Skip to main content

Assessing Rice Salinity Tolerance: From Phenomics to Association Mapping

  • Protocol
  • First Online:
Rice Genome Engineering and Gene Editing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2238))

Abstract

Rice is the most salt-sensitive cereal, suffering yield losses above 50% with soil salinity of 6 dS/m. Thus, understanding the mechanisms of rice salinity tolerance is key to address food security. In this chapter, we provide guidelines to assess rice salinity tolerance using a high-throughput phenotyping platform (HTP) with digital imaging at seedling/early tillering stage and suggest improved analysis methods using stress indices. The protocols described here also include computer scripts for users to improve their experimental design, run genome-wide association studies (GWAS), perform multi-testing corrections, and obtain the Manhattan plots, enabling the identification of loci associated with salinity tolerance. Notably, the computer scripts provided here can be used for any stress or GWAS experiment and independently of HTP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Roy SJ, Negrão S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotechnol 26:115–124

    Article  CAS  PubMed  Google Scholar 

  2. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol 59:651–681

    Article  CAS  Google Scholar 

  3. Negrão S, Schmockel SM, Tester M (2017) Evaluating physiological responses of plants to salinity stress. Ann Bot 119(1):1–11

    Article  PubMed  Google Scholar 

  4. Lutts S, Kinet JM, Bouharmont J (1995) Changes in plant response to NaCl during development of rice (Oryza sativa L) varieties differing in salinity resistance. J Exp Bot 46(293):1843–1852

    Article  CAS  Google Scholar 

  5. Yeo AR, Yeo ME, Flowers SA, Flowers TJ (1990) Screening of rice (Oryza-Sativa-L) genotypes for physiological characters contributing to salinity resistance, and their relationship to overall performance. Theor Appl Genet 79(3):377–384

    Article  CAS  PubMed  Google Scholar 

  6. Batayeva D, Labaco B, Ye C, Li X, Usenbekov B, Rysbekova A, Dyuskalieva G, Vergara G, Reinke R, Leung H (2018) Genome-wide association study of seedling stage salinity tolerance in temperate japonica rice germplasm. BMC Genet 19(1):e2

    Article  CAS  Google Scholar 

  7. Frouin J, Languillaume A, Mas J, Mieulet D, Boisnard A, Labeyrie A, Bettembourg M, Bureau C, Lorenzini E, Portefaix M, Turquay P, Vernet A, Périn C, Ahmadi N, Courtois B (2018) Tolerance to mild salinity stress in japonica rice: a genome-wide association mapping study highlights calcium signaling and metabolism genes. PLoS One 13(1):e0190964

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Kumar V, Singh A, Mithra SV, Krishnamurthy SL, Parida SK, Jain S, Tiwari KK, Kumar P, Rao AR, Sharma SK, Khurana JP, Singh NK, Mohapatra T (2015) Genome-wide association mapping of salinity tolerance in rice (Oryza sativa). DNA Res 22(2):133–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ahmadizadeh M, Vispo NA, Calapit-Palao CDO, Pangaan ID, Viña CD, Singh RK (2016) Reproductive stage salinity tolerance in rice: a complex trait to phenotype. Indian J Plant Physiol 21(4):528–536

    Article  Google Scholar 

  10. Hossain H, Rahman M, Alam M, Singh R (2015) Mapping of quantitative trait loci associated with reproductive-stage salt tolerance in rice. J Agron Crop Sci 201(1):17–31

    Article  CAS  Google Scholar 

  11. Gregorio GB, Senadhira D, Mendoza RD (1997) Screening rice for salinity tolerance, IRRI discussion paper series

    Google Scholar 

  12. Ismail AM, Horie T (2017) Genomics, physiology, and molecular breeding approaches for improving salt tolerance. Annu Rev Plant Biol 68:405–434

    Article  CAS  PubMed  Google Scholar 

  13. Fahlgren N, Gehan MA, Baxter I (2015) Lights, camera, action: high-throughput plant phenotyping is ready for a close-up. Curr Opin Plant Biol 24:93–99

    Article  PubMed  Google Scholar 

  14. Junker A, Muraya MM, Weigelt-Fischer K, Arana-Ceballos F, Klukas C, Melchinger AE, Meyer RC, Riewe D, Altmann T (2015) Optimizing experimental procedures for quantitative evaluation of crop plant performance in high throughput phenotyping systems. Front Plant Sci 5:e770

    Article  Google Scholar 

  15. Berger B, de Regt B, Tester M (2012) Trait dissection of salinity tolerance with plant phenomics. In: Shabala S, Cuin TA (eds) Plant salt tolerance: methods and protocols. Humana Press, Totowa, NJ, pp 399–413

    Chapter  Google Scholar 

  16. Rajendran K, Tester M, Roy SJ (2009) Quantifying the three main components of salinity tolerance in cereals. Plant Cell Environ 32(3):237–249

