Skip to main content

Actinobacteria and Myxobacteria—Two of the Most Important Bacterial Resources for Novel Antibiotics

  • Chapter
  • First Online:
How to Overcome the Antibiotic Crisis

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 398))

Abstract

Bacteria have been by far the most promising resource for antibiotics in the past decades and will in all undoubtedly remain an important resource of innovative bioactive natural products in the future. Actinobacteria have been screened for many years, whereas the Myxobacteria have been underestimated in the past. Even though Actinobacteria belong to the Gram-positive and Myxobacteria to the Gram-negative bacteria both groups have a number of similar characters, as they both have huge genomes with in some cases more than 10kB and a high GC content and they both can differentiate and have often cell cycles including the formation of spores. Actinobacteria have been used for the antibiotic research for many years, hence it is often discussed whether this resource has now been exhaustively exploited but most of the screening programs from pharmaceutical companies were basing on the cultivation mainly of members of the genus Streptomyces or Streptomyces like strains (e.g., some Saccharopolyspora, Amycolatopsis or Actinomadura species) by use of standard methods so that many of the so called “neglected” Actinobacteria were overlooked the whole time. The present review gives an overview on the state of the art regarding new bioactive compounds with a focus on the marine habitats. Furthermore, the evaluation of Myxobacteria in our ongoing search for novel anti-infectives is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Mageed WM, Milne BF, Wagner M, Schumacher M, Sandor P, Pathom-Aree W, Goodfellow M, Bull AT, Horikoshi K, Ebel R, Diederich M, Fiedler HP, Jaspars M (2010) Dermacozines, a new phenazine family from deep-sea dermacocci isolated from a Mariana Trench sediment. Org Biomol Chem 8:2352–2362

    Article  CAS  PubMed  Google Scholar 

  • Abdelmohsen UR, Pimentel-Elardo SM, Hanora A, Radwan M, Abou-El-Ela SH, Ahmed S, Hentschel U (2010) Isolation, phylogenetic analysis and anti-infective activity screening of marine sponge-associated actinomycetes. Mar Drugs 8:399–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersson M, Mikkola R, Kroppenstedt R, Rainey F, Peltola J, Helin J et al (1998) The mitochondrial toxin produced by Streptomyces griseus strains isolated from an indoor environment is valinomycin. Appl Environ Microbiol 64:4767–4773

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arumugam M, Mitra A, Jaisankar P, Dasgupta S, Sen T, Gachhui R et al (2010) Isolation of an unusual metabolite 2-allyloxyphenol from a marine actinobacterium, its biological activities and applications. Appl Microbiol Biotechnol 86:109–117

    Article  CAS  PubMed  Google Scholar 

  • Asolkar RN, Jensen PR, Kauffman CA, Fenical W, Daryamides AC (2006) Weakly cytotoxic polyketides from a marine-derived actinomycete of the genus Streptomyces strain CNQ-085. J Nat Prod 69:1756–1759

    Article  CAS  PubMed  Google Scholar 

  • Baumann S, Herrmann J, Raju R, Steinmetz H, Mohr KI, Hüttel S, Harmrolfs K, Stadler M, Müller R (2014) Cystobactamids: myxobacterial topoisomerase inhibitors exhibiting potent antibacterial activity. Angew Chem Int Ed Engl 53:14605–14609

    Article  CAS  PubMed  Google Scholar 

  • Berod L, Friedrich C, Nandan A, Freitag J, Hagemann S, Harmrolfs K, Sandouk A, Hesse C, Castro CN, Bähre H, Tschirner SK, Gorinski N, Gohmert M, Mayer CT, Huehn J, Ponimaskin E, Abraham WR, Müller R, Lochner M, Sparwasser T (2014) De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat Med 20:1327–1333

    Article  CAS  PubMed  Google Scholar 

  • Bewick M, Williams S, Veltkamp C (1976) Growth and ultrastructure of Streptomyces venezuelae during chloramphenicol production. Microbios 16:191–199

    CAS  PubMed  Google Scholar 

  • Bister B, Bischoff D, Ströbele M, Riedlinger J, Reicke A, Wolter F, Bull AT, Zähner H, Fiedler HP, Süssmuth RD (2004) Abyssomicin C-A—polycyclic antibiotic from a marine Verrucosispora strain as an inhibitor of the p-aminobenzoic acid/tetrahydrofolate biosynthesis pathway. Angew Chem Int Ed Engl 43:2574–2576

    Article  CAS  PubMed  Google Scholar 

  • Blunt JW, Copp BR, Hu WP, Munro MH, Northcote PT, Prinsep MR (2007) Marine natural products. Nat Prod Rep 24:31–86

    Article  CAS  PubMed  Google Scholar 

  • Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2011) Marine natural products. Nat Prod Rep 28:196–268

    Article  CAS  PubMed  Google Scholar 

  • Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR (2012) Marine natural products. Nat Prod Rep 29:144–222

    Article  CAS  PubMed  Google Scholar 

  • Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR (2013) Marine natural products. Nat Prod Rep 30:237–323

    Article  CAS  PubMed  Google Scholar 

  • Brockman ER, Boyd WL (1963) Myxobacteria from soils of the Alaskan and Canadian Arctic. J Bacteriol 86:605–606

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bruntner C, Binder T, Pathom-Aree W, Goodfellow M, Bull AT, Potterat O et al (2005) Frigocyclinone, a novel angucyclinone antibiotic produced by a Streptomyces griseus strain from Antarctica. J Antibiot 58:346–349

    Article  CAS  PubMed  Google Scholar 

  • Bull AT, Starch JEM (2007) Marine actinobacteria: new opportunities for natural product search and discovery. Trends in Microbiol 15:491–499

    Article  CAS  Google Scholar 

  • Burg RW, Miller BM, Baker EE, Birnbaum J, Currie SA, Hartman R et al (1997) Avermectins, new family of potent anthelmintic agents: producing organism and fermentation. Antimicrob Agents Chemother 15:361–367

