Skip to main content

The Neuropharmacology of Impulsive Behaviour, an Update

  • Chapter
  • First Online:
Recent Advances in Research on Impulsivity and Impulsive Behaviors

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 47))

Abstract

Neuropharmacological interventions in preclinical translational models of impulsivity have tremendously contributed to a better understanding of the neurochemistry and neural basis of impulsive behaviour. In this regard, much progress has been made over the last years, also due to the introduction of novel techniques in behavioural neuroscience such as optogenetics and chemogenetics. In this chapter, we will provide an update of how the behavioural pharmacology field has progressed and built upon existing data since an earlier review we wrote in 2008. To this aim, we will first give a brief background on preclinical translational models of impulsivity. Next, recent interesting evidence of monoaminergic modulation of impulsivity will be highlighted with a focus on the neurotransmitters dopamine and noradrenaline. Finally, we will close the chapter by discussing some novel directions and drug leads in the neuropharmacological modulation of impulsivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abraham AD, Fontaine HM, Song AJ, Andrews MM, Baird MA, Kieffer BL, Land BB, Chavkin C (2018) κ-Opioid receptor activation in dopamine neurons disrupts behavioral inhibition. Neuropsychopharmacology 43:362–372

    Article  CAS  PubMed  Google Scholar 

  • Adams WK, Barrus MM, Zeeb FD, Cocker PJ, Benoit J, Winstanley CA (2017) Dissociable effects of systemic and orbitofrontal administration of adrenoceptor antagonists on yohimbine-induced motor impulsivity. Behav Brain Res 328:19–27

    Article  CAS  PubMed  Google Scholar 

  • Anderson G (2020) Pathoetiology and pathophysiology of borderline personality: role of prenatal factors, gut microbiome, mu- and kappa-opioid receptors in amygdala-PFC interactions. Prog Neuro-Psychopharmacol Biol Psychiatry 98:109782

    Article  CAS  Google Scholar 

  • Baarendse PJ, Vanderschuren LJ (2012) Dissociable effects of monoamine reuptake inhibitors on distinct forms of impulsive behavior in rats. Psychopharmacology 219:313–326

    Article  CAS  PubMed  Google Scholar 

  • Bacqué-Cazenave J, Bharatiya R, Barrière G, Delbecque JP, Bouguiyoud N, Di Giovanni G, Cattaert D, De Deurwaerdère P (2020) Serotonin in animal cognition and behavior. Int J Mol Sci 21:E1649

    Article  PubMed  CAS  Google Scholar 

  • Bari A, Eagle DM, Mar AC, Robinson ES, Robbins TW (2009) Dissociable effects of noradrenaline, dopamine, and serotonin uptake blockade on stop task performance in rats. Psychopharmacology 205:273–283

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barlow RL, Gorges M, Wearn A, Niessen HG, Kassubek J, Dalley JW, Pekcec A (2018) Ventral striatal D2/3 receptor availability is associated with impulsive choice behavior as well as limbic corticostriatal connectivity. Int J Neuropsychopharmacol 21:705–715

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Befort K, Mahoney MK, Chow C, Hayton SJ, Kieffer BL, Olmstead MC (2011) Effects of delta opioid receptors activation on a response inhibition task in rats. Psychopharmacology 214:967–976

    Article  CAS  PubMed  Google Scholar 

  • Benn A, Robinson ES (2017) Differential roles for cortical versus sub-cortical noradrenaline and modulation of impulsivity in the rat. Psychopharmacology 234:255–266

    Article  CAS  PubMed  Google Scholar 

  • Berger SI, Iyengar R (2011) Role of systems pharmacology in understanding drug adverse events. Wiley Interdiscip Rev Syst Biol Med 3:129–135

    Article  CAS  PubMed  Google Scholar 

  • Berridge MJ (2009) Inositol trisphosphate and calcium signalling mechanisms. Biochim Biophys Acta 1793:933–940

    Article  CAS  PubMed  Google Scholar 

  • Berridge CW, Waterhouse BD (2003) The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Rev 42:33–84

