, Bao L, Bruggeman R, Dunham K, Specht C. The detection of CMV pp 65 and IE1 in glioblastoma multiforme. J Neurooncol. 2011;103:231–8.

    Article  CAS  PubMed  Google Scholar 

  10. Lau SK, Chen Y-Y, Chen W-G, Diamond DJ, Mamelak AN, Zaia JA, et al. Lack of association of cytomegalovirus with human brain tumors. Mod Pathol. 2005;18:838–43.

    Article  CAS  PubMed  Google Scholar 

  11. Poltermann S, Schlehofer B, Steindorf K, Schnitzler P, Geletneky K, Schlehofer JR. Lack of association of herpesviruses with brain tumors. J Neurovirol. 2006;12:90–9.

    Article  CAS  PubMed  Google Scholar 

  12. Priel E, Wohl A, Teperberg M, Nass D, Cohen ZR. Human cytomegalovirus viral load in tumor and peripheral blood samples of patients with malignant gliomas. J Clin Neurosci. 2015;22:326–30.

    Article  PubMed  Google Scholar 

  13. Lin C-TM, Leibovitch EC, Almira-Suarez MI, Jacobson S. Human herpesvirus multiplex ddPCR detection in brain tissue from low- and high-grade astrocytoma cases and controls. Infect Agent Cancer. 2016;11:32. BioMed Central.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Scheurer ME, El-Zein R, Bondy ML, Harkins L, Cobbs CS. RE: “Lack of association of herpesviruses with brain tumors”. J Neurovirol. 2007;13:85. author reply 86–7.

    Article  PubMed  Google Scholar 

  15. Poland SD, Costello P, Dekaban GA, Rice GP. Cytomegalovirus in the brain: in vitro infection of human brain-derived cells. J Infect Dis. 1990;162:1252–62.

    Article  CAS  PubMed  Google Scholar 

  16. Ogura T, Tanaka J, Kamiya S, Sato H, Ogura H, Hatano M. Human cytomegalovirus persistent infection in a human central nervous system cell line: production of a variant virus with different growth characteristics. J Gen Virol. 1986;67(Pt 12):2605–16.

    Article  PubMed  Google Scholar 

  17. Michaelis M, Doerr HW, Cinatl J. The story of human cytomegalovirus and cancer: increasing evidence and open questions. Neoplasia. 2009;11:1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stragliotto G, Rahbar A, Solberg NW, Lilja A, Taher C, Orrego A, et al. Effects of valganciclovir as an add-on therapy in patients with cytomegalovirus-positive glioblastoma: a randomized, double-blind, hypothesis-generating study. Int J Cancer. 2013;133:1204–13. This small, exploratory, double-blind, randomized control trial showed no benefit to adjuvant valganciclovir in regards to tumor progression, overall survival or progression free survival at 6 months.

    Article  CAS  PubMed  Google Scholar 

  19. Söderberg-Nauclér C, Rahbar A, Stragliotto G. Survival in patients with glioblastoma receiving valganciclovir. N Engl J Med. 2013;369:985–6. This retrospective analysis of the VIGAS trial, as well as other, non-study patients receiving valganciclovir, suggests a survival benefit to receiving at least 6 months of adjuvant valganciclovir.

    Article  PubMed  Google Scholar 

  20. Weller M, Soffietti R, Brada M. The legend of cytomegalovirus and glioblastoma lives on. Neuro-Oncology. 2014;16:166.

    Article  PubMed  Google Scholar 

  21. Liu C-J, Hu Y-W. Immortal time bias in retrospective analysis: is there a survival benefit in patients with glioblastoma who received prolonged treatment of adjuvant valganciclovir? Int J Cancer. 2014;135:250–1.

    Article  CAS  PubMed  Google Scholar 

  22. Söderberg-Nauclér C, Peredo I, Rahbar A, Hansson F, Nordlund A, Stragliotto G. Use of Cox regression with treatment status as a time-dependent covariate to re-analyze survival benefit excludes immortal time bias effect in patients with glioblastoma who received prolonged adjuvant treatment with valganciclovir. Int J Cancer. 2014;135:248–9.

