Skip to main content

Advertisement

Log in

Chronic atomoxetine treatment during adolescence decreases impulsive choice, but not impulsive action, in adult rats and alters markers of synaptic plasticity in the orbitofrontal cortex

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Impulsivity is a key symptom of attention-deficit hyperactivity disorder (ADHD). The use of the norepinephrine reuptake inhibitor, atomoxetine, to treat ADHD suggests that the activity of the norepinephrine transporter (NET) may be important in regulating impulsive behavior. Many ADHD patients receive chronic drug treatment during adolescence, a time when frontal brain regions important for impulse control are undergoing extensive development.

Objectives

The current study aimed to determine the effects of chronic atomoxetine treatment during adolescence in rats on two distinct forms of impulsivity in adulthood and whether any behavioral changes were accompanied by alterations in mRNA or protein levels within the frontal cortices.

Methods

Rats received daily injections of saline or atomoxetine (1 mg/kg) during adolescence (postnatal days 40–54). Two weeks later, animals were trained to perform either the delay-discounting test or the five-choice serial reaction time task (5CSRT).

Results

Adolescent atomoxetine treatment caused a stable decrease in selection of small immediate rewards over larger delayed rewards (impulsive choice) in adulthood, but did not affect premature responding (impulsive action) in the 5CSRT. Chronic atomoxetine treatment also altered the ability of acute atomoxetine to modulate aspects of impulsivity, but did not change the response to d-amphetamine. Ex vivo analysis of brain tissue indicated that chronic atomoxetine decreased phosphorylation of CREB and ERK in the orbitofrontal cortex and decreased mRNA for BDNF and cdk5.

Conclusions

These data suggest that repeated administration of atomoxetine in adolescence can lead to stable decreases in impulsive choice during adulthood, potentially via modulating development of the orbitofrontal cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adriani W, Rea M, Baviera M, Invernizzi W, Carli M, Ghirardi O, Caprioli A, Laviola G (2004) Acetyl-L-carnitine reduces impulsive behaviour in adolescent rats. Psychopharmacology (Berl) 176:296–304

    Article  CAS  Google Scholar 

  • Andersen SL, Arvanitogiannis A, Pliakas AM, LeBlanc C, Carlezon WA Jr (2002) Altered responsiveness to cocaine in rats exposed to methylphenidate during development. Nat Neurosci 5:13–14

    Article  PubMed  CAS  Google Scholar 

  • Arnsten AF (2009) Toward a new understanding of attention-deficit hyperactivity disorder pathophysiology: an important role for prefrontal cortex dysfunction. CNS Drugs 23(1):33–41

    Article  PubMed  CAS  Google Scholar 

  • Arthur JS, Fong AL, Dwyer JM, Davare M, Reese E, Obrietan K, Impey S (2004) Mitogen- and stress-activated protein kinase 1 mediates cAMP response element-binding protein phosphorylation and activation by neurotrophins. J Neurosci 24:4324–4332

    Article  PubMed  CAS  Google Scholar 

  • Bari A, Eagle DM, Mar AC, Robinson ES, Robbins TW (2009) Dissociable effects of noradrenaline, dopamine, and serotonin uptake blockade on stop task performance in rats. Psychopharmacology (Berl) 205:273–283

    Article  CAS  Google Scholar 

  • Barry RJ, Clarke AR, Hajos M, McCarthy R, Selikowitz M, Bruggemann JM (2009) Acute atomoxetine effects on the EEG of children with attention-deficit/hyperactivity disorder. Neuropharmacology 57:702–707

    Article  PubMed  CAS  Google Scholar 

  • Berman SM, Kuczenski R, McCracken JT, London ED (2009) Potential adverse effects of amphetamine treatment on brain and behavior: a review. Mol Psychiatry 14:123–142

    Article  PubMed  CAS  Google Scholar 

  • Berridge CW, Devilbiss DM, Andrzejewski ME, Arnsten AF, Kelley AE, Schmeichel B, Hamilton C, Spencer RC (2006) Methylphenidate preferentially increases catecholamine neurotransmission within the prefrontal cortex at low doses that enhance cognitive function. Biol Psychiatry 60:1111–1120

    Article  PubMed  CAS  Google Scholar 

  • Berton O, McClung CA, Dileone RJ, Krishnan V, Renthal W, Russo SJ, Graham D, Tsankova NM, Bolanos CA, Rios M, Monteggia LM, Self DW, Nestler EJ (2006) Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 311:864–868

    Article  PubMed  CAS  Google Scholar 

  • Bibb JA, Chen J, Taylor JR, Svenningsson P, Nishi A, Snyder GL, Yan Z, Sagawa ZK, Ouimet CC, Nairn AC, Nestler EJ, Greengard P (2001) Effects of chronic exposure to cocaine are regulated by the neuronal protein Cdk5. Nature 410:376–380