    Article  PubMed  Google Scholar 

  • Besson M, Belin D, McNamara R, Theobald DE, Castel A, Beckett VL, Crittenden BM, Newman AH, Everitt BJ, Robbins TW, Dalley JW (2010) Dissociable control of impulsivity in rats by dopamine d2/3 receptors in the core and shell subregions of the nucleus accumbens. Neuropsychopharmacology 35:560–569

    Article  CAS  PubMed  Google Scholar 

  • Birchmeier C (2009) ErbB receptors and the development of the nervous system. Exp Cell Res 315:611–618

    Article  CAS  PubMed  Google Scholar 

  • Bizot JC, David S, Trovero F (2011) Effects of atomoxetine, desipramine, d-amphetamine and methylphenidate on impulsivity in juvenile rats, measured in a T-maze procedure. Neurosci Lett 489:20–24

    Article  CAS  PubMed  Google Scholar 

  • Blondeau C, Dellu-Hagedorn F (2007) Dimensional analysis of ADHD subtypes in rats. Biol Psychiatry 61:1340–1350

    Article  PubMed  Google Scholar 

  • Broos N, Schmaal L, Wiskerke J, Kostelijk L, Lam T, Stoop N, Weierink L, Ham J, de Geus EJ, Schoffelmeer AN, van den Brink W, Veltman DJ, de Vries TJ, Pattij T, Goudriaan AE (2012) The relationship between impulsive choice and impulsive action: a cross-species translational study. PLoS One 7:e36781

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Broos N, Van Mourik Y, Schetters D, De Vries TJ, Pattij T (2017) Dissociable effects of cocaine and yohimbine on impulsive action and relapse to cocaine seeking. Psychopharmacology 234:3343–3351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruinsma B, Terra H, de Kloet SF, Luchicchi A, Timmerman AJ, Remmelink E, Loos M, Pattij T, Mansvelder HD (2019) An automated home-cage-based 5-choice serial reaction time task for rapid assessment of attention and impulsivity in rats. Psychopharmacology 236:2015–2026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buckholtz JW, Treadway MT, Cowan RL, Woodward ND, Li R, Ansari MS, Baldwin RM, Schwartzman AN, Shelby ES, Smith CE, Kessler RM, Zald DH (2010) Dopaminergic network differences in human impulsivity. Science 329:532

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Capecchi MR (2005) Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat Rev Genet 6:507–512

    Article  CAS  PubMed  Google Scholar 

  • Caprioli D, Hong YT, Sawiak SJ, Ferrari V, Williamson DJ, Jupp B, Adrian Carpenter T, Aigbirhio FI, Everitt BJ, Robbins TW, Fryer TD, Dalley JW (2013) Baseline-dependent effects of cocaine pre-exposure on impulsivity and D2/3 receptor availability in the rat striatum: possible relevance to the attention-deficit hyperactivity syndrome. Neuropsychopharmacology 38:1460–1471

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carli M, Invernizzi RW (2014) Serotoninergic and dopaminergic modulation of cortico-striatal circuit in executive and attention deficits induced by NMDA receptor hypofunction in the 5-choice serial reaction time task. Front Neural Circuits 8:58

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Carli M, Robbins TW, Evenden JL, Everitt BJ (1983) Effects of lesions to ascending noradrenergic neurones on performance of a 5-choice serial reaction task in rats; implications for theories of dorsal noradrenergic bundle function based on selective attention and arousal. Behav Brain Res 9:361–380

    Article  CAS  PubMed  Google Scholar 

  • Carr MR, De Vries TJ, Pattij T (2018) Optogenetic and chemogenetic approaches to manipulate attention, impulsivity and behavioural flexibility in rodents. Behav Pharmacol 29:560–568

    Article  PubMed  Google Scholar 

  • Chamberlain SR, Grant JE (2019) Efficacy of pharmacological interventions in targeting decision-making impairments across substance and behavioral addictions. Neuropsychol Rev 29:93–102

    Article  PubMed Central  PubMed  Google Scholar 

  • Cole BJ, Robbins TW (1987) Amphetamine impairs the discriminative performance of rats with dorsal noradrenergic bundle lesions on a 5-choice serial reaction time task: new evidence for central dopaminergic-noradrenergic interactions. Psychopharmacology 91:458–466