    Article  Google Scholar 

  • Burger H, Foekens JA, Look MP, Meijer-van Gelder ME, Klijn JG, Wiemer EA, Stoter G, Nooter K (2003) RNA expression of breast cancer resistance protein, lung resistance-related protein, multidrug resistance-associated proteins 1 and 2, and multidrug resistance gene 1 in breast cancer: correlation with chemotherapeutic response. Clin Cancer Res 9:827–836

    CAS  PubMed  Google Scholar 

  • Carlson JC, Li S, Burr DA, Sherman DH (2009) Isolation and characterization of tirandamycins from a marine-derived Streptomyces sp. J Nat Prod 72:2076–2079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charan RD, Schlingmann G, Janso J, Bernan V, Feng X, Carter GT (2004) Diazepinomicin, a new antimicrobial alkaloid from a marine Micromonospora sp. J Nat Prod 67:1431–1433

    Article  CAS  PubMed  Google Scholar 

  • Chau R, Kalaitzis JA, Neilan BA (2011) On the origins and biosynthesis of tetrodotoxin. Aqua Toxicol 104:61–72

    Article  CAS  Google Scholar 

  • Chauhan D, Catley L, Li G, Podar K, Hideshima T, Velankar M et al (2005) A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib. Cancer Cell 8:407–419

    Article  CAS  PubMed  Google Scholar 

  • Connor DT, Greenough RC, Strandtmann M (1977) W-7783, a unique antifungal antibiotic. J Org Chem 42:3664–3669

    Article  CAS  PubMed  Google Scholar 

  • Corominas-Faja B, Cuyàs E, Gumuzio J, Bosch-Barrera J, Leis O, Martin ÁG, Menendez JA (2014) Chemical inhibition of acetyl-CoA carboxylase suppresses self-renewal growth of cancer stem cells. Oncotarget 5:8306–8316

    Article  PubMed  PubMed Central  Google Scholar 

  • Dawid W (1978) Fruchtkörperbildene Myxobakterien in Böden Brasiliens. Z Allg Mikrobiol 34:333–335

    Google Scholar 

  • Dawid W, Gallikowski CA, Hirsch P (1988) 3.8 Psychrophilic myxobacteria from antarctic soils. Polarforschung 58:271–278 (Alfred Wegener Institute for Polar and Marine Research & German Society of Polar Research, Bremerhaven)

    Google Scholar 

  • Demain A (1999) Pharmaceutically active secondary metabolites of microorganisms. Appl Microbiol Biotechnol 52:455–463

    Article  CAS  PubMed  Google Scholar 

  • Do H, Kogure K, Simidu U (1990) Identification of deep-sea-sediment bacteria which produce tetrodotoxin. Appl Environ Microbiol 56:1162

    CAS  PubMed  PubMed Central  Google Scholar 

  • Do H, Kogure K, Imada C, Noguchi T, Ohwada K, Simidu U (1991) Tetrodotoxin production of actinomycetes isolated from marine sediment. J Appl Microbiol 70:464–468

    CAS  Google Scholar 

  • Egan S, Wiener P, Kallifidas D, Wellington EMH (1998) Transfer of streptomycin biosynthesis gene clusters within streptomycetes isolated from soil. Appl Environ Microbiol 64:5061–5063

    CAS  PubMed  PubMed Central  Google Scholar 

  • Egerton N (2008) Ixabepilone (ixempra), a therapeutic option for locally advanced or metastatic breast cancer. P T 33:523–531

    PubMed  PubMed Central  Google Scholar 

  • El-Gendy MM, Shaaban M, Shaaban KA, El-Bondkly AM, Laatsch H (2008) Essramycin: a first triazolopyrimidine antibiotic isolated from nature. J Antibiot 61:149–157

    Article  CAS  PubMed  Google Scholar 

  • Engelhardt K, Degnes KF, Kemmler M, Bredholt H, Fjaervik E, Klinkenberg G, Sletta H, Ellingsen TE, Zotchev SB (2010) Production of a new thiopeptide antibiotic, TP-1161, by a marine Nocardiopsis species. Appl Environ Microbiol 76:4969–4976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fenical W, Jensen P (2006) Developing a new resource for drug discovery: marine actinomycete bacteria. Nature Chem Biol 2:666–673

    Article  CAS  Google Scholar 

  • Fenical W, Baden D, Burg M, de Goyet CV, Grimes JD, Katz M, Marcus NH, Pomponi S, Rhines P, Tester P, Vena J (1999) Marine derived pharmaceuticals and related bioactive compounds. In: Fenical W (ed) From monsoons to microbes: understanding the ocean’s role in human health, National Academies Press, pp 71–86

    Google Scholar 

  • Fiedler HP, Bruntner C, Riedlinger J, Bull AT, Knutsen G, Goodfellow M, Jones A, Maldonado L, Pathom-Aree W, Beil W, Schneider K, Keller S, Sussmuth RD (2008) Proximicin A, B and C, novel aminofuran antibiotic and anticancer compounds isolated from marine strains of the actinomycete Verrucosispora. J Antibiot 61:158–163

    Article  CAS  PubMed  Google Scholar 

  • Frändberg E, Petersson C, Lundgren LN, Schnürer J (2000) Streptomyces halstedii K122 produces the antifungal compounds bafilomycin B1 and C1. Can J Microbiol 46:753–758

    Article  PubMed  Google Scholar 

  • Fujii I, Ebizuka Y (1997) Anthracycline biosynthesis in Streptomyces galilaeus. Chem Rev 97:2511–2524

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Lu Y, Xing Y, Ma Y, Lu J, Bao W, Wang Y, Xi T (2012) A novel anticancer and antifungus phenazine derivative from a marine actinomycete BM-17. Microbiol Res 167:616–622

    Article  CAS  PubMed  Google Scholar 

  • Garcia RO, Müller R (2014a) The family haliangiaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes deltaproteobacteria and epsilonproteobacteria, Springer, pp 173–181