    Article  CAS  PubMed  Google Scholar 

  17. Al-Tamimi N, Brien C, Oakey H, Berger B, Saade S, Ho YS, Schmockel SM, Tester M, Negrão S (2016) Salinity tolerance loci revealed in rice using high-throughput non-invasive phenotyping. Nat Commun 7:13342

    Article  PubMed  PubMed Central  Google Scholar 

  18. Campbell MT, Knecht AC, Berger B, Brien CJ, Wang D, Walia H (2015) Integrating image-based phenomics and association analysis to dissect the genetic architecture of temporal salinity responses in rice. Plant Physiol 168(4):1476–1489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhao K, Tung C-W, Eizenga GC, Wright MH, Ali ML, Price AH, Norton GJ, Islam MR, Reynolds A, Mezey J, McClung AM, Bustamante CD, McCouch SR (2011) Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun 2:e467

    Article  CAS  Google Scholar 

  20. Li X, Guo Z, Lv Y, Cen X, Ding X, Wu H, Li X, Huang J, Xiong L (2017) Genetic control of the root system in rice under normal and drought stress conditions by genome-wide association study. PLoS Genet 13(7):e1006889

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Crowell S, Korniliev P, Falcao A, Ismail A, Gregorio G, Mezey J, McCouch S (2016) Genome-wide association and high-resolution phenotyping link Oryza sativa panicle traits to numerous trait-specific QTL clusters. Nat Commun 7:10527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. McCouch SR, Wright MH, Tung C-W, Maron LG, McNally KL, Fitzgerald M, Singh N, DeClerck G, Agosto-Perez F, Korniliev P, Greenberg AJ, Naredo MEB, Mercado SMQ, Harrington SE, Shi Y, Branchini DA, Kuser-Falcão PR, Leung H, Ebana K, Yano M, Eizenga G, McClung A, Mezey J (2016) Open access resources for genome-wide association mapping in rice. Nat Commun 7:e10532

    Article  CAS  Google Scholar 

  23. 3 R G P (2014) The 3,000 rice genomes project. GigaScience 3(1)

    Google Scholar 

  24. Wang DR, Agosto-Pérez FJ, Chebotarov D, Shi Y, Marchini J, Fitzgerald M, McNally KL, Alexandrov N, McCouch SR (2018) An imputation platform to enhance integration of rice genetic resources. Nat Commun 9(1):3519

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Wang W, Mauleon R, Hu Z, Chebotarov D, Tai S, Wu Z, Li M, Zheng T, Fuentes RR, Zhang F (2018) Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature 557(7703):e43

    Article  CAS  Google Scholar 

  26. Li Y, Xiao JH, Chen LL, Huang XH, Cheng ZK, Han B, Zhang QF, Wu CY (2018) Rice functional genomics research: past decade and future. Mol Plant 11(3):359–380

    Article  CAS  PubMed  Google Scholar 

  27. Gioia T, Galinski A, Lenz H, Muller C, Lentz J, Heinz K, Briese C, Putz A, Fiorani F, Watt M, Schurr U, Nagel KA (2017) GrowScreen-PaGe, a non-invasive, high-throughput phenotyping system based on germination paper to quantify crop phenotypic diversity and plasticity of root traits under varying nutrient supply. Funct Plant Biol 44(1):76–93

    Article  Google Scholar 

  28. Parent B, Conejero G, Tardieu F (2009) Spatial and temporal analysis of non-steady elongation of rice leaves. Plant Cell Environ 32(11):1561–1572

    Article  PubMed  Google Scholar 

  29. Gilmour AR, Cullis BR, Verbyla AP (1997) Accounting for natural and extraneous variation in the analysis of field experiments. J Agric Biol Environ Stat 2(3):269–293

    Article  Google Scholar 

  30. Brien CJ, Berger B, Rabie H, Tester M (2013) Accounting for variation in designing greenhouse experiments with special reference to greenhouses containing plants on conveyor systems. Plant Methods 9(1):5

    Article  PubMed  PubMed Central  Google Scholar 

  31. Cullis BR, Smith AB, Coombes NE (2006) On the design of early generation variety trials with correlated data. J Agric Biol Environ Stat 11(4):381

    Article  Google Scholar 

  32. Coombes N (2009) DiGGer, a spatial design program. Biometric Bulletin. NSW Department of Primary Industries, Orange, NSW

    Google Scholar 

  33. Morton MJL, Awlia M, Al-Tamimi N, Saade S, Pailles Y, Negrão S, Tester M (2019) Salt stress under the scalpel—dissecting the genetics of salt tolerance. Plant J

    Google Scholar 

  34. Hairmansis A, Berger B, Tester M, Roy SJ (2014) Image-based phenotyping for non-destructive screening of different salinity tolerance traits in rice. Rice 7(1):16