    Article  CAS  PubMed  Google Scholar 

  • Dalley JW, Robbins TW (2017) Fractionating impulsivity: neuropsychiatric implications. Nat Rev Neurosci 18:158–171

    Article  CAS  PubMed  Google Scholar 

  • Dalley JW, Fryer TD, Brichard L, Robinson ES, Theobald DE, Lääne K, Peña Y, Murphy ER, Shah Y, Probst K, Abakumova I, Aigbirhio FI, Richards HK, Hong Y, Baron JC, Everitt BJ, Robbins TW (2007) Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science 315:1267–1270

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Das TK, Dey A, Sabesan P, Javadzadeh A, Theberge J, Radua J, Palaniyappan L (2018) Putative astroglial dysfunction in schizophrenia: a meta-analysis of (1)H-MRS studies of medial prefrontal myo-inositol. Front Psych 9:438

    Article  Google Scholar 

  • Diergaarde L, Pattij T, Poortvliet I, Hogenboom F, de Vries W, Schoffelmeer AN, De Vries TJ (2008) Impulsive choice and impulsive action predict vulnerability to distinct stages of nicotine seeking in rats. Biol Psychiatry 63:301–308

    Article  CAS  PubMed  Google Scholar 

  • Durazzo TC, Meyerhoff DJ, Mon A, Abe C, Gazdzinski S, Murray DE (2016) Chronic cigarette smoking in healthy middle- aged individuals is associated with decreased regional brain N-acetylaspartate and glutamate levels. Biol Psychiatry 79:481–488

    Article  CAS  PubMed  Google Scholar 

  • Eagle DM, Baunez C (2010) Is there an inhibitory-response-control system in the rat? Evidence from anatomical and pharmacological studies of behavioral inhibition. Neurosci Biobehav Rev 34:50–72

    Article  PubMed Central  PubMed  Google Scholar 

  • Economidou D, Theobald DE, Robbins TW, Everitt BJ, Dalley JW (2012) Norepinephrine and dopamine modulate impulsivity on the five-choice serial reaction time task through opponent actions in the shell and core sub-regions of the nucleus accumbens. Neuropsychopharmacology 37:2057–2066

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Evenden JL (1999) Varieties of impulsivity. Psychopharmacology 146:348–361

    Article  CAS  PubMed  Google Scholar 

  • Evenden JL, Ryan CN (1996) The pharmacology of impulsive behaviour in rats: the effects of drugs on response choice with varying delays of reinforcement. Psychopharmacology 128:161–170

    Article  CAS  PubMed  Google Scholar 

  • Feola TW, de Wit H, Richards JB (2000) Effects of d-amphetamine and alcohol on a measure of behavioral inhibition in rats. Behav Neurosci 114:838–848

    Article  CAS  PubMed  Google Scholar 

  • Ferreira PE, Palmini A, Bau CH, Grevet EH, Hoefel JR, Rohde LA, Anes M, Ferreira EE, Belmonte-de-Abreu P (2009) Differentiating attention-deficit/hyperactivity disorder inattentive and combined types: a (1)H-magnetic resonance spectroscopy study of fronto-striato-thalamic regions. J Neural Transm 116:623–629

    Article  PubMed  Google Scholar 

  • Funk D, Tamadon S, Coen K, Fletcher PJ, Lê AD (2019) Kappa opioid receptors mediate yohimbine-induced increases in impulsivity in the 5-choice serial reaction time task. Behav Brain Res 359:258–265

    Article  CAS  PubMed  Google Scholar 

  • Golani I, Tadmor H, Buonanno A, Kremer I, Shamir A (2014) Disruption of the ErbB signaling in adolescence increases striatal dopamine levels and affects learning and hedonic-like behavior in the adult mouse. Eur Neuropsychopharmacol 24:1808–1818

    Article  CAS  PubMed  Google Scholar 

  • Goslar M, Leibetseder M, Muench HM, Hofmann SG, Laireiter AR (2019) Pharmacological treatments for disordered gambling: a meta-analysis. J Gambl Stud 35:415–445