    Google Scholar 

  • Garcia RO, Müller R (2014b) The family myxococcaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes deltaproteobacteria and epsilonproteobacteria, Springer, pp 192–212

    Google Scholar 

  • Garcia RO, Müller R (2014c) The family nannocystaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes deltaproteobacteria and epsilonproteobacteria, Springer, pp 213–229

    Google Scholar 

  • Garcia RO, Müller R (2014d) The family phaselicastaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes deltaproteobacteria and epsilonproteobacteria, Springer, pp 239–245

    Google Scholar 

  • Garcia RO, Müller R (2014e) The family polyangiaceae In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes deltaproteobacteria and epsilonproteobacteria, Springer, pp 247–279

    Google Scholar 

  • Garcia RO, Krug D, Müller R (2009) Discovering natural products from myxobacteria with emphasis on rare producer strains in combination with improved analytical methods. Methods Enzymol 458:59–91

    Google Scholar 

  • Garcia R, Pistorius D, Stadler M, Müller R (2011) Fatty acid-related phylogeny of myxobacteria as an approach to discover polyunsaturated omega-3/6 fatty acids. J Bacteriol 139:1930–1942

    Article  CAS  Google Scholar 

  • Gemperlein K, Zipf G, Bernauer HS, Müller R, Wenzel SC (2016) Metabolic engineering of Pseudomonas putida for production of docosahexaenoic acid based on a myxobacterial PUFA synthase. Metab 33:98–108

    Article  CAS  Google Scholar 

  • Gerth K, Irschik H, Reichenbach H, Trowitzsch W (1980) Myxothiazol, an antibiotic from Myxococcus fulvus (myxobacterales). I. Cultivation, isolation, physico-chemical and biological properties. J Antibiot 33:1474–1479 Tokyo

    Article  CAS  PubMed  Google Scholar 

  • Gerth K, Pradella S, Perlova O, Beyer S, Müller R (2003) Myxobacteria: proficient producers of novel natural products with various biological activities–past and future biotechnological aspects with the focus on the genus Sorangium. J Biotechnol 106:233–253

    Article  CAS  PubMed  Google Scholar 

  • Gerth K, Ischik H, Reichenbach H, Trowitzsch WPG (1982) The myxovirescins, a family of antibiotics from Myxococcus virescens (myxobacterales). J Antibiot 35:1454–1459

    Article  CAS  PubMed  Google Scholar 

  • Gerth K, Bedorf N, Irschik H, Höfle G, Reichenbach H (1994) The soraphens: a family of novel antifungal compounds from Sorangium cellulosum (Myxobacteria). I. Soraphen A1 alpha: fermentation, isolation, biological properties. J Antibiot 47:23–31

    Article  CAS  PubMed  Google Scholar 

  • Gerth K, Bedorf N, Irschik H, Höfle G, Reichenbach H (1996) Epothilons A and B: antifungal and cytotoxic compounds from Sorangium cellulosum (myxobacteria) production, physico-chemical and biological properties. J Antibiot 49:560–563

    Article  CAS  PubMed  Google Scholar 

  • Goldman BS, Nierman WC, Kaiser D, Slater SC, Durkin AS, Eisen JA, Ronning CM, Barbazuk WB, Blanchard M, Field C, Halling C, Hinkle G, Iartchuk O, Kim HS, Mackenzie C, Madupu R, Miller N, Shvartsbeyn A, Sullivan SA, Vaudin M, Wiegand R, Kaplan HB (2006) Evolution of sensory complexity recorded in a myxobacterial genome. Proc Natl Atlac Sci USA 103:15200–15205

    Google Scholar 

  • Goodfellow M, Haynes JA (1984) Actinomycetes in marine sediments. In: Ortiz-Ortiz L, Bojalil LF, Yakoleff V (eds) Biological, biochemical, and biomedical aspects of actinomycetes. Academic Press, New York, pp 453–472

    Chapter  Google Scholar 

  • Gorajana A, Kurada BV, Peela S, Jangam P, Vinjamuri S, Poluri E et al (2005) 1-Hydroxy- 1-norresistomycin, a new cytotoxic compound from a marine actinomycete, Streptomyces chibaensis AUBN1/7. J Antibiot 58:526–529

    Article  CAS  PubMed  Google Scholar 

  • Grabley S, Thiericke R (1999) The impact of natural products on drug discovery. Drug discovery from nature, Springer, pp 3–37

    Google Scholar 

  • Han SK, Nedashkovskaya OI, Mikhailov VV, Kim SB, Bae KS (2003) Salinibacterium amurskyense gen. nov., sp. nov., a novel genus of the family microbacteriaceae from the marine environment. Int J Syst Evol Microbiol 53:2061–2066

    Article  CAS  PubMed  Google Scholar 

  • Hansen LH, Ferrari B, Sørensen AH, Veal D, Sørensen S (2001) Detection of oxytetracycline production by Streptomyces rimosus in soil microcosmos by combining whole cell biosensors and flow cytometry. Appl Environ Microbiol 67:239–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawas UW, Shaaban M, Shaaban KA, Speitling M, Maier A, Kelter G, Fiebig HH, Meiners M, Helmke E, Laatsch H (2009) Mansouramycins A-D, cytotoxic isoquinolinequinones from a marine streptomycete. J Nat Prod 72:2120–2124

    Article  CAS  PubMed  Google Scholar 

  • Hayakawa Y, Shirasaki S, Shiba S, Kawasaki T, Matsuo Y, Adachi K et al (2007) Piericidins C7 and C8, new cytotoxic antibiotics produced by a marine Streptomyces sp. J Antibiot 60:196–200

    Article  CAS  PubMed  Google Scholar 

  • Helaly SE, Pesic A, Fiedler HP, Süßmuth RD (2011) Elaiomycins B and C: Alkylhydrazide antibiotics from Streptomyces sp. BK 190. Org Lett 13:1052–1055

    Article  CAS  PubMed  Google Scholar 

  • Helmke E, Weyland H (1984) Rhodococcus marinonascens sp. nov., an actinomycete from the sea. Int J Syst Bacteriol 34:127–138

    Article  Google Scholar 

  • Hentschel U, Hopke J, Horn M, Friedrich AB, Wagner M, Hacker J, Moore BS (2002) Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68:4431–4440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hentschel U, Piel J, Degnan SM, Taylor MW (2012) Genomic insights into marine sponge microbiome. Nat Rev Microbiol 10:641–654

    Article  CAS  PubMed  Google Scholar 

  • Herr RR, Jahnke HK, Argoudelis AD (1967) Structure of streptozotocin. J Am Chem Soc 89:4808–4809

    Article  CAS  PubMed  Google Scholar 

  • Hill RT (2004) Microbes from marine sponges: a treasure trove of biodiversity for natural products discovery. In: Bull AT (ed) Microbial diversity and bioprospecting, ASM Press, pp. 225–231

    Google Scholar 

  • Hohmann C, Schneider K, Bruntner C, Brown R, Jones AL, Goodfellow M, Krämer M, Imhoff JF, Nicholson G, Fiedler HP, Süssmuth RD (2009a) Albidopyrone, a new alpha-pyrone-containing metabolite from marine-derived Streptomyces sp. NTK 227. J Antibiot 62:75–79

    Article  CAS  PubMed  Google Scholar 

  • Hohmann C, Schneider K, Bruntner C, Irran E, Nicholson G, Bull AT et al (2009b) Caboxamycin, a new antibiotic of the benzoxazole family produced by the deep-sea strain Streptomyces sp. NTK 937. J Antibiot 62:99–104

    Article  CAS  PubMed  Google Scholar 

  • Hook LA (1977) Distribution of myxobacters in aquatic habitats of an alkaline bog. Appl Environ Microbiol 34:333–335

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang YF, Tian L, Fu HW, Hua HM, Pei YH (2006) One new anthraquinone from marine Streptomyces sp. FX-58. Nat Prod Res 20:1207–1210

    Article  CAS  PubMed  Google Scholar 

  • Iizuka T, Jojima Y, Fudou R, Yamanaka S (1998) Isolation of myxobacteria from the marine environment. FEMS Microbiol Lett 169:317–322

    Article  CAS  PubMed  Google Scholar 

  • Inagaki F, Suzuki M, Takai K, Oida H, Sakamoto T, Aoki K, Nealson KH, Horikoshi K (2003) Microbial communities associated with geological horizons in coastal subseafloor sediments from the Sea of Okhotsk. Appl Environ Microbiol 69:7224–7235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irschik H, Reichenbach H (1985) The mechanism of action of myxovalargin A, a peptide antibiotic from Myxococcus fulvus. J Antibiot 38:1237–1245 Tokyo

    Google Scholar 

  • Irschik H, Gerth K, Kemmer T, Steinmetz H, Reichenbach H (1983) The myxovalargins, new peptide antibiotics from Myxococcus fulvus (Myxobacterales). I. Cultivation, isolation, and some chemical and biological properties. J Antibiot 36:6–12 Tokyo

    Article  CAS  PubMed  Google Scholar 

  • Irschik H, Jansen R, Gerth K, Höfle G, Reichenbach H (1987) The sorangicins, novel and powerful inhibitors of eubacterial RNA polymerase isolated from myxobacteria. J Antibiot 0:7–13 (Tokyo)

    Google Scholar 

  • Irschik H, Augustiniak H, Gerth K, Höfle G, Reichenbach H (1995) The ripostatins, novel inhibitors of eubacterial RNA polymerase isolated from myxobacteria. J Antibiot 48:787–792 Tokyo

    Article  CAS  PubMed  Google Scholar 

  • Irschik H, Schummer D, Höfle G, Reichenbach H, Steinmetz H, Jansen R (2007) Etnangien, a macrolide-polyene antibiotic from Sorangium cellulosum that inhibits nucleic acid polymerases. J Nat Prod 70:1060–1063

    Article  CAS  PubMed  Google Scholar 

  • Jensen PR, Dwight R, Fenical W (1991) Distribution of actinomycetes in near-shore tropical marine sediments. Appl Environ Microbiol 57:1102–1108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen PR, Williams PG, Oh DC, Zeigler L, Fenical W (2007) Species-specific secondary metabolite production in marine actinomycetes of the genus Salinispora. Appl Environ Microbiol 73:1146–1152

    Article  CAS  PubMed  Google Scholar 

  • Jeong SY, Shin HJ, Kim TS, Lee HS, Park S, Kim HM (2006) Streptokordin, a new cytotoxic compound of the methylpyridine class from a marine-derived Streptomyces sp. KORDI-3238. J Antibiot 59:234–240

    Article  CAS  PubMed  Google Scholar 

  • Jiang S, Sun W, Chen M, Dai S, Zhang L, Liu Y, Lee KJ, Li X (2007) Diversity of culturable actinobacteria isolated from marine sponge Haliclona sp. Antonie Van Leeuwenhoek 92:405–416

    Article  CAS  PubMed  Google Scholar 

  • Jørgensen H, Degnes KF, Dikiy A, Fjaervik E, Klinkenberg G, Zotchev SB (2010) Insights into the evolution of macrolactam biosynthesis through cloning and comparative analysis of the biosynthetic gene cluster for a novel macrocyclic lactam, ML-449. Appl Environ Microbiol 76:283–293

    Article  PubMed  CAS  Google Scholar 

  • Kanoh K, Matsuo Y, Adachi K, Imagawa H, Nishizawa M, Shizuri Y (2005) Mechercharmycins A and B, cytotoxic substances from marine-derived Thermoactinomyces sp. YM3-251. J Antibiot 58:289–292

    Article  CAS  PubMed  Google Scholar 

  • Karwehl S, Stadler M (2016) Exploitation of fungal biodiversity for discovery of novel antibiotics. Curr Top Microbiol Immunol, in press (doi: 10.1007/82_2016_496)

    Google Scholar 

  • Kim SB, Oh HM, Kang H, Park SS, Chun J (2004) Remarkable bacterial diversity in the tidal flat sediment as revealed by 16S rDNA analysis. J Microbiol Biotechnol 14:205–211

    CAS  Google Scholar 

  • Kock I, Maskey RP, Biabani MAF, Helmke E, Laatsch H (2005) 1-Hydroxy-1-norresistomycin and resistoflavin methyl ether: new antibiotics from marine-derived streptomycetes. J Antibiot 58:530–535

    Article  CAS  PubMed  Google Scholar 

  • Koutsoudakis G, Romero-Brey I, Berger C, Pérez-Vilaró G, Monteiro Perin P, Vondran FW, Kalesse M, Harmrolfs K, Müller R, Martinez JP, Pietschmann T, Bartenschlager R, Brönstrup M, Meyerhans A, Díez J (2015) Soraphen A: a broad-spectrum antiviral natural product with potent anti-hepatitis C virus activity. J Hepatol 63:813–821

    Article  CAS  PubMed  Google Scholar 

  • Kunze B, Kemmer T, Höfle G, Reichenbach H (1984) Stigmatellin, a new antibiotic from Stigmatella aurantiaca (Myxobacterales). I. Production, physico-chemical and biological properties. J Antibiot 37:454–461 Tokyo

    Article  CAS  PubMed  Google Scholar 

  • Kunze B, Höfle G, Reichenbach H (1987) The aurachins, new quinoline antibiotics from myxobacteria: production, physico-chemical and biological properties. J Antibiot 40:258–265 Tokyo

    Article  CAS  PubMed  Google Scholar 

  • Kunze B, Jansen R, Höfle G, Reichenbach H (1994) Crocacin, a new electron transport inhibitor from Chondromyces crocatus (myxobacteria). Production, isolation, physico-chemical and biological properties. J Antibiot 47:881–886 Tokyo

    Article  CAS  PubMed  Google Scholar 

  • Kunze B, Jansen R, Sasse F, Höfle G, Reichenbach H (1995) Chondramides A approximately D, new antifungal and cytostatic depsipeptides from Chondromyces crocatus (myxobacteria). Production, physico-chemical and biological properties. J Antibiot 48:1262–1266 Tokyo

    Article  CAS  PubMed  Google Scholar 

  • Kwon HC et al (2006) Marinomycins A-D, antitumor-antibiotics of a new structure class from a marine actinomycete of the recently discovered genus ‘‘Marinospora’’. J Am Chem Soc 128:1622–1632

    Article  CAS  PubMed  Google Scholar 

  • Lam KS (2006) Discovery of novel metabolites from marine actinomycetes. Curr Opin Microbiol 9:245–251

    Article  CAS  PubMed  Google Scholar 

  • Li DH, Zhu TJ, Liu HB, Fang YC, Gu QQ, Zhu WM (2006) Four butenolides are novel cytotoxic compounds isolated from the marine-derived bacterium, Streptoverticillium luteoverticillatum 11014. Arch Pharmacal Res 29:624–626

    Google Scholar 

  • Li F, Maskey RP, Qin S, Sattler I, Fiebig HH, Maier A et al (2005) Chinikomycins A and B: isolation structure elucidation, and biological activity of novel antibiotics from a marine Streptomyces sp. isolate M045. J Nat Prod 68:349–353

    Article  CAS  PubMed  Google Scholar 

  • Link HF (1809) Observations in Ordines plantarum naturales. Dissertatio prima, complectens Anandrarum ordines Epiphytas, Mucedines Gastomycos et Fungos. Der Geselllschaft Naturforschender Freunde zu Berlin Magazin für die neuesten Entdeckungen in der gesamten Naturkunde 3:1–42

    Google Scholar 

  • Lu J, Ma Y, Liang J, Xing Y, Xi T, Lu Y (2012) Aureolic acids from a marine-derived Streptomyces sp. WBF16. Microbiol Res 167:590–595

    Article  CAS  PubMed  Google Scholar 

  • Macherla VR, Liu J, Bellows C, Teisan S, Nicholson B, Lam KS et al (2005) Glaciapyrroles A, B and C, pyrrolosesquiterpenes from a Streptomyces sp. isolated from an Alaskan marine sediment. J Nat Prod 68:780–783

    Article  CAS  PubMed  Google Scholar 

  • Magarvey NA, Keller JM, Bernan V, Dworkin M, Sherman DH (2004) Isolation and characterization of novel marine-derived actinomycete taxa rich in bioactive metabolites. Appl Environ Microbiol 70:7520–7529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maldonado LA, Fenical W, Jensen PR, Kauffman CA, Mincer TJ, Bull AT, Ward AC, Goodfellow M (2005a) Salinispora arenicola gen. nov., sp nov and Salinispora tropica sp nov., obligate marine actinomycetes belonging to the family micromonosporaceae. Int J Syst Evol Microbiol 55:1759–1766

    Article  CAS  PubMed  Google Scholar 

  • Maldonado LA, Starch JEM, Pathom-Aree W, Ward AC, Bill AT, Goodfellow M (2005b) The diversity of cultivable actinobacteria in geographically widespread marine sediments. Antonie Van Leeuwenhoek 87:11–18

    Article  PubMed  Google Scholar 

  • Manam RR, Teisan S, White DJ, Nishino T, Grodberg J, Neuteboom STC et al (2005) Lajollamycin, a nitro-tetraene spiro-b-lactone-g-lactam antibiotic from the marine actinomycete Streptomyces nodosus. J Nat Prod 68:240–243

    Article  CAS  PubMed  Google Scholar 

  • Mao Y, Varoglu M, Sherman DH (1999) Molecular characterization and analysis of the biosynthetic gene cluster for the antitumor antibiotic mitomycin C from Streptomyces lavendulae NRRL 2564. Chem Biol 6:251–263

    Article  CAS  PubMed  Google Scholar 

  • Martinez JP, Hinkelmann B, Fleta-Soriano E, Steinmetz H, Jansen R, Diez J, Frank R, Sasse F, Meyerhans A (2013) Identification of myxobacteria-derived HIV inhibitors by a high-throughput two-step infectivity assay. Microb Cell Fact 12:85

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Manivasagan P, Venkatesan J, Sivakumar K, Kim S-K (2013) Marine actinobacterial metabolites: Current status and future perspectives. Microbiol Res 168:311–332

    Article  CAS  PubMed  Google Scholar 

  • Mantalvo NF, Mohamed NM, Enticknap JJ, Hill RT (2005) Novel actinobacteria from marine sponges. Antonie Van Leeuwenhoek 87:29–36

    Article  CAS  Google Scholar 

  • McArthur KA, Mitchell SS, Tsueng G, Rheingold A, White DJ, Grodberg J, Lam KS, Potts BC (2008) Lynamicins A-E, chlorinated bisindole pyrrole antibiotics from a novel marine actinomycete. J Nat Prod 71:1732–1737

    Article  CAS  PubMed  Google Scholar 

  • Mincer TJ, Jensen PR, Kauffman CA, Fenical W (2002) Widespread and persistent populations of a major new marine actinomycete taxon in ocean sediments. Appl Environ Microbiol 68:5005–5011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mincer TJ, Fenical W, Jensen PR (2005) Culture-dependent and culture-independent diversity within the obligate marine actinomycete genus Salinispora. Appl Environ Microbiol 71:7019–7028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell SS, Nicholson B, Teisan S, Lam KS, Potts BC (2004) Aureoverticillactam, a novel 22-atom macrocyclic lactam from the marine actinomycete Streptomyces aureoverticillatus. J Nat Prod 67:1400–1402

    Article  CAS  PubMed  Google Scholar 

  • Mohr KI, Stechling M, Wink J, Wilharm E, Stadler M (2015) Comparison of myxobacterial diversity and evaluation of isolation success in two niches: Kiritimati Island and German compost. Microbiologyopen 5:268–278

    Google Scholar 

  • Moore BS, Trischman JA, Seng D, Kho D, Jensen PR, Fenical W (1999) Salinamides, antiinflammatory depsipeptides from a marine streptomycete. J Org Chem 64:1145–1150

    Article  CAS  Google Scholar 

  • Moore BS, Kalaitzis JA, Xiang L (2005) Exploiting marine actinomycete biosynthetic pathways for drug discovery. Antonie Van Leeuwenhoek 87:49–57

    Article  CAS  PubMed  Google Scholar 

  • Müller R, Wink J (2014) Future potential for anti-infectives from bacteria—how to exploit biodiversity and genomic potential. Int J Med Microbiol 304:3–13

    Article  PubMed  CAS  Google Scholar 

  • Oh DC, Gontang EA, Kauffman CA, Jensen PR, Fenical W (2008) Salinipyrones and pacificanones, mixed-precursor polyketides from the marine actinomycete salinispora pacifica. J Nat Prod 71:570–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ojika M, Suzuki Y, Tsukamoto A, Sakagami Y, Fudou R, Yoshimura T, Yamanaka S (1998) Cystothiazoles A and B, new bithiazole-type antibiotics from the myxobacterium Cystobacter fuscus. J Antibiot 51:275–281 Tokyo

    Article  CAS  PubMed  Google Scholar 

  • Okami Y, Okazaki T (1972) Studies on marine microorganisms. J Antibiot 25:456–460

    Article  CAS  PubMed  Google Scholar 

  • Omura S, Nakagawa A, Fujimoto T, Saito K, Otoguro K, Walsh JC et al (1987) Hygromycin A, an antitreponemal substance. I. Screening method and therapeutic effect for Treponema hyodysenteriae-caused infection in CF-1 mice. J Antibiot 40:1619

    Article  CAS  PubMed  Google Scholar 

  • Oxford AE (1947) Observations concerning the growth and metabolic activities of myxococci in a simple protein-free liquid medium. J Bacteriol 53:129–138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Papineau D, Walker JJ, Mojzsis SJ, Pace NR (2005) Composition and structure of microbial communities from stromatolites of Hamelin Pool in Shark Bay, Western Australia. Appl Environ Microbiol 71:4822–4832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pathom-Aree W, Stach JEM, Ward AC, Horikoshi K, Bull AT, Goodfellow M (2006) Diversity of actinomycetes isolated from challenger deep sediment (10,898 m) from the Mariana Trench. Extremophiles 10:181–189

    Article  CAS  PubMed  Google Scholar 

  • Perez Baz J, Cañedo LM, Fernández Puentes JL, Silva Elipe MV (1997) Thiocoraline, a novel depsipeptide with antitumor activity produced by a marine Micromonospora. II. Physico-chemical properties and structure determination. J Antibiot 50:738–741

    Google Scholar 

  • Peschke U, Schmidt H, Zhang HZ, Piepersberg W (2006) Molecular characterization of the lincomycin-production gene cluster of Streptomyces lincolnensis 78–11. Mol Microbiol 16:1137–1156

    Article  Google Scholar 

  • Piel J, Hertweck C, Shipley PR, Hunt DM, Newman MS, Moore BS (2000) Cloning, sequencing and analysis of the enterocin biosynthesis gene cluster from the marine isolate ‘Streptomyces maritimus’: evidence for the derailment of an aromatic polyketide synthase. Chem Biol 7:943–955

    Article  CAS  PubMed  Google Scholar 

  • Pivot X, Dufresne A, Villanueva C (2007) Efficacy and safety of ixabepilone, a novel epothilone analogue. Clin Breast Canc 7:543–549

    Article  CAS  Google Scholar 

  • Prudhomme J, McDaniel E, Ponts N, Bertani S, Fenical W, Jensen P et al (2008) Marine actinomycetes: a new source of compounds against the human malaria parasite. PLoS ONE 3:2335

    Article  CAS  Google Scholar 

  • Rachid S, Huo L, Herrmann J, Stadler M, Köpcke B, Bitzer J, Müller R (2011) Mining the cinnabaramide biosynthetic pathway to generate novel proteasome inhibitors. ChemBioChem 12:922–931

    Article  CAS  PubMed  Google Scholar 

  • Reichenbach H (1983) A simple method for the purification of myxobacteria. J Microbiol Methods 1:77–79

    Article  Google Scholar 

  • Reichenbach H, Höfle G (1993) Biologically active secondary metabolites from myxobacteria. Biotech Adv 11:219–277

    Article  CAS  Google Scholar 

  • Reichenbach H, Gerth K, Irschik H, Kunze B, Höfle G (1988) Myxobacteria: a source of new antibiotics. Trends Biotechnol 6:115–121

    Article  CAS  Google Scholar 

  • Reichenbach H, Lang E, Schumann P, Spröer C (2006a) Byssovorax cruenta gen. nov., sp. nov., nom. rev., an cellulose-degrading myxobacterium: rediscovery of ‘Myxococcus cruentus’ Thaxter 1897. Int J Syst Evol Microbiol 56:2357–2363

    Article  CAS  PubMed  Google Scholar 

  • Reichenbach H, Dworkin M, Shimkets LJ (2006) The myxobacteria In: Dworkin M, Falkow S, Rosenberg E, Schleifer K.-H. Stackebrandt E (eds) The prokaryotes,Springer, Berlin, vol 7, pp. 31–115

    Google Scholar 

  • Reichenbach H, Höfle G (2008) Discovery and development of the epothilones: a novel class of antineoplastic drugs. Drugs R D 9:1–10

    Article  CAS  PubMed  Google Scholar 

  • Ringel SM, Greenough RC, Roemer S (1977) Ambruticin (W7783), a new antifungal antibiotic. J Antibiot 30:371–375

    Article  CAS  PubMed  Google Scholar 

  • Saleh EA, Mahmoud SAZ, El-Haddad ME, Abdel-Fatah MK (1985) Purification and identification of Streptomyces aureofaciens ID13 antibiotic. Zentralblatt für Mikrobiologie 140:325–332

    Google Scholar 

  • Sanford RA, Cole JR, Tiedje JM (2002) Characterization and description of Anaeromyxobacter dehalogenans gen. nov., sp. nov., an aryl-halorespiring facultative anaerobic myxobacterium. Appl Environ Microbiol 68:893–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasse F, Steinmetz H, Höfle G, Reichenbach H (1993) Rhizopodin, a new compound from Myxococcus stipitatus (myxobacteria) causes formation of rhizopodia-like structures in animal cell cultures. Production, isolation, physico-chemical and biological properties. J Antibiot 46:741–748

    Article  CAS  PubMed  Google Scholar 

  • Sasse F, Böhlendorf B, Herrmann M, Kunze B, Forche E, Steinmetz H, Höfle G, Reichenbach H (1999) Melithiazols, new beta-methoxyacrylate inhibitors of the respiratory chain isolated from myxobacteria. Production, isolation, physico-chemical and biological properties. J Antibiot 52:721–729

    Article  CAS  PubMed  Google Scholar 

  • Selvin J, Joseph S, Asha KRT, Manjusha WA, Sangeetha VS, Jayaseema DM, Antony MC, Denslin Vinitha AJ (2004) Antibacterial potential of antagonistic Streptomyces sp. isolated from marine sponge Dendrilla nigra. FEMS Microbiol Ecol 50:117–122

    Article  CAS  PubMed  Google Scholar 

  • Schneiker S, Perlova O, Kaiser O, Gerth K, Alici A, Altmeyer MO, Bartels D, Bekel T, Beyer S, Bode E, Bode HB, Bolten CJ, Choudhuri JV, Doss S, Elnakady YA, Frank B, Gaigalat L, Goesmann A, Groeger C, Gross F, Jelsbak L, Jelsbak L, Kalinowski J, Kegler C, Knauber T, Konietzny S, Kopp M, Krause L, Krug D, Linke B, Mahmud T, Martinez-Arias R, McHardy AC, Merai M, Meyer F, Mormann S, Muñoz-Dorado J, Perez J, Pradella S, Rachid S, Raddatz G, Rosenau F, Rückert C, Sasse F, Scharfe M, Schuster SC, Suen G, Treuner-Lange A, Velicer GJ, Vorhölter FJ, Weissman KJ, Welch RD, Wenzel SC, Whitworth DE, Wilhelm S, Wittmann C, Blöcker H, Pühler A, Müller R (2007) Complete genome sequence of the myxobacterium Sorangium cellulosum. Nat Biotechnol 25:1281–1289

    Article  CAS  PubMed  Google Scholar 

  • Schreurs M, Van Dijk TH, Gerding A, Havinga R, Reijngoud DJ, Kuipers F (2009) Soraphen, an inhibitor of the acetyl-CoA carboxylase system, improves peripheral insulin sensitivity in mice fed a high-fat diet. Diabetes Obes Metab 11:987–991

    Article  CAS  PubMed  Google Scholar 

  • Schultz AW, Oh DC, Carney JR, Williamson RT, Udwary DW, Jensen PR, Gould SJ, Fenical W, Moore BS (2008) Biosynthesis and structures of cyclomarins and cyclomarazines, prenylated cyclic peptides of marine actinobacterial origin. J Am Chem Soc 130:4507–4516

    Article  CAS  PubMed  Google Scholar 

  • Shimkets LJ, Dworkin M, Reichbach H (2004) The myxobacteria, 3rd edn. Springer, New York

    Google Scholar 

  • Sivakumar K, Sahu MK, Thangaradjou T, Kannan L (2007) Research on marine actinobacteria in India. Ind J Microbiol 47:186–196

    Article  CAS  Google Scholar 

  • Socha AM, LaPlante KL, Rowley DC (2006) New bisanthraquinone antibiotics and semisynthetic derivatives with potent activity against clinical Staphylococcus aureus and Enterococcus faecium isolates. Bioorganic Med Chem 14:8446–8454

    Article  CAS  Google Scholar 

  • Soria-Mercado IE, Prieto-Davo A, Jensen PR, Fenical W (2005) Antibiotic terpenoid chloro-dihydroquinones from a new marine actinomycete. J Nat Prod 68:904–910

    Article  CAS  PubMed  Google Scholar 

  • Stach JEM, Bull AT (2005) Estimating and comparing the diversity of marine actinobacteria. Antonie Van Leeuwenhoek 87:3–9

    Article  PubMed  Google Scholar 

  • Stach JEM, Maldonado LA, Masson DG, Ward AC, Goodfellow M, Bull AT (2003) Statistical approaches to estimating bacterial diversity in marine sediments. Appl Environ Microbiol 69:6189–6200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stadler M, Bitzer J, Mayer-Bartschmid A, Müller H, Benet-Buchholz J, Gantner F, Tichy HV, Reinemer P, Bacon KB (2007) Cinnabaramides A-G: analogues of lactacystin and salinosporamide from a terrestrial streptomycete. J Nat Prod 70:246–252

    Article  CAS  PubMed  Google Scholar 

  • Steinert G, Whitfield S, Taylor MW, Thoms C, Schupp PJ (2014) Application of diffusion growth chambers for the cultivation of marine sponge-associated bacteria. Mar Biotechnol 16:594–603 Springer

    Article  CAS  PubMed  Google Scholar 

  • Surup F, Viehrig K, Mohr KI, Herrmann J, Jansen R, Müller R (2014) Disciformycins A and B: 12-membered macrolide glycoside antibiotics from the myxobacterium Pyxidicoccus fallax active against multiresistant staphylococci. Angew Chem Int Ed 53:13588–13591

    Article  CAS  Google Scholar 

  • Takami H, Inoue A, Fuji F, Horikoshi K (1997) Microbial flora in the deepest sea mud of the Mariana Trench. FEMS Microbiol Lett 152:279–285

    Article  CAS  PubMed  Google Scholar 

  • Takizawa M, Colwell RR, Hill RT (1993) Isolation and diversity of actinomycetes in the Chesapeake Bay. Appl Environm Micobiol 59:997–1002

    CAS  Google Scholar 

  • Taylor and Francis Group (2016) Dictionary of natural products (online)

    Google Scholar 

  • Thaxter R (1892) On the myxobacteriaceae, a new order of schizomycetes. Bot Gaz 17:389–406

    Article  Google Scholar 

  • Uyeda M, Mizukami M, Yokomizo K, Suzuki K, Pentalenolactone I (2001) Hygromycin A. immunosuppressants produced by Streptomyces filipinensis and Streptomyces hygroscopicus. Biosci Biotechnol Biochem 65:1252–1254

    Article  CAS  PubMed  Google Scholar 

  • Vetcher L, Menzella HG, Kudo T, Motoyama T, Katz L (2013) The antifungal polyketide ambruticin targets the HOG pathway. Antimicrob Agents Chemother 51:3734–3736

    Article  CAS  Google Scholar 

  • Vezina C, Kudelski A, Sehgal S (1975) Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot 28:721–726

    Article  CAS  PubMed  Google Scholar 

  • Ward AC, Bora N (2006) Diversity and biogeography of marine actinobacteria. Curr Opin Microbiol 9:279–286

    Article  CAS  PubMed  Google Scholar 

  • Webster NS, Hill RT (2001) The culturable microbial community of the great barrier reef sponge Rhopaloeides odorabile. Appl Environ Microbiol 138:843–851

    CAS  Google Scholar 

  • Webster NS, Taylor MW (2012) Marine sponges and their microbial symbionts: love and other relationships. Environ Microbiol 14:335–346

    Article  CAS  PubMed  Google Scholar 

  • Weissmann KJ, Müller R (2009) A brief tour of myxobacterial secondary metabolism. Bioorg Med Chem 17:2121–2136

    Article  CAS  Google Scholar 

  • Wenzel SC, Müller R (2009) The impact of genomics on the exploitation of the myxobacterial secondary metabolome. Nat Prod Rep 26:1385–1407

    Article  CAS  PubMed  Google Scholar 

  • Werner G, Hagenmaier H, Drautz H, Baumgartner A, Zähner H (1984) Metabolic products of microorganisms. bafilomycins, a new group of macrolide antibiotics. Production, isolation, chemical structure and biological activity. J Antibiot 37:110–117

    Article  CAS  PubMed  Google Scholar 

  • Williams PG, Buchanan GO, Feling RH, Kauffman CA, Jensen PR, Fenical W (2005) New cytotoxic Salinosporamides from the marine actinomycete Salinispora tropica. J Org Chem 70:6196–6203

    Google Scholar 

  • Wu SJ, Fotso S, Li F, Qin S, Kelter T, Fiebig HH et al (2006) 39-N-carboxamidostaurosporine and selina-4(14),7(11)-diene-8,9-diol, new metabolites from a marine Streptomyces sp. J Antibiot 59:331–337

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Xie L, Xia G, Zhang J, Nie Y, Hu J, Wang S, Zhang R (2005) A new tetrodotoxin-producing actinomycete, Nocardiopsis dassonvillei, isolated from the ovaries of pufferfish Fugu rubripes. Taxoicon 45:851–859

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Wink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Landwehr, W., Wolf, C., Wink, J. (2016). Actinobacteria and Myxobacteria—Two of the Most Important Bacterial Resources for Novel Antibiotics. In: Stadler, M., Dersch, P. (eds) How to Overcome the Antibiotic Crisis . Current Topics in Microbiology and Immunology, vol 398. Springer, Cham. https://doi.org/10.1007/82_2016_503

Download citation

Publish with us

Policies and ethics