    Article  PubMed  Google Scholar 

  23. Peng C, Wang J, Tanksley JP, Mobley BC, Ayers GD, Moots PL, et al. Valganciclovir and bevacizumab for recurrent glioblastoma: a single-institution experience. Mol Clin Oncol. 2016;4:154–8.

    PubMed  Google Scholar 

  24. Baryawno N, Rahbar A, Wolmer-Solberg N, Taher C, Odeberg J, Darabi A, et al. Detection of human cytomegalovirus in medulloblastomas reveals a potential therapeutic target. J Clin Invest. 2011;121:4043–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hellstrand K, Martner A, Bergström T. Valganciclovir in patients with glioblastoma. N Engl J Med. 2013;369:2066.

    Article  CAS  PubMed  Google Scholar 

  26. Söderberg-Nauclér C, Peredo I, Stragliotto G. Valganciclovir in patients with glioblastoma. N Engl J Med. 2013;369:2066–7.

    Article  PubMed  Google Scholar 

  27. Wrensch M, Weinberg A, Wiencke J, Miike R, Barger G, Kelsey K. Prevalence of antibodies to four herpesviruses among adults with glioma and controls. Am J Epidemiol. 2001;154:161–5.

    Article  CAS  PubMed  Google Scholar 

  28. Rahbar A, Peredo I, Solberg NW, Taher C, Dzabic M, Xu X, et al. Discordant humoral and cellular immune responses to Cytomegalovirus (CMV) in glioblastoma patients whose tumors are positive for CMV. OncoImmunology. 2015;4:e982391.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hadaczek P, Ozawa T, Soroceanu L, Yoshida Y, Matlaf L, Singer E, et al. Cidofovir: a novel antitumor agent for glioblastoma. Clin Cancer Res. 2013;19:6473–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kast RE, Ramiro S, Lladó S, Toro S, Coveñas R, Muñoz M. Antitumor action of temozolomide, ritonavir and aprepitant against human glioma cells. J Neurooncol. 2016;126:425–31. Springer US.

    Article  CAS  PubMed  Google Scholar 

  31. Prins RM, Cloughesy TF, Liau LM. Cytomegalovirus immunity after vaccination with autologous glioblastoma lysate. N Engl J Med. 2008;359:539–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mitchell DA, Batich KA, Gunn MD, Huang M-N, Sanchez-Perez L, Nair SK, et al. Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients. Nature. 2015;519:366–9. This small, double-blinded, randomized-control trial of vaccination with pp65-exposed dendritic cells (a HCMV antigen) after tetanus/diphteria toxin preconditioning showed increased progression-free survival and overall survival in glioblastoma patients.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nair SK, Sampson JH, Mitchell DA. Immunological targeting of cytomegalovirus for glioblastoma therapy. OncoImmunology. 2014;3:e29289.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Crough T, Beagley L, Smith C, Jones L, Walker DG, Khanna R. Ex vivo functional analysis, expansion and adoptive transfer of cytomegalovirus-specific T-cells in patients with glioblastoma multiforme. Immunol Cell Biol. 2012;90:872–80.

    Article  CAS  PubMed  Google Scholar 

  35. Schuessler A, Smith C, Beagley L, Boyle GM, Rehan S, Matthews K, et al. Autologous T-cell therapy for cytomegalovirus as a consolidative treatment for recurrent glioblastoma. Cancer Res. 2014;74:3466–76.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Derek H. Oakley of the Neuropathology Service, Department of Pathology, Massachusetts General Hospital, for fruitful discussions on many of the technical aspects discussed in this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ricardo McFaline-Figueroa.

Ethics declarations

Conflict of Interest

Dr. McFaline-Figueroa and Dr. Wen declare that they have no conflict of interest.

Additional information

This article is part of the Topical Collection on Neurological Infections

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McFaline-Figueroa, J.R., Wen, P.Y. The Viral Connection to Glioblastoma. Curr Infect Dis Rep 19, 5 (2017). https://doi.org/10.1007/s11908-017-0563-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11908-017-0563-z

Keywords

Navigation