Skip to main content

R.F. Induction Plasma Spraying

  • Chapter
  • First Online:
Thermal Spray Fundamentals

Abstract

Radio Frequency (r.f.) Induction plasma spraying, or as more commonly known as Vacuum Induction Plasma Spraying (VIPS), has attracted increasing attention over the past three decades. While it is not a technology that is posed to replace any of the other thermal spray processes, it is commercially used in niche applications such as to perform cladding in the fiber optics industry, or X-ray target manufacturing, where the high purity and density of the deposit obtained are of critical importance. VIPS is characterized by the electrodeless nature of the discharge, which allows for high purity and greater flexibility with regard to the chemistry of the plasma gas, and the ease of axial injection of the powder into the center of the plasma jet. In this context, one of the fastest growing applications of induction plasma spraying is in the area of powder treatment for powder densification, purification, and/or spheroidization. The r.f. induction plasma torch is first presented with the basic concepts, its design and resulting temperature, fluid flow, and concentration fields. Then the discharge and the plasma–particle interactions modeling are discussed and typical results presented. At last vacuum induction plasma spraying (VIPS) with the torch operating conditions, the reactive, the suspension, and the supersonic spraying are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

CVD:

Chemical vapor deposition

d.c.:

Direct current

i.d.:

Internal diameter

r.f.:

Radio frequency

slm:

Standard liters per minute

VIPS:

Vacuum induction plasma spraying

References

  1. Dresvin SV (1977) Physics and technology of low temperature plasmas. Iowa State Univ Press, Ames

    Google Scholar 

  2. Dresvin SV (1993) The fundamentals of theory and design of HF plasma generators (Translated from Russian)

    Google Scholar 

  3. Eckert HU (1974) The induction arc: a state-of-the-art review. High Temp 6:99–134

    Google Scholar 

  4. Boulos MI (1985) The inductively coupled r.f. plasma. Pure Appl Chem 57:1321–1352

    Article  Google Scholar 

  5. Boulos MI, Induction RF (1992) Plasma spraying, state-of-the-art review. J Therm Spray Technol 1:33–40

    Article  Google Scholar 

  6. Boulos MI (1992) Radio-frequency plasma developments, scale-up and industrial applications. J High Temp Chem Proc 1:401–411

    Google Scholar 

  7. Boulos MI (1997) The inductively coupled radio frequency plasma. High Temp Mater Process 1:17–39

    Google Scholar 

  8. Babat GI (1947) Electrodeless discharges and some allied problems. J Inst Elec Eng 94:27–37

    Google Scholar 

  9. Reed TB (1961) Induction coupled plasma torch. J Appl Phys 32:821–824

    Article  Google Scholar 

  10. Reed TB (1961) Growth of refractory crystals using the induction plasma torch. J Appl Phys 32:2534–2536

    Article  Google Scholar 

  11. Reed TB (1963) Heat transfer intensity from induction plasma flames and oxy-hydrogen flames. J Appl Phys 34:2266–2269

    Article  Google Scholar 

  12. Davies J, Simpson P (1979) Induction heating handbook. McGraw Hill, London

    Google Scholar 

  13. Zinn S, Semiatin SL (1988) Elements of induction heating. EPRI and ASM International, Palo Alto, CA

    Google Scholar 

  14. Freeman MP, Chase JD (1968) Energy-transfer mechanism and typical operating characteristics for the thermal RF plasma generator. J Appl Phys 39:180–190

    Article  Google Scholar 

  15. Chase JD (1969) Magnetic pinch effect in the thermal r.f. induction plasma. J Appl Phys 40:318–325

    Article  Google Scholar 

  16. Eckert HU (1971) Measurement of the r.f. magnetic field distribution in a thermal induction plasma. J Appl Phys 42:3108–3113

    Article  Google Scholar 

  17. Eckert HU (1972) Dual magnetic probe system for phase measurements in thermal induction plasmas. J Appl Phys 43:2707–2713

    Article  Google Scholar 

  18. Mensing AE, Boedeker LR (1968) Theoretical investigations on RF induction heated plasmas. NASA CR-1312, 1-75. NASA, Springfield, VA

    Google Scholar 

  19. Poole JW, Greeman MP, Doak KW, Thorpe ML (1973), Simulator tests to study hot-flow problems related to a gas core reactor, NASA-CR 2309

    Google Scholar 

  20. Thorpe ML, Scammon LW (1968) Induction plasma heating: high power, low frequency operation and pure hydrogen heating, NAS 3-9375. NASA, Cleveland, OH

    Google Scholar 

  21. Boulos MI, Jurewicz J (1999) High Performance induction plasma torch with a water-cooled ceramic confinement tube. US Patent, 5,200,595 (April 6, 1993), International Patent Application, PCT/CA92/00156 (April 10, 1992), Japanese Patent, 3,169,962 (March 16, 2001), Canadian Patent, 2,085,133 (April 10, 1992), Chinese Patent, ZL92103380.X (April 11, 1996), European Patent, 533884 (January 22, 1997), Korean Patent, 203,994, 25 Mar 1999

    Google Scholar 

  22. Boulos MI, Jurewicz J (1996) Liquid film stabilized induction plasma torch. US Patent, 5,560,844, 1 Oct 1996

    Google Scholar 

  23. Boulos M, Jurewicz J (2004) Multi-coil induction plasma torch for solid state power supply. US patent 6,693,253, 17 Feb 2004

    Google Scholar 

  24. Boulos M, Jurewicz J (2005) Multi-coil induction plasma torch for solid state power supply. US patent 6,919,527, 19 July 2005

    Google Scholar 

  25. Yoshida T, Nakagawa K, Harada T, Akashi K (1981) New design of a radio frequency plasma torch. Plasma Chem Plasma Process 1:113–129

    Article  Google Scholar 

  26. Yoshida T, Tawi T, Nishimura H, Akashi K (1983) Characterization of a hybrid plasma and its application to a chemical synthesis. J Appl Phys 54:640–646

    Article  Google Scholar 

  27. Kameyama T, Sakanaka K, Motoe A, Tsunoda T, Nakanaga T, Wakayama NI, Takeo H, Fukuda K (1990) Highly efficient and stable radio-frequency thermal plasma system for the production of ultrafine and ultrapure B-SiC powder. J Mat Sci 25(2):1058–1065

    Google Scholar 

  28. Takeyama T, Fukuda K (1986) Development of an all solid state R.F.-R.F. Thermal plasma reactor. National Chemical Laboratory for Industry, Internal report, vol 21, p 4

    Google Scholar 

  29. Douglas TS (1974) Radial temperature profiles in an R.F. plasma over a wide range of applied magnetic flux intensities: theory and experiments. Ph.D. Thesis, Georgia Institute of Technology

    Google Scholar 

  30. Klubnikin VS (1975) Thermal and gas dynamic characteristics of an argon induction discharge. High Temp 13:439–446

    Google Scholar 

  31. Chase JD (1971) Theoretical and experimental investigation of pressure and flow in induction plasmas. J Appl Phys 42:4870–4879

    Article  Google Scholar 

  32. Hollenstein M, Rahman M, Boulos M (1999) Aerodynamic study of the supersonic induction plasma jet, ISPC-14. Czech Republic, 2–6 Aug 1999

    Google Scholar 

  33. Léveillé V (2002) Diagnostic du jet de plasma hf supersonique. Université de Sherbrooke, M.Sc.A thesis

    Google Scholar 

  34. Léveillé V, Gravelle DV, Boulos MI (2003) Diagnostic study of supersonic plasma flows using enthalpy probe, schlieren and high speed photography. In: International thermal spray conference (ITSC 2003), Orlando, FL

    Google Scholar 

  35. Dundas PH (1971) Induction plasma heating, measurement of gas concentrations, temperatures and stagnation head in a binary plasma system. NASA-CR 1527

    Google Scholar 

  36. Boulos MI (2001) Visualization and diagnostics of thermal plasma flows. J Vis 4:19–28

    Article  Google Scholar 

  37. Soucy G, Jurewicz J, Boulos MI (1994) Mixing study of the induction plasma reactor: part I – axial injection mode. J Plasma Chem Plasma Process 14:43–57

    Article  Google Scholar 

  38. Soucy G, Jurewicz J, Boulos MI (1994) Mixing study of the induction plasma reactor: part II – radial injection mode. J Plasma Chem Plasma Process 14:59–71

    Article  Google Scholar 

  39. Rahmane M, Soucy G, Boulos MI (1994) Mass transfer in induction plasma reactors. Int J Heat Mass Transfer 37:2035–2046

    Article  Google Scholar 

  40. Rahmane M, Soucy G, Boulos MI (1996) Diffusion phenomena of a cold gas in thermal plasma stream. J Plasma Chem Plasma Process 16:169S–189S

    Article  Google Scholar 

  41. Eckert HU (1970) Analysis of thermal induction plasma dominated by radial conduction losses. J Appl Phys 41:1520–1527

    Article  Google Scholar 

  42. Miller RC, Ayen RJ (1969) Temperature profiles and energy balances for an inductively coupled plasma torch. J Appl Phys 40:5260–5273

    Article  Google Scholar 

  43. Boulos MI (1976) Flow temperature field in the fire ball of an inductively coupled plasma. IEEE Trans Plasma Sci PS-4:28–39

    Article  Google Scholar 

  44. Boulos MI (1978) Heating of powders in the fire ball of an induction plasma. IEEE Trans Plasma Sci PS-6:93–106

    Article  Google Scholar 

  45. Boulos MI, Gagné M, Barnes RM (1980) Computer modelling of an inductively coupled plasma. Can J Chem Eng 58:365–381

    Article  Google Scholar 

  46. Mostaghimi J, Proulx P, Boulos MI (1984) Parametric study of the flow and temperature fields in inductively coupled plasma torch. Plasma Chem Plasma Process 4:199–217

    Article  Google Scholar 

  47. Proulx P, Mostaghimi J, Boulos MI (1985) Plasma-particle interaction effects in induction plasma modelling under dense loading conditions. Int J Heat Mass Transfer 28:1327–1336

    Article  Google Scholar 

  48. Mostaghimi J, Proulx P, Boulos MI (1985) An analysis of the computer modelling of the flow and temperature fields in an inductively coupled R.F. plasma torch. J Numer Heat Transfer 8:187–201

    Google Scholar 

  49. Mostaghimi J, Proulx P, Boulos MI (1987) A two-temperature model of the inductively coupled R.F. plasma. J Appl Phys 61:1753–1760

    Article  Google Scholar 

  50. Proulx P, Mostaghimi J, Boulos MI (1987) Heating of powders in an R.F. inductively coupled plasma under dense loading conditions. J Plasma Chem Plasma Process 7:29–53

    Article  Google Scholar 

  51. Mostaghimi J, Boulos MI (1989) Two-dimensional electromagnetic field effects in inductively coupled plasmas. Plasma Chem Plasma Process 9:25–44

    Article  Google Scholar 

  52. El-Hage M, Mostaghimi J, Boulos MI (1989) A turbulent flow model for the R.F. inductively coupled plasma. J Appl Phys 65:4178–4185

    Article  Google Scholar 

  53. Mostaghimi J, Boulos MI (1990) Effect of frequency on local thermodynamic equilibrium conditions in an inductively coupled argon plasma at atmospheric pressure. J Phys D Appl Phys 68:2643–2648

    Google Scholar 

  54. Proulx P, Mostaghimi J, Boulos MI (1990) Loading and radiation effects in plasma jet modelling. Journal de Physique 51:263–270

    Google Scholar 

  55. Proulx P, Mostaghimi J, Boulos MI (1991) Radiative effects in ICP modelling. Int J Heat Mass Transfer 31:2571–2579

    Article  Google Scholar 

  56. Chen K, Boulos MI (1994) Turbulence in induction plasma modeling. J Phys D Appl Phys 27:946–952

    Article  Google Scholar 

  57. Chen X, Merkhouf A, Boulos MI (1996) Preliminary study of the 3-equation turbulence model of an R.F. plasma torch. In: Proceedings of the 3rd Asia-Pacific conference on plasma science and technology, vol 1, Tokyo, Japan, pp 71–76

    Google Scholar 

  58. Merkhouf A, Ye R, Proulx P, Boulos MI (1997) Mathematical modeling of plasma systems. In: Proceedings of the Julian Szekely memorial symposium on materials processing, Boston, MA, pp 509–552

    Google Scholar 

  59. Merkhouf A, Boulos MI (1998) Integrated model for the radio-frequency induction plasma torch and power supply. Plasma Sources Sci Technol 7:599–606

    Article  Google Scholar 

  60. Merkhouf A, Boulos MI (2000) Distributed energy analysis for an integrated radio frequency induction plasma system. J Phys D Appl Phys 33:1581–1587

    Article  Google Scholar 

  61. Ye R, Proulx P, Boulos MI (1999) Turbulence phenomena in the RF induction plasma torch. Int J Heat Mass Transfer 42:1585–1595

    Article  Google Scholar 

  62. Ye R, Proulx P, Boulos MI (2000) Particle turbulent dispersion and loading effects in an inductively coupled radio frequency plasma. J Phys D Appl Phys 33:2154–2162

    Article  Google Scholar 

  63. Selezneva S, Boulos MI (2001) Supersonic induction plasma jet modelling. Nucl Inst Methods Phys Res B180:306–311

    Article  Google Scholar 

  64. Selezneva S, Sember V, Gravelle DV, Boulos MI (2002) Spectroscopic validation oft the supersonic plasma jet model. J Phys D Appl Phys 35:1338–1349

    Article  Google Scholar 

  65. Xue S, Proulx P, Boulos MI (2001) Extended – field electromagnetic model for the inductively coupled plasma. J Phys D Appl Phys 34:1897–1906

    Article  Google Scholar 

  66. Xue S, Proulx P, Boulos MI (2003) Effect of coil angle in an inductively couple plasma torch: a novel two-dimensional model. Plasma Chem Plasma Process 23:245–263

    Article  Google Scholar 

  67. Xue S, Proulx P, Boulos MI (2002) Modelling the effect of ferrite on an inductively coupled plasma torch. Part 1: infinite ferrite permeability. J Phys D Appl Phys 35:1123–1130

    Article  Google Scholar 

  68. Xue S, Proulx P, Boulos MI (2002) Modelling the effect of ferrite on an inductively coupled plasma torch. Part 2: finite ferrite permeability. J Phys D Appl Phys 35:1131–1140

    Article  Google Scholar 

  69. Kim J, Mostaghimi J, Iravani R (1997) Performance analysis of RF Induction plasma generator using non-linear state approach. IEEE Trans Plasma Sci 25:1023–1028

    Article  Google Scholar 

  70. Fouladgar J, Chentouf A, Develey G (1993) The calculation of the impedance of an induction plasma installation by a hybrid finite-element boundary-element method. IEEE Trans Magn 29:2479–2481

    Article  Google Scholar 

  71. Bernardi D, Colombo V, Ghedini E, Mentrelli A (2003) Three-dimensional modelling of inductively coupled plasma torches. Eur Phys J D 22:119–125

    Article  Google Scholar 

  72. Bernardi D, Colombo V, Ghedini E, Mentrelli A (2003) Comparison of different techniques for the FLUENT-based treatment of the electromagnetic field in inductively-coupled plasma torches. Eur Phys J D 27:55–72

    Article  Google Scholar 

  73. Bernardi D, Colombo V, Ghedini E, Mentrelli A, Trombetti T (2004) 3-D numerical simulation of fully-coupled particle heating in ICPTs. Eur Phys J D 28:423–433

    Article  Google Scholar 

  74. Bernardi D, Ghedini E, Colombo V (2004) Three dimensional modelling of inductively coupled plasma torches: comparison with experiments and applications. Czech J Phys 54:C489–C515

    Article  Google Scholar 

  75. Bernardi D, Colombo V, Ghedini E, Mentrelli A (2004) Numerical simulation for the characterization of operating conditions of RF-RF hybrid plasma torches. Eur Phys J D 28:399–422

    Article  Google Scholar 

  76. Bernardi D, Colombo V, Ghedini E, Mentrelli A (2005) 3-D turbulent modeling of an ICPT with detailed gas injection section. IEEE Trans Plasma Sci 33:426–427

    Article  Google Scholar 

  77. Bernardi D, Colombo V, Ghedini E, Mentrelli A (2005) Three-dimensional modeling of inductively coupled plasma torches. Pure Appl Chem 77:359–372

    Article  Google Scholar 

  78. Colombo V, Ghedini E (2007) 3-D modeling of ICP torches. High Temp Mater Proc 11:283–296

    Article  Google Scholar 

  79. Colombo V, Ghedini E, Sanibondi P (2009) Two-temperature thermodynamic and transport properties of argon-hydrogen and nitrogen-hydrogen plasmas. J Phys D Appl Phys 42(055213):1–12

    Google Scholar 

  80. Colombo V, Ghedini E, Sanibondi P (2010) A three-dimensional investigation of the effects of excitation frequency and sheath gas mixing in an atmospheric-pressure inductively coupled plasma system. J Phys D Appl Phys 43(105202):1–14

    Google Scholar 

  81. Colombo V, Ghedini E, Sanibondi P (2010) Three-dimensional investigation of particle treatment in a RF thermal plasma with reaction chamber. Plasma Sources Sci Technol 19(065024):1–13

    Google Scholar 

  82. Colombo V, Concetti A, Ghedini E, Gherardi M, Sanibondi P (2011) 3-D time-dependent large eddy simulation of turbulent flows in an inductively coupled thermal plasma torch with reaction chamber. IEEE Trans Plasma Sci 39:2894–2895

    Article  Google Scholar 

  83. Birds RB (1960) Transport phenomena. Wiley, New York

    Google Scholar 

  84. Hirschfelder JO, Curtiss CF, Byron Bird R (1967) Molecular theory of gases and liquids. Wiley, New York

    Google Scholar 

  85. Kuo KKY (1986) Principles of combustion. Wiley, New York

    Google Scholar 

  86. Xue S, Murphy AD, Proulx P, Boulos MI (2005) A thermal and chemical non-equilibrium model for multi-component Ar-H2 plasma. In: International thermal spray conference & exposition (ITSC 2005), Basel, Switzerland, 2–4 May 2005

    Google Scholar 

  87. Murphy TB (2000) Transport Coefficients of Hydrogen and Argon–Hydrogen Plasmas, Plasma Chem Plasma Process, 20, 279–297

    Google Scholar 

  88. Boulos MI, Fauchais P, Pfender E (1994) Thermal plasmas, fundamentals and applications, vol 1. Plenum, New York, NY

    Book  Google Scholar 

  89. Crowe CT, Sharma MP, Stock DE (1977) The particle-source-in-cell (PSI-Cell) model for gas-droplet flows. J Fluids Eng 99:325–332

    Article  Google Scholar 

  90. Berthou H, Neumann V, Hintermann HE (1993) High frequency, inductively coupled plasma torch for pure and doped silica deposition. Surf Coat Technol 61:1164–170

    Google Scholar 

  91. Jiang XL, Fan X, Gitzhofer F, Boulos MI (1992) Induction plasma spraying of refractory materials. In: International thermal spraying conference, Orlando, FL, pp 39–44

    Google Scholar 

  92. Jiang XL, Tiwari R, Gitzhofer F, Boulos MI (1993) Plasma deposition of refractory metals. In: 5th national thermal spray conference – NTSC’93, Anaheim, CA, pp 309–313

    Google Scholar 

  93. Jiang XL, Tiwari R, Gitzhofer F, Boulos MI (1993) On the induction plasma deposition of tungsten metal. J Therm Spray Technol 2:265–270

    Article  Google Scholar 

  94. Jiang XL (1994) Induction plasma spraying of refractory metals. Université de Sherbrooke, Ph.D

    Google Scholar 

  95. Jiang XL, Boulos MI (2001) Particle melting, flattening and stacking behaviors in induction plasma deposition of tungsten. Trans Nonferrous Metal Soc China 11:811–816

    Google Scholar 

  96. Jiang XL, Gitzhofer F, Boulos MI (2004) Plasma spray forming of tungsten coatings on copper electrodes. Trans Nonferrous Met Soc China 14:835–839

    Google Scholar 

  97. Kovarik, Xue OS, Fan X, Boulos MI (2006) R.F. plasma deposition of refractory metals: case study for tungsten. ITSS-2006, Seattle, WA

    Google Scholar 

  98. Kovarik, Fan OX, Boulos MI (2007) In-flight properties of W particles in an Ar-H2 plasma. J Therm Spray Technol 16:229–237

    Google Scholar 

  99. Fan X, Boulos M (2004) Nesr net shape forming of tungsten material by induction plasm deposition. ITSS 2005, Basel, Switzerland

    Google Scholar 

  100. Henne R, Müller M, Pross E, Schiller G, Gitzhofer F, Boulos MI (1999) Near-net-shape forming of metallic bipolar plates for planar solid oxide fuel cells by induction plasma spraying. J Therm Spray Technol 8:110–116

    Article  Google Scholar 

  101. Henne R, Müller M, Pross E, Schiller G, Boulos MI, Gitzhofer F (1997) Near-net-shape production of metallic bipolar plates for solid oxide fuel cells (SOFC) by induction plasma spraying. In: 14th international plansee seminar, Austria, vol 1, pp 231–245

    Google Scholar 

  102. Müller M., Heinmann RB, Gitzhofer F, Boulos MI (1995) Manufacture of thick chromium coatings by R.F. plasma spraying for PVD sputter targets. In: 8th national thermal spray conference – NTSC’95, Houston, TX, pp 567–572

    Google Scholar 

  103. Müller M, Heinmann RB, Gitzhofer F, Boulos MI, Schwarz K (2000) Radio frequency plasma processing to produce chromium sputter targets. J Therm Spray Technol 9:488–493

    Google Scholar 

  104. Gitzhofer F, Coulombe S, Fan X, Jiang XL, Boulos MI (1994) Particle splats study and induction plasma spraying of alumina and refractory metals. In: International symposium on heat and mass transfer under plasma conditions, Izmir, Turkey, pp 557–565

    Google Scholar 

  105. Fan X, Gitzhofer F, Boulos MI (1998) Investigation of alumina splats formed in the induction plasma process. J Therm Spray Technol 7:197–204

    Article  Google Scholar 

  106. Branland N, Meillot E, Fauchais P, Vardelle A, Gitzhofer F, Boulos MI (2003) Study of RF and DC plasma-sprayed TiO2 coatings: electrical properties and microstructure. In: International thermal spray conference (ITSC 2003), Orlando, FL

    Google Scholar 

  107. Branland N, Meillot E, Fauchais P, Vardelle A, Boulos MI, Gitzhofer F, Drouin D, Magny P (2003) Relationships between induction plasma spraying parameters and TiO2 particle characteristics at impact. In: 16th international symposiun on plasma chemistry (ISPC-16), Taormina, Italy

    Google Scholar 

  108. Branland N, Meillot E, Fauchais P, Vardelle A, Gitzhofer F, Boulos M (2006) Relationships between microstructure and electrical properties of RF and DC plasma-sprayed titania coatings. J Therm Spray Technol 15:53–62

    Article  Google Scholar 

  109. Jiang XL, Gitzhofer F, Boulos MI (1994) Induction plasma reactive deposition of WC and TiC. In: 3rd European congress on thermal plasma processing – TPP-3, Aachen, Germany

    Google Scholar 

  110. Jiang XL, Gitzhofer F, Boulos MI, Tiwari R (1994) Induction plasma reactive deposition of tungsten and titanium carbides. In: 7th national thermal spray conference, Boston MA, pp 451–456

    Google Scholar 

  111. Jiang XL, Tiwari R, Gitzhofer F, Boulos MI (1995) Reactive deposition of tungsten and titanium carbides by induction plasma. J Mater Sci Lett 30:2325–2328

    Article  Google Scholar 

  112. Jiang X-L, Boulos MI (2001) Effect of process parameters on induction plasma reactive deposition of tungsten carbide from tungsten metal powder. Trans Nonferrous Met Soc China 11(5):639–643

    Google Scholar 

  113. Jiang XL, Boulos MI (2004) Synthesis of titanium carbide by induction plasma reactive spray. Trans Nonferrous Met Soc China 14(1):15–19

    Google Scholar 

  114. Pu W, Boulos MI. Induction plasma spraying of boron carbide coating. In: International thermal symposium conference (ITSC-2004), Osaka, Japan

    Google Scholar 

  115. Gitzhofer F, Bouyer E, Boulos MI. Suspension plasma spray deposition. In: International Patent Application, PCT/CA95/00493 (28 Aug 1995), USA Patent, 5,609,921 (11 Mar 1997)

    Google Scholar 

  116. Bouyer E, Gitzhofer F, Boulos MI (1995) Suspension plasma spraying of hydroxyapatite. In: 12th international symposium on plasma chemistry – ISPC-12, Minneapolis, MN, vol 2, pp 865–870

    Google Scholar 

  117. Bouyer E, Gitzhofer F, Boulos MI (1997) The suspension plasma spraying of bioceramics by induction plasma. J Mater Sci Lett 49:58–62

    Google Scholar 

  118. Bouyer E, Gitzhofer F, Boulos MI (1997) Suspension plasma spraying for hydroxyapatite powder preparation by R.F. plasma. IEEE Trans Plasma Sci 25(5):1066–1072

    Article  Google Scholar 

  119. Müller M, Schiller G, Gitzhofer F, Boulos MI (1997) Suspension plasma spraying for the preparation of perovskite powders and coatings. In: 1997 national thermal spray conference, Indianapolis, IN

    Google Scholar 

  120. Müller M, Schiller G, Gitzhofer F, Boulos MI, Heinmann RB (1997) Suspension plasma spraying of cobalt spinel. In: 1997 national thermal spray conference NTSC’97, Indianapolis, IN

    Google Scholar 

  121. Müller M, Henne R, Schiller G, Boulos MI, Gitzhofer F, Heinmann RB (1998) Radio-frequency suspension plasma spraying of cobalt spinel anodes for alkaline water electrolysis. In: International thermal spray conference (ITSC’98), vol 2, Nice, France, pp 1523–1527

    Google Scholar 

  122. Mailhot K, Gitzhofer F, Boulos MI (1997) Supersonic induction plasma spraying applied to dense yttria stabilized zirconia electrolyte coatings. In: 13th international symposium on plasma chemistry- ISPC’13, vol 3, Beijing, China, pp 1445–1450

    Google Scholar 

  123. Mailhot K, Gitzhofer F, Boulos MI (1997) Supersonic induction plasma spraying of dense YSZ electrolyte membranes. In: 1997 national thermal spray conference NTSC’97, Indianapolis, IN

    Google Scholar 

  124. Mailhot K, Gitzhofer F, Boulos MI (1998) Supersonic induction plasma spraying of yttria stabilized zirconia films. In: International thermal spray conference (ITSC’98), vol 2, Nice, France, pp 1419–1424

    Google Scholar 

  125. Mailhot K, Gitzhofer F, Boulos MI (1999) Plasma deposition of dense ceramic coatings using supersonic induction plasma. In: UTSC’99 – 2nd united thermal spray conference & exposition – coating in practice, Düsseldorf, Germany

    Google Scholar 

  126. Theophile E, Gitzhofer F, Boulos MI (1999) Supersonic induction plasma spraying of yttria stabilized zirconia coatings, ISPC’14, vol IV, Prague, Czech Republic, pp 2145–2148

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Nomenclature

Nomenclature

\( \overrightarrow{A} \) :

Magnetic vector potential ( )

c :

Speed of light in space c = 299,792,458 (m/s)

c p :

Specific heat (J/K kg)

\( \overrightarrow{D} \) :

Electric displacement (C/m2)

D j :

The mass diffusivity of species j in the mixture ( )

E :

Electric field (V/m

\( \overrightarrow{E} \) :

Electric field vector (V/m)

f :

Oscillator frequency (Hz)

F r :

Radial component of Lorentz force (N)

F z :

Radial component of Lorentz force (N)

h :

Total enthalpy of mixture (J/kg)

h j :

The specific enthalpy of species j (J/kg)

\( \overrightarrow{H} \) :

Magnetic field vector (T)

j :

Current density (A/m2)

I c :

Coil current (A)

I im :

Applied coil current (A)

I in :

Induced current in the coil due to plasma electromagnetic fields (A)

\( \overrightarrow{J} \) :

Magnetic flux density vector (W/m2)

J jr :

Diffusion flux of species j in radial direction ( )

J jz :

Diffusion flux of species j in axial direction ( )

k :

Molecular thermal conductivity (W/m K)

k e :

Effective thermal conductivity (W/m K)

k t :

Turbulent thermal conductivity (W/m K)

L c :

Coil length (m)

M i :

Molecular weight of species i (kg/mole)

n c :

Coil number of turns

p :

Pressure (Pa)

P :

Local energy generation through ohmic heating, P = σ|E|2 (W/m3)

P v :

Viscous power dissipation, \( {P}_v=-\nabla \cdot \left(\overrightarrow{\tau}\cdot \overrightarrow{V}\right) \) (W/m3)

r c :

Internal radius of the induction coil (m)

r n :

Radius of equivalent cylindrical load of discharge (m)

r o :

Internal radius of the plasma confining tube (m)

R :

Local volumetric radiation heat losses (W/m3)

R j :

Local volumetric radiation heat losses of species j (W/m3)

u :

Axial velocity component (m/s)

v :

Radial velocity component (m/s)

w :

Tangential velocity component (m/s)

δ t :

Thickness of skin depth (m)

ε :

Dielectric constant (permittivity) of materials ε = ε 0 ε r (Farad/m)

ε 0 :

Dielectric constant of free space (ε 0 = 8.854 × 1012) (Farad/m)

ε r :

Relative dielectric constant.

φ :

Free charge density (C/m3)

Ω D :

Diffusion collision integral ( )

η c :

Energy coupling efficiency

κ:

Coupling parameter, \( \upkappa =\sqrt{2}.{r}_{\mathrm{n}}/{\delta}_{\mathrm{t}} \)

μ o :

Magnetic permeability of the medium (Hy/m)

μ :

Magnetic permeability of materials \( \mu ={\mu}_0{\mu}_{\mathrm{r}} \) ( H/m)

μ o :

Magnetic permeability of vacuum μ 0 = 4π × 107 (H/m)

\( {\mu}_{\mathrm{r}} \) :

Relative magnetic permeability

μ :

Molecular viscosity (Pa s)

μ e :

Effective viscosity (Pa s)

μ t :

Turbulent viscosity (Pa s)

σ o :

Electrical conductivity of equivalent load (mho/m) or A/(V m)

ρ :

Mass density (kg/m3)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fauchais, P.L., Heberlein, J.V.R., Boulos, M.I. (2014). R.F. Induction Plasma Spraying. In: Thermal Spray Fundamentals. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68991-3_8

Download citation

Publish with us

Policies and ethics