    Article  PubMed  Google Scholar 

  • Harvey-Lewis C, Franklin KB (2015) The effect of acute morphine on delay discounting in dependent and non-dependent rats. Psychopharmacology 232:885–895

    Article  CAS  PubMed  Google Scholar 

  • Harvey-Lewis C, Perdrizet J, Franklin KB (2012) The effect of morphine dependence on impulsive choice in rats. Psychopharmacology 223:477–487

    Article  CAS  PubMed  Google Scholar 

  • Heal DJ, Cheetham SC, Smith SL (2009) The neuropharmacology of ADHD drugs in vivo: insights on efficacy and safety. Neuropharmacology 57:608–618

    Article  CAS  PubMed  Google Scholar 

  • Isherwood SN, Pekcec A, Nicholson JR, Robbins TW, Dalley JW (2015) Dissociable effects of mGluR5 allosteric modulation on distinct forms of impulsivity in rats: interaction with NMDA receptor antagonism. Psychopharmacology 232:3327–3344

    Article  CAS  PubMed  Google Scholar 

  • Isherwood SN, Robbins TW, Nicholson JR, Dalley JW, Pekcec A (2017) Selective and interactive effects of D2 receptor antagonism and positive allosteric mGluR4 modulation on waiting impulsivity. Neuropharmacology 123:249–260

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jupp B, Caprioli D, Saigal N, Reverte I, Shrestha S, Cumming P, Everitt BJ, Robbins TW, Dalley JW (2013) Dopaminergic and GABA-ergic markers of impulsivity in rats: evidence for anatomical localisation in ventral striatum and prefrontal cortex. Eur J Neurosci 37:1519–1528

    Article  PubMed  Google Scholar 

  • Jupp B, Sawiak SJ, van der Veen B, Lemstra S, Toschi C, Barlow RL, Pekcec A, Bretschneider T, Nicholson JR, Robbins TW, Dalley JW (2020) Diminished myoinositol in ventromedial prefrontal cortex modulates the endophenotype of impulsivity. Cereb Cortex. https://doi.org/10.1093/cercor/bhz317

  • Kabra M, Robie AA, Rivera-Alba M, Branson S, Branson K (2013) JAABA: interactive machine learning for automatic annotation of animal behavior. Nat Methods 10:64–67

    Article  CAS  PubMed  Google Scholar 

  • Koot S, Adriani W, Saso L, van den Bos R, Laviola G (2009) Home cage testing of delay discounting in rats. Behav Res Methods 41:1169–1176

    Article  CAS  PubMed  Google Scholar 

  • Kwok R (2019) Deep learning powers a motion-tracking revolution. Nature 574:137–138

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Liang X, Ren WW, Li BM (2014) Expression of beta1- and beta2-adrenoceptors in different subtypes of interneurons in the medial prefrontal cortex of mice. Neuroscience 257:149–157

    Article  CAS  PubMed  Google Scholar 

  • Liu YP, Huang TS, Tung CS, Lin CC (2015) Effects of atomoxetine on attention and impulsivity in the five-choice serial reaction time task in rats with lesions of dorsal noradrenergic ascending bundle. Prog Neuro-Psychopharmacol Biol Psychiatry 56:81–90

    Article  CAS  Google Scholar 

  • Loos M, Pattij T, Janssen MCW, Counotte DS, Schoffelmeer ANM, Smit AB, Spijker S, Van Gaalen MM (2010) Dopamine receptor D1/D5 gene expression in the medial prefrontal cortex predicts impulsive choice in rats. Cereb Cortex 20:1064–1070

    Article  PubMed  Google Scholar 

  • Loos M, Mueller T, Gouwenberg Y, Wijnands R, Van der Loo RJ, Neuro-BSIK Mouse Phenomics Consortium, Birchmeier C, Smit AB, Spijker S (2014) Neuregulin-3 in the mouse medial prefrontal cortex regulates impulsive action. Biol Psychiatry 76:648–655

    Article  CAS  PubMed  Google Scholar 

  • Loos M, Schetters D, Hoogeland M, Spijker S, de Vries TJ, Pattij T (2016) Prefrontal cortical neuregulin-ErbB modulation of inhibitory control in rats. Eur J Pharmacol 781:157–163

    Article  CAS  PubMed  Google Scholar 

  • Lorbach M, Kyriakou EI, Poppe R, van Dam EA, Noldus LPJJ, Veltkamp RC (2018) Learning to recognize rat social behavior: novel dataset and cross-dataset application. J Neurosci Methods 300:166–172

    Article  PubMed  Google Scholar 

  • Luo F, Zhou H (2018) Clenbuterol reduces GABAergic transmission in prefrontal cortex layer 5/6 pyramidal neurons of juvenile rat via reducing action potentials firing frequency of GABAergic interneurons. J Neurochem 144:152–161

    Article  CAS  PubMed  Google Scholar 

  • Maguire DR, Henson C, France CP (2016) Daily morphine administration increases impulsivity in rats responding under a 5-choice serial reaction time task. Br J Pharmacol 173:1350–1362

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maguire DR, Mendiondo C, France CP (2018) Effects of daily morphine treatment on impulsivity in rats responding under an adjusting stop-signal reaction time task. Behav Pharmacol 29:676–687

    Article  CAS  PubMed  Google Scholar 

  • Mahoney MK, Silveira MM, Olmstead MC (2013) Increased impulsive action in rats: effects of morphine in a short and long fixed-delay response inhibition task. Psychopharmacology 230:569–577

    Article  CAS  PubMed  Google Scholar 

  • Mahoney MK, Barnes JH, Wiercigroch D, Olmstead MC (2016) Pharmacological investigations of a yohimbine-impulsivity interaction in rats. Behav Pharmacol 27:585–595

    Article  CAS  PubMed  Google Scholar 

  • Mazur J (1987) An adjusting procedure for studying delayed reinforcement. In: Commons ML, Nevin JA, Rachlin HC (eds) Quantitative analyses of behaviour: the effect of delay and intervening events on reinforcement value, vol 5. Erlbaum, Hillsdale, pp 55–73

    Google Scholar 

  • McGuire PS, Seiden LS (1980) The effects of tricyclic antidepressants on performance under a differential-reinforcement-of-low-rates schedule in rats. J Pharmacol Exp Ther 214:635–641

    CAS  PubMed  Google Scholar 

  • Mei L, Nave KA (2014) Neuregulin-ERBB signaling in the nervous system and neuropsychiatric diseases. Neuron 83:27–49

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Millan MJ, Newman-Tancredi A, Audinot V, Cussac D, Lejeune F, Nicolas JP, Cogé F, Galizzi JP, Boutin JA, Rivet JM, Dekeyne A, Gobert A (2000) Agonist and antagonist actions of yohimbine as compared to fluparoxan at alpha(2)-adrenergic receptors (AR)s, serotonin (5-HT)(1A), 5-HT(1B), 5-HT(1D) and dopamine D(2) and D(3) receptors. Significance for the modulation of frontocortical monoaminergic transmission and depressive states. Synapse 35:79–95

    Article  CAS  PubMed  Google Scholar 

  • Milstein JA, Dalley JW, Robbins TW (2010) Methylphenidate-induced impulsivity: pharmacological antagonism by beta-adrenoreceptor blockade. J Psychopharmacol 24:309–321

    Article  CAS  PubMed  Google Scholar 

  • Moazen P, Azizi H, Salmanzadeh H, Semnanian S (2018) Adolescent morphine exposure induces immediate and long-term increases in impulsive behavior. Psychopharmacology 235:3423–3434

    Article  CAS  PubMed  Google Scholar 

  • Molinoff PB (1984) Alpha- and beta-adrenergic receptor subtypes properties, distribution and regulation. Drugs 28(Suppl 2):1–15

    Article  CAS  PubMed  Google Scholar 

  • Moreno M, Economidou D, Mar AC, López-Granero C, Caprioli D, Theobald DE, Fernando A, Newman AH, Robbins TW, Dalley JW (2013) Divergent effects of D2/3 receptor activation in the nucleus accumbens core and shell on impulsivity and locomotor activity in high and low impulsive rats. Psychopharmacology 228:19–30

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Navarra R, Graf R, Huang Y, Logue S, Comery T, Hughes Z, Day M (2008) Effects of atomoxetine and methylphenidate on attention and impulsivity in the 5-choice serial reaction time test. Prog Neuro-Psychopharmacol Biol Psychiatry 32:34–41

    Article  CAS  Google Scholar 

  • Nemeth CL, Paine TA, Rittiner JE, Beguin C, Carroll FI, Roth BL et al (2010) Role of kappa-opioid receptors in the effects of salvinorin A and ketamine on attention in rats. Psychopharmacology 210:263–274

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nicholas AP, Hökfelt T, Pieribone VA (1996) The distribution and significance of CNS adrenoceptors examined with in situ hybridization. Trends Pharmacol Sci 17:245–255

    Article  CAS  PubMed  Google Scholar 

  • Paine TA, Tomasiewicz HC, Zhang K, Carlezon WA (2007) Sensitivity of the five-choice serial reaction time task to the effects of various psychotropic drugs in Sprague–Dawley rats. Biol Psychiatry 62:687–693

    Article  CAS  PubMed  Google Scholar 

  • Pan B, Huang XF, Deng C (2011) Antipsychotic treatment and neuregulin 1-ErbB4 signalling in schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry 35:924–930

    Article  CAS  Google Scholar 

  • Pardey MC, Kumar NN, Goodchild AK, Cornish JL (2013) Catecholamine receptors differentially mediate impulsive choice in the medial prefrontal and orbitofrontal cortex. J Psychopharmacol 27:203–212

    Article  CAS  PubMed  Google Scholar 

  • Patel MM, Patel BM (2017) Crossing the blood-brain barrier: recent advances in drug delivery to the brain. CNS Drugs 31:109–133

    Article  CAS  PubMed  Google Scholar 

  • Paterson NE, Ricciardi J, Wetzler C, Hanania T (2011) Sub-optimal performance in the 5-choice serial reaction time task in rats was sensitive to methylphenidate, atomoxetine and d-amphetamine, but unaffected by the COMT inhibitor tolcapone. Neurosci Res 69:41–50

    Article  CAS  PubMed  Google Scholar 

  • Pattij T, Vanderschuren LJMJ (2008) The neuropharmacology of impulsive behaviour. Trends Pharmacol Sci 29:192–199

    Article  CAS  PubMed  Google Scholar 

  • Pattij T, Janssen MC, Vanderschuren LJ, Schoffelmeer AN, van Gaalen MM (2007) Involvement of dopamine D1 and D2 receptors in the nucleus accumbens core and shell in inhibitory response control. Psychopharmacology 191:587–598

    Article  CAS  PubMed  Google Scholar 

  • Pattij T, Schetters D, Janssen MC, Wiskerke J, Schoffelmeer AN (2009) Acute effects of morphine on distinct forms of impulsive behavior in rats. Psychopharmacology 205:489–502

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pattij T, Schetters D, Schoffelmeer AN, van Gaalen MM (2012) On the improvement of inhibitory response control and visuospatial attention by indirect and direct adrenoceptor agonists. Psychopharmacology 219:327–340

    Article  CAS  PubMed  Google Scholar 

  • Pezze MA, Dalley JW, Robbins TW (2009) Remediation of attentional dysfunction in rats with lesions of the medial prefrontal cortex by intra-accumbens administration of the dopamine D(2/3) receptor antagonist sulpiride. Psychopharmacology 202:307–313

    Article  CAS  PubMed  Google Scholar 

  • Rajasethupathy P, Ferenczi E, Deisseroth K (2016) Targeting neural circuits. Cell 165:524–534

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Remmelink E, Chau U, Smit AB, Verhage M, Loos M (2017) A one-week 5-choice serial reaction time task to measure impulsivity and attention in adult and adolescent mice. Sci Rep 7:42519

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Richards JB, Mitchell SH, de Wit H, Seiden LS (1997) Determination of discount functions in rats with an adjusting-amount procedure. J Exp Anal Behav 67:353–366

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rivalan M, Munawar H, Fuchs A, Winter Y (2017) An automated, experimenter-free method for the standardised, operant cognitive testing of rats. PLoS One 12:e0169476

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Robbins TW (2002) The 5-choice serial reaction time task: behavioural pharmacology and functional neurochemistry. Psychopharmacology 163:362–380

    Article  CAS  PubMed  Google Scholar 

  • Robinson ES, Eagle DM, Mar AC, Bari A, Banerjee G, Jiang X, Dalley JW, Robbins TW (2008) Similar effects of the selective noradrenaline reuptake inhibitor atomoxetine on three distinct forms of impulsivity in the rat. Neuropsychopharmacology 33:1028–1037

    Article  CAS  PubMed  Google Scholar 

  • Roth BL (2016) DREADDs for neuroscientists. Neuron 89:683–694

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roychowdhury S, Peña-Contreras Z, Tam J, Yadlapalli A, Dinh L, Nichols JA, Basu D, Atzori M (2012) α2- and β-adrenoceptors involvement in nortriptyline modulation of auditory sustained attention and impulsivity. Psychopharmacology 222:237–245

    Article  CAS  PubMed  Google Scholar 

  • Sasamori H, Ohmura Y, Yoshida T, Yoshioka M (2019) Noradrenaline reuptake inhibition increases control of impulsive action by activating D(1)-like receptors in the infralimbic cortex. Eur J Pharmacol 844:17–25

    Article  CAS  PubMed  Google Scholar 

  • Schippers MC, Schetters D, De Vries TJ, Pattij T (2016) Differential effects of the pharmacological stressor yohimbine on impulsive decision making and response inhibition. Psychopharmacology 233:2775–2785

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schoffelmeer AN, Drukarch B, De Vries TJ, Hogenboom F, Schetters D, Pattij T (2011) Insulin modulates cocaine-sensitive monoamine transporter function and impulsive behavior. J Neurosci 31:1284–1291

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Selleck RA, Lake C, Estrada V, Redeemer J, Andrzejewski M, Sadeghian K, Baldo BA (2015) Endogenous opioid signaling in the medial prefrontal cortex is required for the expression of hunger-induced impulsive action. Neuropsychopharmacology 40:2464–2474

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sgroi S, Tonini R (2018) Opioidergic modulation of striatal circuits, implications in Parkinson’s disease and levodopa induced dyskinesia. Front Neurol 9:524

    Article  PubMed Central  PubMed  Google Scholar 

  • Simon NW, Gilbert RJ, Mayse JD, Bizon JL, Setlow B (2009) Balancing risk and reward: a rat model of risky decision making. Neuropsychopharmacology 34:2208–2217

    Article  PubMed  Google Scholar 

  • Simon NW, Beas BS, Montgomery KS, Haberman RP, Bizon JL, Setlow B (2013) Prefrontal cortical-striatal dopamine receptor mRNA expression predicts distinct forms of impulsivity. Eur J Neurosci 37:1779–1788

    Article  PubMed Central  PubMed  Google Scholar 

  • Smith CT, San Juan MD, Dang LC, Katz DT, Perkins SF, Burgess LL, Cowan RL, Manning HC, Nickels ML, Claassen DO, Samanez-Larkin GR, Zald DH (2019) Ventral striatal dopamine transporter availability is associated with lower trait motor impulsivity in healthy adults. Transl Psychiatry 8:269

    Article  CAS  Google Scholar 

  • Sonuga-Barke EJ, Lasky-Su J, Neale BM, Oades R, Chen W, Franke B, Buitelaar J, Banaschewski T, Ebstein R, Gill M, Anney R, Miranda A, Mulas F, Roeyers H, Rothenberger A, Sergeant J, Steinhausen HC, Thompson M, Asherson P, Faraone SV (2008) Does parental expressed emotion moderate genetic effects in ADHD? An exploration using a genome wide association scan. Am J Med Genet B Neuropsychiatr Genet 147B:1359–1368

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Green TA, Theobald DE, Birnbaum SG, Graham DL, Zeeb FD, Nestler EJ, Winstanley CA (2010) Yohimbine increases impulsivity through activation of cAMP response element binding in the orbitofrontal cortex. Biol Psychiatry 67:649–656

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun H, Cocker PJ, Zeeb FD, Winstanley CA (2012) Chronic atomoxetine treatment during adolescence decreases impulsive choice, but not impulsive action, in adult rats and alters markers of synaptic plasticity in the orbitofrontal cortex. Psychopharmacology 219:285–301

    Article  CAS  PubMed  Google Scholar 

  • Terman M, Terman JS (1973) Latency differentiation of hits and false alarms in an operant-psychophysical test. J Exp Anal Behav 20:439–445

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Terry AV Jr, Callahan PM, Schade R, Kille NJ, Plagenhoef M (2014) Alpha 2A adrenergic receptor agonist, guanfacine, attenuates cocaine-related impairments of inhibitory response control and working memory in animal models. Pharmacol Biochem Behav 126:63–72

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tsutsui-Kimura I, Ohmura Y, Izumi T, Yamaguchi T, Yoshida T, Yoshioka M (2009) The effects of serotonin and/or noradrenaline reuptake inhibitors on impulsive-like action assessed by the three-choice serial reaction time task: a simple and valid model of impulsive action using rats. Behav Pharmacol 20:474–483

    Article  CAS  PubMed  Google Scholar 

  • Van Gaalen MM, Brueggeman RJ, Bronius PF, Schoffelmeer AN, Vanderschuren LJ (2006a) Behavioral disinhibition requires dopamine receptor activation. Psychopharmacology 187:73–85

    Article  CAS  PubMed  Google Scholar 

  • Van Gaalen MM, van Koten R, Schoffelmeer AN, Vanderschuren LJ (2006b) Critical involvement of dopaminergic neurotransmission in impulsive decision making. Biol Psychiatry 60:66–73

    Article  PubMed  CAS  Google Scholar 

  • Verharen JPH, van den Heuvel MW, Luijendijk M, Vanderschuren LJMJ, Adan RAH (2019) Corticolimbic mechanisms of behavioral inhibition under threat of punishment. J Neurosci 39:435–4364

    Article  Google Scholar 

  • Walker BM, Kissler JL (2013) Dissociable effects of kappa-opioid receptor activation on impulsive phenotypes in wistar rats. Neuropsychopharmacology 38:2278–2285

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Winstanley CA (2011) The utility of rat models of impulsivity in developing pharmacotherapies for impulse control disorders. Br J Pharmacol 164:1301–1321

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Winstanley CA, Theobald DE, Dalley JW, Robbins TW (2005) Interactions between serotonin and dopamine in the control of impulsive choice in rats: therapeutic implications for impulse control disorders. Neuropsychopharmacology 30:669–682

    Article  CAS  PubMed  Google Scholar 

  • Wiskerke J, Schetters D, van Es IE, van Mourik Y, den Hollander BR, Schoffelmeer AN, Pattij T (2011) μ-Opioid receptors in the nucleus accumbens shell region mediate the effects of amphetamine on inhibitory control but not impulsive choice. J Neurosci 31:262–272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yates JR (2018) Dissecting drug effects in preclinical models of impulsive choice: emphasis on glutamatergic compounds. Psychopharmacology 235:607–626

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zorrilla EP, Koob GF (2019) Impulsivity derived from the dark side: neurocircuits that contribute to negative urgency. Front Behav Neurosci 13:136

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tommy Pattij .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pattij, T., Vanderschuren, L.J.M.J. (2020). The Neuropharmacology of Impulsive Behaviour, an Update. In: de Wit, H., Jentsch, J.D. (eds) Recent Advances in Research on Impulsivity and Impulsive Behaviors. Current Topics in Behavioral Neurosciences, vol 47. Springer, Cham. https://doi.org/10.1007/7854_2020_143

Download citation

Publish with us

Policies and ethics