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yichie Y, Brien C, Berger B, Roberts TH, Atwell BJ (2018) Salinity tolerance in Australian wild Oryza species varies widely and matches that observed in O. sativa. Rice 11(1):66

    Article  PubMed  PubMed Central  Google Scholar 

  36. Berry JC, Fahlgren N, Pokorny AA, Bart RS, Veley KM (2018) An automated, high-throughput method for standardizing image color profiles to improve image-based plant phenotyping. PeerJ 6:e5727

    Article  PubMed  PubMed Central  Google Scholar 

  37. Czedik-Eysenberg A, Seitner S, Güldener U, Koemeda S, Jez J, Colombini M, Djamei A (2018) The ‘PhenoBox’, a flexible, automated, open-source plant phenotyping solution. New Phytologist.

    Google Scholar 

  38. Klukas C, Chen D, Pape J-M (2014) IAP: an open-source information system for high-throughput plant phenotyping. Plant Physiol 113:233932

    Google Scholar 

  39. Hunt R, Causton DR, Shipley B, Askew AP (2002) A modern tool for classical plant growth analysis. Ann Bot 90(4):485–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Furbank RT, Tester M (2011) Phenomics—technologies to relieve the phenotyping bottleneck. Trends Plant Sci 16(12):635–644

    Article  CAS  PubMed  Google Scholar 

  41. Brien C (2016) asremlPlus: Augments the use of ‘ASReml-R’in fitting mixed models. R package version 2.0-12

    Google Scholar 

  42. Brien C (2016) imageData: an R package that aids in processing and plotting data from a Lemna-Tec Scanalyzer, R foundation for statistical computing

    Google Scholar 

  43. Rousseeuw PJ, Hubert M (2011) Robust statistics for outlier detection. Wiley Interdiscip Rev Data Mining Knowl Discov 1(1):73–79

    Article  Google Scholar 

  44. Rosielle A, Hamblin J (1981) Theoretical aspects of selection for yield in stress and non-stress environments. Crop Sci 21(6):943–946

    Article  Google Scholar 

  45. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25(2):239–250

    Article  CAS  PubMed  Google Scholar 

  46. Saade S, Maurer A, Shahid M, Oakey H, Schmockel SM, Negrão S, Pillen K, Tester M (2016) Yield-related salinity tolerance traits identified in a nested association mapping (NAM) population of wild barley. Sci Rep 6:32586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fischer R, Maurer R (1978) Drought resistance in spring wheat cultivars. I. Grain yield responses. Aust J Agric Res 29(5):897–912

    Article  Google Scholar 

  48. Fernandez GC (1992) Effective selection criteria for assessing plant stress tolerance. International symposium on adaptation of vegetables and other food crops in temperature and water stress. AVRDC, Tainan

    Google Scholar 

  49. Rameeh V, Rezai A, Saeidi G (2004) Study of salinity tolerance in rapeseed. Commun Soil Sci Plant Anal 35(19–20):2849–2866

    Article  CAS  Google Scholar 

  50. Goudarzi M, Pakniyat H (2008) Evaluation of wheat cultivars under salinity stress based on some agronomic and physiological traits. J Agricult Social Sci 4:35–38

    Google Scholar 

  51. Krishnamurthy S, Gautam R, Sharma P, Sharma D (2016) Effect of different salt stresses on agro-morphological traits and utilisation of salt stress indices for reproductive stage salt tolerance in rice. Field Crop Res 190:26–33

    Article  Google Scholar 

  52. Falconer DS, Mackay TF (1996) Introduction to quantitative genetics. Longman, Burnt Mill

    Google Scholar 

  53. Isik F, Holland J, Maltecca C (2017) Spatial analysis. Genetic data analysis for plant and animal breeding. Springer, Cham, pp 203–226

    Google Scholar 

  54. Nyquist WE (1991) Estimation of heritability and prediction of selection response in plant-populations. Crit Rev Plant Sci 10(3):235–322

    Article  Google Scholar 

  55. Holland JB, Nyquist WE, Cervantes-Martínez CT (2003) Estimating and interpreting heritability for plant breeding: an update. Plant breeding reviews

    Google Scholar 

  56. Butler D, Cullis BR, Gilmour A, Gogel B (2009) ASReml-R reference manual. The State of Queensland, Department of Primary Industries and Fisheries, Brisbane

    Google Scholar 

  57. Huang X, Han B (2014) Natural variations and genome-wide association studies in crop plants. Annu Rev Plant Biol 65:531–551

    Article  CAS  PubMed  Google Scholar 

  58. Begum H, Spindel JE, Lalusin A, Borromeo T, Gregorio G, Hernandez J, Virk P, Collard B, McCouch SR (2015) Genome-wide association mapping for yield and other agronomic traits in an elite breeding population of tropical rice (Oryza sativa). PLoS One 10(3):e0119873