    Article  PubMed  CAS  Google Scholar 

  • Biederman J, Spencer T (1999) Attention-deficit/hyperactivity disorder (ADHD) as a noradrenergic disorder. Biol Psychiatry 46:1234–1242

    Article  PubMed  CAS  Google Scholar 

  • Biederman J, Wilens T, Mick E, Spencer T, Faraone SV (1999) Pharmacotherapy of attention-deficit/hyperactivity disorder reduces risk for substance use disorder. Pediatrics 104:e20

    Article  PubMed  CAS  Google Scholar 

  • Bingham B, McFadden K, Zhang X, Bhatnagar S, Beck S, Valentino R (2010) Early adolescence as a critical window during which social stress distinctly alters behavior and brain norepinephrine activity. Neuropsychopharmacology 36:896–909

    Article  PubMed  CAS  Google Scholar 

  • Bizot JC, David S, Trovero F (2010) Effects of atomoxetine, desipramine, d-amphetamine and methylphenidate on impulsivity in juvenile rats, measured in a T-maze procedure. Neurosci Lett 489:20–24

    Article  PubMed  CAS  Google Scholar 

  • Blondeau C, Dellu-Hagedorn F (2007) Dimensional analysis of ADHD subtypes in rats. Biol Psychiatry 61:1340–1350

    Article  PubMed  Google Scholar 

  • Bolanos CA, Barrot M, Berton O, Wallace-Black D, Nestler EJ (2003) Methylphenidate treatment during pre- and periadolescence alters behavioral responses to emotional stimuli at adulthood. Biol Psychiatry 54:1317–1329

    Article  PubMed  CAS  Google Scholar 

  • Brandon CL, Steiner H (2003) Repeated methylphenidate treatment in adolescent rats alters gene regulation in the striatum. Eur J Neurosci 18:1584–1592

    Article  PubMed  Google Scholar 

  • Brandon CL, Marinelli M, Baker LK, White FJ (2001) Enhanced reactivity and vulnerability to cocaine following methylphenidate treatment in adolescent rats. Neuropsychopharmacology 25:651–661

    Article  PubMed  CAS  Google Scholar 

  • Brandon CL, Marinelli M, White FJ (2003) Adolescent exposure to methylphenidate alters the activity of rat midbrain dopamine neurons. Biol Psychiatry 54:1338–1344

    Article  PubMed  CAS  Google Scholar 

  • Burton CL, Nobrega JN, Fletcher PJ (2010) The effects of adolescent methylphenidate self-administration on responding for a conditioned reward, amphetamine-induced locomotor activity, and neuronal activation. Psychopharmacology (Berl) 208:455–468

    Article  CAS  Google Scholar 

  • Bymaster FP, Katner JS, Nelson DL, Hemrick-Luecke SK, Threlkeld PG, Heiligenstein JH, Morin SM, Gehlert DR, Perry KW (2002) Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology 27:699–711

    Article  PubMed  CAS  Google Scholar 

  • Cardinal RN, Aitken M (2006) ANOVA for the behavioural sciences researcher. Lawrence Erlbaum Associates, Mahwah

    Google Scholar 

  • Carlezon WA Jr, Mague SD, Andersen SL (2003) Enduring behavioral effects of early exposure to methylphenidate in rats. Biol Psychiatry 54:1330–1337

    Article  PubMed  CAS  Google Scholar 

  • Carlezon WA Jr, Duman RS, Nestler EJ (2005) The many faces of CREB. Trends Neurosci 28:436–445

    Article  PubMed  CAS  Google Scholar 

  • Carli M, Robbins TW, Evenden JL, Everitt BJ (1983) Effects of lesions to ascending noradrenergic neurons on performance of a 5-choice serial reaction time task in rats—implications for theories of dorsal noradrenergic bundle function based on selective attention and arousal. Behavioural Brain Research 9:361–380

    Article  PubMed  CAS  Google Scholar 

  • Casey BJ, Tottenham N, Liston C, Durston S (2005) Imaging the developing brain: what have we learned about cognitive development? Trends Cogn Sci 9:104–110

    Article  PubMed  CAS  Google Scholar 

  • Chamberlain SR, Muller U, Blackwell AD, Clark L, Robbins TW, Sahakian BJ (2006) Neurochemical modulation of response inhibition and probabilistic learning in humans. Science 311:861–863

    Article  PubMed  CAS  Google Scholar 

  • Chao TI, Rickmann M, Wolff JR (2002) The synapse–astrocyte boundary: an anatomical basis for an integrative role of glia in synaptic transmission. In: Volterra A, Magistretti PJ, Haydon PG (eds) The tripartite synapse: glia in synaptic transmission. Oxford University Press, New York, p 3

    Google Scholar 

  • Cheung ZH, Chin WH, Chen Y, Ng YP, Ip NY (2007) Cdk5 is involved in BDNF-stimulated dendritic growth in hippocampal neurons. PLoS Biol 5:e63

    Article  PubMed  CAS  Google Scholar 

  • Chudasama Y, Passetti F, Rhodes SEV, Lopian D, Desai A, Robbins TW (2003) Dissociable aspects of performance on the 5 choice serial reaction time task following lesions of the dorsal anterior cingulate, infralimbic and orbitofrontal cortex in the rat: differential effects on selectivity, impulsivity and compulsivity. Behavioural Brain Research 146:105–119

    Article  PubMed  CAS  Google Scholar 

  • Cole BJ, Robbins TW (1987) Amphetamine impairs the discriminative performance of rats with dorsal noradrenergic bundle lesions on a 5-choice serial reaction time task: new evidence for central dopaminergic-noradrenergic interactions. Psychopharmacology 91:458–466

    Article  PubMed  CAS  Google Scholar 

  • Dalley JW, Mar AC, Economidou D, Robbins TW (2008) Neurobehavioral mechanisms of impulsivity: fronto-striatal systems and functional neurochemistry. Pharmacol Biochem Behav 90:250–260

    Article  PubMed  CAS  Google Scholar 

  • Dhavan R, Tsai LH (2001) A decade of CDK5. Nat Rev Mol Cell Biol 2:749–759

    Article  PubMed  CAS  Google Scholar 

  • Eason MG, Liggett SB (1992) Subtype-selective desensitization of alpha 2-adrenergic receptors. Different mechanisms control short and long term agonist-promoted desensitization of alpha 2C10, alpha 2C4, and alpha 2C2. J Biol Chem 267:25473–25479

    PubMed  CAS  Google Scholar 

  • Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A, Zaitsev E, Gold B, Goldman D, Dean M, Lu B, Weinberger DR (2003) The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112:257–269

    Article  PubMed  CAS  Google Scholar 

  • Evenden JL (1999) Varieties of impulsivity. Psychopharmacology 146:348–361

    Article  PubMed  CAS  Google Scholar 

  • Evenden JL, Ryan CN (1996) The pharmacology of impulsive behaviour in rats: the effects of drugs on response choice with varying delays of reinforcement. Psychopharmacology 128:161–170

    Article  PubMed  CAS  Google Scholar 

  • Everitt BJ, Belin D, Economidou D, Pelloux Y, Dalley JW, Robbins TW (2008) Review. Neural mechanisms underlying the vulnerability to develop compulsive drug-seeking habits and addiction. Philos Trans R Soc Lond B Biol Sci 363:3125–3135

    Article  PubMed  Google Scholar 

  • Flory K, Molina BS, Pelham WE Jr, Gnagy E, Smith B (2006) Childhood ADHD predicts risky sexual behavior in young adulthood. J Clin Child Adolesc Psychol 35:571–577

    Article  PubMed  Google Scholar 

  • Graham DL, Edwards S, Bachtell RK, DiLeone RJ, Rios M, Self DW (2007) Dynamic BDNF activity in nucleus accumbens with cocaine use increases self-administration and relapse. Nat Neurosci 10:1029–1037

    Article  PubMed  CAS  Google Scholar 

  • Hariri AR, Brown SM, Williamson DE, Flory JD, de Wit H, Manuck SB (2006) Preference for immediate over delayed rewards is associated with magnitude of ventral striatal activity. J Neurosci 26:13213–13217

    Article  PubMed  CAS  Google Scholar 

  • Harrison AA, Everitt BJ, Robbins TW (1997) Central 5-HT depletion enhances impulsive responding without affecting the accuracy of attentional performance: interactions with dopaminergic mechanisms. Psychopharmacology 133:329–342

    Article  PubMed  CAS  Google Scholar 

  • Harrison AA, Everitt BJ, Robbins TW (1999) Central serotonin depletion impairs both the acquisition and performance of a symmetrically reinforced go/no-go conditional visual discrimination. Behavioural Brain Research 100:99–112

    Article  PubMed  CAS  Google Scholar 

  • Impey S, McCorkle SR, Cha-Molstad H, Dwyer JM, Yochum GS, Boss JM, McWeeney S, Dunn JJ, Mandel G, Goodman RH (2004) Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions. Cell 119:1041–1054

    PubMed  CAS  Google Scholar 

  • Inazu M, Takeda H, Matsumiya T (2003) Functional expression of the norepinephrine transporter in cultured rat astrocytes. J Neurochem 84:136–144

    Article  PubMed  CAS  Google Scholar 

  • Jeannotte AM, McCarthy JG, Sidhu A (2009) Desipramine induced changes in the norepinephrine transporter, alpha- and gamma-synuclein in the hippocampus, amygdala and striatum. Neurosci Lett 467:86–89

    Article  PubMed  CAS  Google Scholar 

  • Kelz MB, Chen J, Carlezon WA Jr, Whisler K, Gilden L, Beckmann AM, Steffen C, Zhang YJ, Marotti L, Self DW, Tkatch T, Baranauskas G, Surmeier DJ, Neve RL, Duman RS, Picciotto MR, Nestler EJ (1999) Expression of the transcription factor deltaFosB in the brain controls sensitivity to cocaine. Nature 401:272–276

    Article  PubMed  CAS  Google Scholar 

  • Kino T, Jaffe H, Amin ND, Chakrabarti M, Zheng YL, Chrousos GP, Pant HC (2010) Cyclin-dependent kinase 5 modulates the transcriptional activity of the mineralocorticoid receptor and regulates expression of brain-derived neurotrophic factor. Mol Endocrinol 24:941–952

    Article  PubMed  CAS  Google Scholar 

  • Koda K, Ago Y, Cong Y, Kita Y, Takuma K, Matsuda T (2010) Effects of acute and chronic administration of atomoxetine and methylphenidate on extracellular levels of noradrenaline, dopamine and serotonin in the prefrontal cortex and striatum of mice. J Neurochem 114:259–270

    PubMed  CAS  Google Scholar 

  • Kuczenski R, Segal DS (2001) Locomotor effects of acute and repeated threshold doses of amphetamine and methylphenidate: relative roles of dopamine and norepinephrine. J Pharmacol Exp Ther 296:876–883

    PubMed  CAS  Google Scholar 

  • Kuczenski R, Segal DS (2002) Exposure of adolescent rats to oral methylphenidate: preferential effects on extracellular norepinephrine and absence of sensitization and cross-sensitization to methamphetamine. J Neurosci 22:7264–7271

    PubMed  CAS  Google Scholar 

  • Lagace DC, Donovan MH, DeCarolis NA, Farnbauch LA, Malhotra S, Berton O, Nestler EJ, Krishnan V, Eisch AJ (2010) Adult hippocampal neurogenesis is functionally important for stress-induced social avoidance. Proc Natl Acad Sci U S A 107:4436–4441

    Article  PubMed  CAS  Google Scholar 

  • Lambert NM, Hartsough CS (1998) Prospective study of tobacco smoking and substance dependencies among samples of ADHD and non-ADHD participants. J Learn Disabil 31:533–544

    Article  PubMed  CAS  Google Scholar 

  • Leo D, Adriani W, Cavaliere C, Cirillo G, Marco EM, Romano E, di Porzio U, Papa M, Perrone-Capano C, Laviola G (2009) Methylphenidate to adolescent rats drives enduring changes of accumbal Htr7 expression: implications for impulsive behavior and neuronal morphology. Genes Brain Behav 8:356–368

    Article  PubMed  CAS  Google Scholar 

  • Levine AA, Guan Z, Barco A, Xu S, Kandel ER, Schwartz JH (2005) CREB-binding protein controls response to cocaine by acetylating histones at the fosB promoter in the mouse striatum. Proc Natl Acad Sci U S A 102:19186–19191

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Loos M, Staal J, Schoffelmeer AN, Smit AB, Spijker S, Pattij T (2010) Inhibitory control and response latency differences between C57BL/6J and DBA/2J mice in a Go/No-Go and 5-choice serial reaction time task and strain-specific responsivity to amphetamine. Behav Brain Res 214:216–224

    Article  PubMed  CAS  Google Scholar 

  • Lotfipour S, Ferguson E, Leonard G, Perron M, Pike B, Richer L, Seguin JR, Toro R, Veillette S, Pausova Z, Paus T (2009) Orbitofrontal cortex and drug use during adolescence: role of prenatal exposure to maternal smoking and BDNF genotype. Arch Gen Psychiatry 66:1244–1252

    Article  PubMed  Google Scholar 

  • Luscher C, Malenka RC (2011) Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling. Neuron 69:650–663

    Article  PubMed  CAS  Google Scholar 

  • Mackillop J, Amlung MT, Few LR, Ray LA, Sweet LH, Munafo MR (2011) Delayed reward discounting and addictive behavior: a meta-analysis. Psychopharmacology (Berl) 216:305–321

    Article  CAS  Google Scholar 

  • Mariano TY, Bannerman DM, McHugh SB, Preston TJ, Rudebeck PH, Rudebeck SR, Rawlins JN, Walton ME, Rushworth MF, Baxter MG, Campbell TG (2009) Impulsive choice in hippocampal but not orbitofrontal cortex-lesioned rats on a nonspatial decision-making maze task. Eur J Neurosci 30:472–484

    Article  PubMed  CAS  Google Scholar 

  • Marinescu V, Loomis PA, Ehmann S, Beales M, Potashkin JA (2007) Regulation of retention of FosB intron 4 by PTB. PLoS One 2:e828

    Article  PubMed  CAS  Google Scholar 

  • Mattiuz EL, Ponsler GD, Barbuch RJ, Wood PG, Mullen JH, Shugert RL, Li Q, Wheeler WJ, Kuo F, Conrad PC, Sauer JM (2003) Disposition and metabolic fate of atomoxetine hydrochloride: pharmacokinetics, metabolism, and excretion in the Fischer 344 rat and beagle dog. Drug Metab Dispos 31:88–97

    Article  PubMed  CAS  Google Scholar 

  • Mazur J (1987) An adjusting procedure for studying delayed reinforcement. In: Commons ML, Mazur JE, Nevin JA, Rachlin H (eds) Quantitative analyses of behaviour: the effect of delay and intervening events on reinforcement value. Erlbaum, Hillsdale, pp 55–73

    Google Scholar 

  • Mobini S, Body S, Ho MY, Bradshaw CM, Szabadi E, Deakin JFW, Anderson IM (2002) Effects of lesions of the orbitofrontal cortex on sensitivity to delayed and probabilistic reinforcement. Psychopharmacology 160:290–298

    Article  PubMed  CAS  Google Scholar 

  • Moeller FG, Barratt ES, Dougherty DM, Schmitz JM, Swann AC (2001a) Psychiatric aspects of impulsivity. American Journal of Psychiatry 158:1783–1793

    Article  PubMed  CAS  Google Scholar 

  • Moeller FG, Dougherty DM, Barratt ES, Schmitz JM, Swann AC, Grabowski J (2001b) The impact of impulsivity on cocaine use and retention in treatment. J Subst Abus Treat 21:193–198

    Article  CAS  Google Scholar 

  • Moll GH, Hause S, Ruther E, Rothenberger A, Huether G (2001) Early methylphenidate administration to young rats causes a persistent reduction in the density of striatal dopamine transporters. J Child Adolesc Psychopharmacol 11:15–24

    Article  PubMed  CAS  Google Scholar 

  • Moron JA, Brockington A, Wise RA, Rocha BA, Hope BT (2002) Dopamine uptake through the norepinephrine transporter in brain regions with low levels of the dopamine transporter: evidence from knock-out mouse lines. J Neurosci 22:389–395

    PubMed  CAS  Google Scholar 

  • Navarra R, Graf R, Huang Y, Logue S, Comery T, Hughes Z, Day M (2008) Effects of atomoxetine and methylphenidate on attention and impulsivity in the 5-choice serial reaction time test. Prog Neuropsychopharmacol Biol Psychiatry 32:34–41

    Article  PubMed  CAS  Google Scholar 

  • Nestler EJ (2001) Molecular neurobiology of addiction. Am J Addict 10:201–217

    Article  PubMed  CAS  Google Scholar 

  • Nestler EJ (2004) Molecular mechanisms of drug addiction. Neuropharmacology 47(Suppl 1):24–32

    Article  PubMed  CAS  Google Scholar 

  • Nestler EJ, Kelz MB, Chen J (1999) DeltaFosB: a molecular mediator of long-term neural and behavioral plasticity. Brain Research 835:10–17

    Article  PubMed  CAS  Google Scholar 

  • Nestler EJ, Barrot M, Self DW (2001) DeltaFosB: a sustained molecular switch for addiction. Proc Natl Acad Sci U S A 98:11042–11046

    Article  PubMed  CAS  Google Scholar 

  • Nithianantharajah J, Hannan AJ (2006) Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat Rev Neurosci 7:697–709

    Article  PubMed  CAS  Google Scholar 

  • Ohshima T, Ward JM, Huh CG, Longenecker G, Veeranna PHC, Brady RO, Martin LJ, Kulkarni AB (1996) Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proc Natl Acad Sci U S A 93:11173–11178

    Article  PubMed  CAS  Google Scholar 

  • Parpura V, Zorec R (2010) Gliotransmission: exocytotic release from astrocytes. Brain Res Rev 63:83–92

    Article  PubMed  CAS  Google Scholar 

  • Patrick GN, Zukerberg L, Nikolic M, de la Monte S, Dikkes P, Tsai LH (1999) Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 402:615–622

    Article  PubMed  CAS  Google Scholar 

  • Pattij T, Vanderschuren LJ (2008) The neuropharmacology of impulsive behaviour. Trends Pharmacol Sci 29:192–199

    Article  PubMed  CAS  Google Scholar 

  • Pattij T, Janssen MC, Vanderschuren LJ, Schoffelmeer AN, van Gaalen MM (2007) Involvement of dopamine D1 and D2 receptors in the nucleus accumbens core and shell in inhibitory response control. Psychopharmacology (Berl) 191:587–598

    Article  CAS  Google Scholar 

  • Rajkowska G, Miguel-Hidalgo JJ (2007) Gliogenesis and glial pathology in depression. CNS Neurol Disord Drug Targets 6:219–233

    Article  PubMed  CAS  Google Scholar 

  • Renthal W, Kumar A, Xiao G, Wilkinson M, Covington HE 3rd, Maze I, Sikder D, Robison AJ, LaPlant Q, Dietz DM, Russo SJ, Vialou V, Chakravarty S, Kodadek TJ, Stack A, Kabbaj M, Nestler EJ (2009) Genome-wide analysis of chromatin regulation by cocaine reveals a role for sirtuins. Neuron 62:335–348

    Article  PubMed  CAS  Google Scholar 

  • Richards JB, Mitchell SH, de Wit H, Seiden LS (1997) Determination of discount functions in rats with an adjusting-amount procedure. J Exp Anal Behav 67:353–366

    Article  PubMed  CAS  Google Scholar 

  • Robinson ES, Eagle DM, Mar AC, Bari A, Banerjee G, Jiang X, Dalley JW, Robbins TW (2007) Similar effects of the selective noradrenaline reuptake inhibitor atomoxetine on three distinct forms of impulsivity in the rat. Neuropsychopharmacology 33:1028–1037

    Article  PubMed  CAS  Google Scholar 

  • Robinson ES, Eagle DM, Mar AC, Bari A, Banerjee G, Jiang X, Dalley JW, Robbins TW (2008) Similar effects of the selective noradrenaline reuptake inhibitor atomoxetine on three distinct forms of impulsivity in the rat. Neuropsychopharmacology 33:1028–1037

    Article  PubMed  CAS  Google Scholar 

  • Roesch MR, Calu DJ, Burke KA, Schoenbaum G (2007) Should I stay or should I go? Transformation of time-discounted rewards in orbitofrontal cortex and associated brain circuits. Ann N Y Acad Sci 1104:21–34

    Article  PubMed  Google Scholar 

  • Rudebeck PH, Walton ME, Smyth AN, Bannerman DM, Rushworth MF (2006) Separate neural pathways process different decision costs. Nat Neurosci 9:1161–1168

    Article  PubMed  CAS  Google Scholar 

  • Russo SJ, Mazei-Robison MS, Ables JL, Nestler EJ (2009) Neurotrophic factors and structural plasticity in addiction. Neuropharmacology 56(1):73–82

    Article  PubMed  CAS  Google Scholar 

  • Sacchetti G, Bernini M, Bianchetti A, Parini S, Invernizzi RW, Samanin R (1999) Studies on the acute and chronic effects of reboxetine on extracellular noradrenaline and other monoamines in the rat brain. Br J Pharmacol 128:1332–1338

    Article  PubMed  CAS  Google Scholar 

  • Saylor K, Williams DW, Schuh KJ, Wietecha L, Greenbaum M (2010) Effects of atomoxetine on self-reported high-risk behaviors and health-related quality of life in adolescents with ADHD. Curr Med Res Opin 26:2087–2095

    Article  PubMed  CAS  Google Scholar 

  • Shaw P, Eckstrand K, Sharp W, Blumenthal J, Lerch JP, Greenstein D, Clasen L, Evans A, Giedd J, Rapoport JL (2007) Attention-deficit/hyperactivity disorder is characterized by a delay in cortical maturation. Proc Natl Acad Sci U S A 104:19649–19654

    Article  PubMed  CAS  Google Scholar 

  • Shaw P, Gilliam M, Liverpool M, Weddle C, Malek M, Sharp W, Greenstein D, Evans A, Rapoport J, Giedd J (2011) Cortical development in typically developing children with symptoms of hyperactivity and impulsivity: support for a dimensional view of attention deficit hyperactivity disorder. Am J Psychiatry 168:143–151

    Article  PubMed  Google Scholar 

  • Simpson D, Perry CM (2003) Atomoxetine. Paediatr Drugs 5:407–415

    PubMed  Google Scholar 

  • Spencer TJ, Biederman J (2003) Non-stimulant treatment for attention-deficit/hyperactivity disorder. Journal of Attentional Disorders 6:s109–s119

    Google Scholar 

  • Spencer TJ, Biederman J, Wilens TE, Faraone SV (2002) Novel treatments for attention-deficit/hyperactivity disorder in children. J Clin Psychiatry 63(12):16–22

    Article  PubMed  CAS  Google Scholar 

  • Sun H, Green TA, Theobald DE, Birnbaum SG, Graham DL, Zeeb FD, Nestler EJ, Winstanley CA (2010) Yohimbine increases impulsivity through activation of cAMP response element binding in the orbitofrontal cortex. Biol Psychiatry 67:649–656

    Article  PubMed  CAS  Google Scholar 

  • Swanson CJ, Perry KW, Koch-Krueger S, Katner J, Svensson KA, Bymaster FP (2006) Effect of the attention deficit/hyperactivity disorder drug atomoxetine on extracellular concentrations of norepinephrine and dopamine in several brain regions of the rat. Neuropharmacology 50:755–760

    Article  PubMed  CAS  Google Scholar 

  • Tabuchi A, Sakaya H, Kisukeda T, Fushiki H, Tsuda M (2002) Involvement of an upstream stimulatory factor as well as cAMP-responsive element-binding protein in the activation of brain-derived neurotrophic factor gene promoter I. J Biol Chem 277:35920–35931

    Article  PubMed  CAS  Google Scholar 

  • Takeda H, Inazu M, Matsumiya T (2002) Astroglial dopamine transport is mediated by norepinephrine transporter. Naunyn Schmiedebergs Arch Pharmacol 366:620–623

    Article  PubMed  CAS  Google Scholar 

  • Tanda G, Frau R, Di Chiara G (1996) Chronic desipramine and fluoxetine differentially affect extracellular dopamine in the rat prefrontal cortex. Psychopharmacology (Berl) 127:83–87

    Article  CAS  Google Scholar 

  • Tanis KQ, Duman RS, Newton SS (2008) CREB binding and activity in brain: regional specificity and induction by electroconvulsive seizure. Biol Psychiatry 63:710–720

    Article  PubMed  CAS  Google Scholar 

  • Tenn CC, Kapur S, Fletcher PJ (2005) Sensitization to amphetamine, but not phencyclidine, disrupts prepulse inhibition and latent inhibition. Psychopharmacology (Berl) 180:366–376

    Article  CAS  Google Scholar 

  • Tsutsui-Kimura I, Ohmura Y, Izumi T, Yamaguchi T, Yoshida T, Yoshioka M (2009) The effects of serotonin and/or noradrenaline reuptake inhibitors on impulsive-like action assessed by the three-choice serial reaction time task: a simple and valid model of impulsive action using rats. Behav Pharmacol 20:474–483

    Article  PubMed  CAS  Google Scholar 

  • Van Gaalen M, van Koten R, Schoffelmeer A, Vanderschuren L (2006a) Critical involvement of dopaminergic neurotransmission in impulsive decision making. Biol Psychiatr 60:66–73

    Article  CAS  Google Scholar 

  • van Gaalen MM, Brueggeman RJ, Bronius PF, Schoffelmeer AN, Vanderschuren LJ (2006b) Behavioral disinhibition requires dopamine receptor activation. Psychopharmacology (Berl) 187:73–85

    Article  CAS  Google Scholar 

  • van Gaalen MM, van Koten R, Schoffelmeer AN, Vanderschuren LJ (2006c) Critical involvement of dopaminergic neurotransmission in impulsive decision making. Biol Psychiatry 60:66–73

    Article  PubMed  CAS  Google Scholar 

  • van Gaalen MM, Unger L, Jongen-Relo AL, Schoemaker H, Gross G (2009) Amphetamine decreases behavioral inhibition by stimulation of dopamine D2, but not D3, receptors. Behav Pharmacol 20:484–491

    Article  PubMed  CAS  Google Scholar 

  • Verdejo-Garcia A, Lawrence AJ, Clark L (2008) Impulsivity as a vulnerability marker for substance-use disorders: review of findings from high-risk research, problem gamblers and genetic association studies. Neurosci Biobehav Rev 32:777–810

    Article  PubMed  Google Scholar 

  • Volkow ND, Insel TR (2003) What are the long-term effects of methylphenidate treatment? Biol Psychiatry 54:1307–1309

    Article  PubMed  Google Scholar 

  • Wilens TE, Faraone SV, Biederman J, Gunawardene S (2003) Does stimulant therapy of attention-deficit/hyperactivity disorder beget later substance abuse? A meta-analytic review of the literature. Pediatrics 111:179–185

    Article  PubMed  Google Scholar 

  • Winstanley CA (2010) The neural and neurochemical basis of delay discounting. In: Madden GJ, Bickel WK (eds) Impulsivity the behavioral and neurological science of discounting. American Psychological Association, Washington, pp 95–122

    Chapter  Google Scholar 

  • Winstanley C, Dalley J, Theobald D, Robbins T (2003a) Global 5-HT depletion attenuates the ability of amphetamine to decrease impulsive choice on a delay-discounting task in rats. Psychopharmacology 170:320–331

    Article  PubMed  CAS  Google Scholar 

  • Winstanley CA, Theobald DE, Dalley JW, Robbins TW (2003b) Global 5-HT depletion attenuates the ability of amphetamine to decrease impulsive choice in rats. Psychopharmacology 170:320–331

    Article  PubMed  CAS  Google Scholar 

  • Winstanley CA, Theobald DE, Cardinal RN, Robbins TW (2004) Contrasting roles for basolateral amygdala and orbitofrontal cortex in impulsive choice. J Neurosci 24:4718–4722

    Article  PubMed  CAS  Google Scholar 

  • Winstanley CA, Theobald DE, Dalley JW, Robbins TW (2005) Interactions between serotonin and dopamine in the control of impulsive choice in rats: therapeutic implications for impulse control disorders. Neuropsychopharmacology 30:669–682

    PubMed  CAS  Google Scholar 

  • Winstanley CA, Eagle DM, Robbins TW (2006) Behavioral models of impulsivity in relation to ADHD: translation between clinical and preclinical studies. Clin Psychol Rev 26:379–395

    Article  PubMed  Google Scholar 

  • Winstanley CA, LaPlant Q, Theobald DEH, Green TA, Bachtell RK, Perrotti LI, DiLeone RJ, Russo SJ, Garth WJ, Self DW, Nestler EJ (2007) DeltaFosB induction in orbitofrontal cortex mediates tolerance to cocaine-induced cognitive dysfunction. J Neurosci 27:10497–10507

    Article  PubMed  CAS  Google Scholar 

  • Winstanley CA, Olausson P, Taylor JR, Jentsch JD (2010a) Insight into the relationship between impulsivity and substance abuse from studies using animal models. Alcohol Clin Exp Res 34:1306–1318

    PubMed  Google Scholar 

  • Winstanley CA, Zeeb FD, Bedard A, Fu K, Lai B, Steele C, Wong AC (2010b) Dopaminergic modulation of the orbitofrontal cortex affects attention, motivation and impulsive responding in rats performing the five-choice serial reaction time task. Behav Brain Res 210:263–272

    Article  PubMed  CAS  Google Scholar 

  • Wogar MA, Bradshaw CM, Szabadi E (1993) Effects of lesions of the ascending 5-hydroxytryptaminergic pathways on choice between delayed reinforcers. Psychopharmacology 111:239–243

    Article  PubMed  CAS  Google Scholar 

  • Zeeb FD, Robbins TW, Winstanley CA (2009) Serotonergic and dopaminergic modulation of gambling behavior as assessed using a novel rat gambling task. Neuropsychopharmacology 34:2329–2343

    Article  PubMed  CAS  Google Scholar 

  • Zeeb FD, Floresco SB, Winstanley CA (2010) Contributions of the orbitofrontal cortex to impulsive choice: interactions with basal levels of impulsivity, dopamine signalling, and reward-related cues. Psychopharmacology (Berl) 211:87–98

    Article  CAS  Google Scholar 

  • Zhang X, Odom DT, Koo SH, Conkright MD, Canettieri G, Best J, Chen H, Jenner R, Herbolsheimer E, Jacobsen E, Kadam S, Ecker JR, Emerson B, Hogenesch JB, Unterman T, Young RA, Montminy M (2005) Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc Natl Acad Sci U S A 102:4459–4464

    Article  PubMed  CAS  Google Scholar 

  • Zuccato C, Cattaneo E (2009) Brain-derived neurotrophic factor in neurodegenerative diseases. Nat Rev Neurol 5:311–322

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by a Discovery grant to CAW from the National Sciences and Engineering Research Council. CAW also receives salary support from the Michael Smith Foundation for Health Research and CIHR and an infrastructure grant from the Canadian Foundation for Innovation. HS was supported by two NSERC Undergraduate Student Research Awards. CAW has previously acted as a consultant for Theravance on an unrelated matter. No authors have any other conflicts of interest or financial disclosures to make.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catharine A. Winstanley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, H., Cocker, P.J., Zeeb, F.D. et al. Chronic atomoxetine treatment during adolescence decreases impulsive choice, but not impulsive action, in adult rats and alters markers of synaptic plasticity in the orbitofrontal cortex. Psychopharmacology 219, 285–301 (2012). https://doi.org/10.1007/s00213-011-2419-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-011-2419-9

Keywords

Navigation