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Yang W, Guo Z, Huang C, Duan L, Chen G, Jiang N, Fang W, Feng H, Xie W, Lian X (2014) Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice. Nat Commun 5:5087

    Article  CAS  PubMed  Google Scholar 

  60. Yano K, Yamamoto E, Aya K, Takeuchi H, Lo P-c, Hu L, Yamasaki M, Yoshida S, Kitano H, Hirano K (2016) Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice. Nat Genet 48(8):927

    Article  CAS  PubMed  Google Scholar 

  61. Raboin L-M, Ballini E, Tharreau D, Ramanantsoanirina A, Frouin J, Courtois B, Ahmadi N (2016) Association mapping of resistance to rice blast in upland field conditions. Rice 9(1):59

    Article  PubMed  PubMed Central  Google Scholar 

  62. Volante A, Tondelli A, Aragona M, Valente MT, Biselli C, Desiderio F, Bagnaresi P, Matic S, Gullino ML, Infantino A, Spadaro D, Valè G (2017) Identification of bakanae disease resistance loci in japonica rice through genome wide association study. Rice 10(1):29

    Article  PubMed  PubMed Central  Google Scholar 

  63. Famoso AN, Zhao K, Clark RT, Tung C-W, Wright MH, Bustamante C, Kochian LV, McCouch SR (2011) Genetic architecture of aluminum tolerance in rice (Oryza sativa) determined through genome-wide association analysis and QTL mapping. PLoS Genet 7(8):e1002221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang D, Liu J, Li C, Kang H, Wang Y, Tan X, Liu M, Deng Y, Wang Z, Liu Y (2016) Genome-wide association mapping of cold tolerance genes at the seedling stage in rice. Rice 9(1):61

    Article  PubMed  PubMed Central  Google Scholar 

  65. Zhang Z, Ersoz E, Lai C-Q, Todhunter RJ, Tiwari HK, Gore MA, Bradbury PJ, Yu J, Arnett DK, Ordovas JM (2010) Mixed linear model approach adapted for genome-wide association studies. Nat Genet 42(4):355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23(19):2633–2635

    Article  CAS  PubMed  Google Scholar 

  67. Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, Gore MA, Buckler ES, Zhang Z (2012) GAPIT: genome association and prediction integrated tool. Bioinformatics 28(18):2397–2399

    Article  CAS  PubMed  Google Scholar 

  68. Tang Y, Liu X, Wang J, Li M, Wang Q, Tian F, Su Z, Pan Y, Liu D, Lipka AE, Buckler ES, Zhang Z (2016) GAPIT version 2: an enhanced integrated tool for genomic association and prediction. Plant Genome 9(2)

    Google Scholar 

  69. Turner SD (2014) qqman: an R package for visualizing GWAS results using QQ and manhattan plots. BioRxiv: 005165

    Google Scholar 

  70. Dabney A, Storey JD, Warnes G (2010) qvalue: Q-value estimation for false discovery rate control. R package version 1(0)

    Google Scholar 

  71. Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38(2):203–208

    Article  CAS  PubMed  Google Scholar 

  72. Crainiceanu CM, Ruppert D (2004) Likelihood ratio tests in linear mixed models with one variance component. J Royal Stat Soc B Stat Methodol 66:165–185

    Article  Google Scholar 

  73. Korte A, Farlow A (2013) The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9(1):29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Piepho H-P, Möhring J (2007) Computing heritability and selection response from unbalanced plant breeding trials. Genetics 177(3):1881–1888

    Article  PubMed  PubMed Central  Google Scholar 

  75. Self SG, Liang KY (1987) Asymptotic properties of maximum-likelihood estimators and likelihood ratio tests under nonstandard conditions. J Am Stat Assoc 82(398):605–610

    Article  Google Scholar 

  76. Stram DO, Lee JW (1994) Variance-components testing in the longitudinal mixed effects model. Biometrics 50(4):1171–1177

    Article  CAS  PubMed  Google Scholar 

  77. R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2015).

    Google Scholar 

Download references

Acknowledgments

Financial support from King Abdullah University of Science and Technology (KAUST) is gratefully acknowledged. Sónia Negrão thanks the financial support of University College Dublin (UCD) and UCD School of Biology and Environmental Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sónia Negrão .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Al-Tamimi, N., Oakey, H., Tester, M., Negrão, S. (2021). Assessing Rice Salinity Tolerance: From Phenomics to Association Mapping. In: Bandyopadhyay, A., Thilmony, R. (eds) Rice Genome Engineering and Gene Editing. Methods in Molecular Biology, vol 2238. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1068-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1068-8_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1067-1

  • Online ISBN: 978-1-0716-1068-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics