Skip to main content

Effects of Emerging Contaminants on Biodiversity, Community Structure, and Adaptation of River Biota

  • Chapter
  • First Online:
Emerging Contaminants in River Ecosystems

Abstract

Most river ecosystems are under the joint effects of co-occurring stressors, and attributing the mechanisms by which multiple stressors interact and produce individual and combined effects can be highly complex. This chapter describes the structural and functional responses of the biological communities (biofilms and macroinvertebrates) to different chemical stressors with a special attention to the presence of emerging compounds that become more frequently in the list of co-occurring stressors in rivers. The suitability of different methods (i.e., toxic units and statistical tools) to determine toxicological risk and to establish potential causality of effects on communities has been discussed using Mediterranean basins from the SCARCE project as case study basins.

Literature review shows that emerging contaminants may produce effects at the community level, by means of changes in the survival ratio and reproduction, but also by species interactions (e.g., changes in behavior of predator and prey). A significant reduction of general biodiversity in algae and invertebrate communities and ecosystem functioning (primary production, use of organic matter, feeding rates) has been observed in the studied river basins apparently caused by all stressors operating together. However, the predicted toxic pressure from emerging compounds appears as a determinant factor of the biological responses. The link between biological community responses and chemical stress is complex, and other environmental variables covariate with chemical pollution (e.g., hydrology and nutrient concentrations). To get an appropriate evaluation of the risk related to emerging chemicals in natural conditions, it is necessary considering the role of other environmental perturbations and provides statistical attribution to their potential causation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Segner H, Schmitt-Jansen M, Sabater S (2014) Assessing the impact of multiple stressors on aquatic biota: the receptor’s side matters. Environ Sci Technol 48:7690–7696

    Article  CAS  Google Scholar 

  2. Townsend CR, Uhlmann SS, Matthaei CD (2008) Individual and combined responses of stream ecosystems to multiple stressors. J Appl Ecol 45:1810–1819

    Article  Google Scholar 

  3. Giller PS, Malmqvist B (1998) The biology of streams and rivers. Oxford University Press, Oxford

    Google Scholar 

  4. Breitburg DL, Sanders JG, Gilmour CC, Hatfield CA, Osman RW, Riedel GF, Seitzinger SP, Sellner KG (1999) Variability in responses to nutrients and trace elements, and transmission of stressor effects through an estuarine food web. Limnol Oceanogr 44:837–863

    Article  CAS  Google Scholar 

  5. Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R et al (2000) Biodiversity – global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  CAS  Google Scholar 

  6. Dudgeon D, Arthington AH, Gessner MO, Kawabata ZI, Knowler DJ, Leveque C et al (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 81:163–182

    Article  Google Scholar 

  7. Balvanera P, Pfisterer AB, Buchmann N, He JS, Nakashizuka T, Raffaelli D, Schmid B (2006) Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol Lett 9:1146–1156

    Article  Google Scholar 

  8. Hooper DU, Chapin FS, Ewel JJ, Inchausti P, Lavorel S et al (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35

    Article  Google Scholar 

  9. Odum EP (1953) Fundamentals of ecology. Saunders, Philadelphia

    Google Scholar 

  10. Loreau M, Hector A (2001) Partitioning selection and complementarity in biodiversity experiments. Nature 412:72–76

    Article  CAS  Google Scholar 

  11. Tilman D, Isbell F, Cowles JM (2014) Biodiversity and ecosystem functioning. Annu Rev Ecol Evol Syst 45:471–493

    Article  Google Scholar 

  12. Srivastava DS, Vellend M (2005) Biodiversity-ecosystem function research: is it relevant to conservation? Annu Rev Ecol Evol Syst 36:267–290

    Article  Google Scholar 

  13. Tilman D (1999) The ecological consequences of changes in biodiversity: a search for general principles. Ecology 80:1455–1474

    Google Scholar 

  14. Hall S, Bradley T, Moore JT, Kuykindall T, Minella L (2009) Acute and chronic toxicity of nano-scale TiO2 particles to freshwater fish, cladocerans, and green algae, and effects of organic and inorganic substrate on TiO2 toxicity. Nanotoxicology 3:91–97

    Article  CAS  Google Scholar 

  15. Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R (2008) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42:8959–8964

    Article  CAS  Google Scholar 

  16. Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386

    Article  CAS  Google Scholar 

  17. Saison C, Perreault F, Daigle JC, Fortin C, Claverie J, Morin M, Popovic R (2010) Effect of core-shell copper oxide nanoparticles on cell culture morphology and photosynthesis (photosystem II energy distribution) in the green alga, Chlamydomonas reinhardtii. Aquat Toxicol 96:109–114

    Article  CAS  Google Scholar 

  18. Wang J, Zhang X, Chen Y, Sommerfeld M, Hu Q (2008) Toxicity assessment of manufactured nanomaterials using the unicellular green alga Chlamydomonas reinhardtii. Chemosphere 73:1121–1128

    Article  CAS  Google Scholar 

  19. Oukarroum A, Bras S, Perreault F, Popovic R (2012) Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta. Ecotoxicol Environ Saf 78:80–85

    Article  CAS  Google Scholar 

  20. Gong N, Shao K, Feng W, Lin Z, Liang C, Sun Y (2011) Biotoxicity of nickel oxide nanoparticles and bio-remediation by microalgae Chlorella vulgaris. Chemosphere 83:510–516

    Article  CAS  Google Scholar 

  21. Griffitt RJ, Weil R, Hyndman KA, Denslow ND, Powers K, Taylor D, Barber DS (2007) Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environ Sci Tech 41:8178–8186

    Article  CAS  Google Scholar 

  22. Lisa Truong L, Saili KS, Miller JM, Hutchison JE, Tanguay RL (2012) Persistent adult Zebrafish behavioral deficits results from acute embryonic exposure to gold nanoparticles. Comp Biochem Physiol C Toxicol Pharmacol 155:269–274

    Article  CAS  Google Scholar 

  23. Wang JX, Zhu XS, Zhang XZ, Zhao Z, Liu H, George R, Wilson-Rawls J, Chang Y, Chen YS (2011) Disruption of zebrafish (Danio rerio) reproduction upon chronic exposure to TiO2 nanoparticles. Chemosphere 83:461–467

    Article  CAS  Google Scholar 

  24. Poynton HC, Lazorchak JM, Impellitteri CA, Smith ME, Rogers K, Patra M, Hammer KA, Allen HJ, Vulpe CD (2011) Differential gene expression in Daphnia magna suggests Distinct modes of action and bioavailability for ZnO nanoparticles and Zn ions. Environ Sci Tech 45:762–768

    Article  CAS  Google Scholar 

  25. Das P, Xenopoulos MA, Metcalfe CD (2013) Toxicity of silver and titanium dioxide nanoparticle suspensions to the aquatic invertebrate, Daphnia magna. Bull Environ Contam Toxicol 91:76–82

    Article  CAS  Google Scholar 

  26. Heinlaan M, Kahru A, Kasemets K, Arbeille B, Prensier G, Dubourguier HC (2011) Changes in the Daphnia magna midgut upon ingestion of copper oxide nanoparticles: a transmission electron microscopy study. Water Res 45:179–190

    Article  CAS  Google Scholar 

  27. Aruoja V, Dubourguier HC, Kasemets K, Kahru A (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407:1461–1468

    Article  CAS  Google Scholar 

  28. Libralato G, Minetto D, Totaro S, Micetic I, Pigozzo A, Sabbioni E, Marcomini A, Ghirardini AV (2013) Embryotoxicity of TiO2 nanoparticles to Mytilus galloprovincialis. Mar Environ Res 92:71–78

    Article  CAS  Google Scholar 

  29. Pradhan A, Seena S, Pascoal C, Cássio F (2012) Copper oxide nanoparticles can induce toxicity to the freshwater shredder Allogamus ligonifer. Chemosphere 89(9):1142–1150

    Article  CAS  Google Scholar 

  30. Petit AN, Eullaffroy P, Debenest T, Gagné F (2010) Toxicity of PAMAM dendrimers to Chlamydomonas reinhardtii. Aquat Toxicol 100:187–193

    Article  CAS  Google Scholar 

  31. Tao XJ, Fortner JD, Zhang B, He YH, Chen YS, Hughes JB (2009) Effects of aqueous stable fullerene nanocrystals (nC(60)) on Daphnia magna: evaluation of sub-lethal reproductive responses and accumulation. Chemosphere 77:1482–1487

    Article  CAS  Google Scholar 

  32. Zhu S, Oberdorster E, Haasch ML (2006) Toxicity of an engineered nanoparticle (fullerene, C-60) in two aquatic species, Daphnia and fathead minnow. Mar Environ Res 62:S5–S9

    Article  CAS  Google Scholar 

  33. Oberdorster E, Zhu SQ, Blickley TM, McClellan-Green P, Haasch ML (2006) Ecotoxicology of carbon-based engineered nanoparticles: effects of fullerene (C-60) on aquatic organisms. Carbon 44:1112–1120

    Article  CAS  Google Scholar 

  34. Wei L, Thakkar M, Chena Y, Ntim SA, Mitra S, Zhang X (2010) Cytotoxicity effects of water dispersible oxidized multiwalled carbon nanotubes on marine alga, Dunaliella tertiolecta. Aquat Toxicol 100:194–201

    Article  CAS  Google Scholar 

  35. Oberholster PJ, Musee N, Botha AM, Chelule PK, Focke WW, Ashton PJ (2011) Assessment of the effect of nanomaterials on sediment-dwelling invertebrate Chironomus tentans larvae. Ecotoxicol Environ Saf 74:416–423

    Article  CAS  Google Scholar 

  36. Jackson BP, Bugge D, Ranville JF, Chen CY (2012) Bioavailability, toxicity, and bioaccumulation of quantum dot nanoparticles to the amphipod Leptocheirus plumulosus. Environ Sci Tech 46:5550–5556

    Article  CAS  Google Scholar 

  37. Ferrari B, Mons R, Vollat B, Fraysse B, Paxeus N, Lo Giudice R, Pollio A, Garric J (2004) Environmental risk assessment of six human pharmaceuticals: are the current environmental risk assessment procedures sufficient for the protection of the aquatic environment? Environ Toxicol Chem 23:1344–1354

    Article  CAS  Google Scholar 

  38. Dussault EB, Balakrishnan VK, Sverko E, Solomon KR, Sibley PK (2008) Toxicity of human pharmaceuticals and personal care products to benthic invertebrates. Environ Toxicol Chem 27:425–432

    Article  CAS  Google Scholar 

  39. Ferrari B, Paxeus N, Lo Giudice R, Pollio A, Garric J (2003) Ecotoxicological impact of pharmaceuticals found in treated wastewaters: study of carbamazepine, clofibric acid, and diclofenac. Ecotoxicol Environ Saf 55:359–370

    Article  CAS  Google Scholar 

  40. Wollenberger L, Halling-Sorensen B, Kusk KO (2000) Acute and chronic toxicity of veterinary antibiotics to Daphnia magna. Chemosphere 40:723–730

    Article  CAS  Google Scholar 

  41. Halling-Sorenseng B (2000) Algal toxicity of antibacterial agents used in intensive farming. Chemosphere 40:731–739

    Article  Google Scholar 

  42. Garric J, Vollat B, Duis K, Pery A, Junker T, Ramil M, Fink G, Ternes TA (2007) Effects of the parasiticide ivermectin on the cladoceran Daphnia magna and the green alga Pseudokirchneriella subcapitata. Chemosphere 69:903–910

    Article  CAS  Google Scholar 

  43. Yang GLH, Ying GG, Su HC, Stauber JL, Adams MS, Binet MT (2008) Growth-inhibiting effects of 12 antibacterial agents and their mixtures on the freshwater microalga Pseudokirchneriella subcapitat. Environ Toxicol Chem 27:1201–1208

    Article  CAS  Google Scholar 

  44. Nie XP, Gu JG, Lu JY, Pan WB, Yang YF (2009) Effects of norfloxacin and butylated hydroxyanisole on the freshwater microalga Scenedesmus obliquus. Ecotoxicology 18:677–684

    Article  CAS  Google Scholar 

  45. Qin HW, Chen LF, Lu N, Zhao YH, Yuan X (2012) Toxic effects of enrofloxacin on Scenedesmus obliquus. Front Environ Sci Eng 6:107–116

    Article  CAS  Google Scholar 

  46. Hoppe PD, Rosi-Marshall EJ, Bechtold HA (2012) The antihistamine cimetidine alters invertebrate growth and population dynamics in artificial streams. Freshw Sci 31:379–388

    Article  Google Scholar 

  47. Huggett DB, Brooks BW, Peterson B, Foran CM, Schlenk D (2002) Toxicity of select beta adrenergic receptor-blocking pharmaceuticals (B-blockers) on aquatic organisms. Arch Environ Contam Toxicol 43:229–235

    Article  CAS  Google Scholar 

  48. Brandhof EJ, Montforts M (2010) Fish embryo toxicity of carbamazepine, diclofenac and metoprolol. Ecotoxicol Environ Saf 73:1862–1866

    Article  CAS  Google Scholar 

  49. Cleuvers M (2003) Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects. Toxicol Lett 142:185–194

    Article  CAS  Google Scholar 

  50. Cleuvers M (2005) Initial risk assessment for three beta-blockers found in the aquatic environment. Chemosphere 59:199–205

    Article  CAS  Google Scholar 

  51. Dzialowski EM, Turner PK, Brooks BW (2006) Physiological and reproductive effects of beta adrenergic receptor antagonists in Daphnia magna. Arch Environ Contam Toxicol 50:503–510

    Article  CAS  Google Scholar 

  52. Stanley JK, Ramirez AJ, Mottaleb M, Chambliss CK, Brooks BW (2006) Enantiospecific toxicity of the beta-blocker propranolol to Daphnia magna and Pimephales promelas. Environ Toxicol Chem 25:1780–1786

    Article  CAS  Google Scholar 

  53. Dietrich S, Ploessl F, Bracher F, Laforsch C (2010) Single and combined toxicity of pharmaceuticals at environmentally relevant concentrations in Daphnia magna - a multigenerational study. Chemosphere 79:60–66

    Article  CAS  Google Scholar 

  54. Nunes B, Gaio AR, Carvalho F, Guilhermino L (2008) Behaviour and biomarkers of oxidative stress in Gambusia holbrooki after acute exposure to widely used pharmaceuticals and a detergent. Ecotoxicol Environ Saf 71:341–354

    Article  CAS  Google Scholar 

  55. Giltrow E, Eccles PD, Winter MJ, McCormack PJ, Rand-Weaver M, Hutchinson TH, Sumpter JP (2009) Chronic effects assessment and plasma concentrations of the beta-blocker propranolol in fathead minnows (Pimephales promelas). Aquat Toxicol 95:195–202

    Article  CAS  Google Scholar 

  56. Rosal R, Rodea-Palomares I, Boltes K, Fernandez-Pinas F, Leganes F, Gonzalo S, Petre A (2010) Ecotoxicity assessment of lipid regulators in water and biologically treated wastewater using three aquatic organisms. Environ Sci Pollut Res 17:135–144

    Article  CAS  Google Scholar 

  57. Lopez-Doval JC, Kukkonen JVK, Rodrigo P, Munoz I (2012) Effects of indomethacin and propranolol on Chironomus riparius and Physella (Costatella) acuta. Ecotoxicol Environ Saf 78:110–115

    Article  CAS  Google Scholar 

  58. Lopez-Doval JC, De Castro-Català N, Andrés-Doménech I, Blasco J, Ginebreda A, Muñoz I (2012) Analysis of monitoring programmes and their suitability for ecotoxicological risk assessment in four Spanish rivers. Sci Total Environ 440:194–203

    Article  CAS  Google Scholar 

  59. Stepanova S, Praskova E, Chromcova L, Plhalova L, Prokes M, Blahova J, Svobodova Z (2013) The effects of diclofenac on early life stages of common carp (Cyprinus carpio). Environ Toxicol Pharmacol 35:454–460

    Article  CAS  Google Scholar 

  60. David A, Pancharatna K (2009) Developmental anomalies induced by a non-selective COX inhibitor (ibuprofen) in zebrafish (Danio rerio). Environ Toxicol Pharmacol 27:390–395

    Article  CAS  Google Scholar 

  61. Lee J, Ji K, Kho YL, Kim P, Choi K (2011) Chronic exposure to diclofenac on two freshwater cladocerans and Japanese medaka. Ecotoxicol Environ Saf 74:1216–1225

    Article  CAS  Google Scholar 

  62. Cleuvers M (2004) Mixture toxicity of the anti-inflammatory drugs diclofenac, ibuprofen, naproxen, and acetylsalicylic acid. Ecotoxicol Environ Saf 59:309–315

    Article  CAS  Google Scholar 

  63. Heckmann LH, Callaghan A, Hooper HL, Connon R, Hutchinson TH, Maund SJ, Sibly RM (2007) Chronic toxicity of ibuprofen to Daphnia magna: effects on life history traits and population dynamics. Toxicol Lett 172:137–145

    Article  CAS  Google Scholar 

  64. Nassef M, Matsumoto S, Seki M, Khalil F, Kang IJ, Shimasaki Y, Oshima Y, Honjo T (2010) Acute effects of triclosan, diclofenac and carbamazepine on feeding performance of Japanese medaka fish (Oryzias latipes). Chemosphere 80:1095–1100

    Article  CAS  Google Scholar 

  65. Han S, Choi K, Kim J, Ji K, Kim S, Ahn B, Yun J, Choi K, Khim JS, Zhang XW (2010) Endocrine disruption and consequences of chronic exposure to ibuprofen in Japanese medaka (Oryzias latipes) and freshwater cladocerans Daphnia magna and Moina macrocopa. Aquat Toxicol 98:256–264

    Article  CAS  Google Scholar 

  66. Flippin JL, Huggett D, Foran CM (2007) Changes in the timing of reproduction following chronic exposure to ibuprofen in Japanese medaka, Oryzias latipes. Aquat Toxicol 81:73–78

    Article  CAS  Google Scholar 

  67. Pounds N, Maclean S, Webley M, Pascoe D, Hutchinson T (2008) Acute and chronic effects of ibuprofen in the mollusc Planorbis carinatus (Gastropoda: Planorbidae). Ecotoxicol Environ Saf 70:47–52

    Article  CAS  Google Scholar 

  68. Mennigen JA, Sassine J, Trudeau VL, Moon TW (2010) Waterborne fluoxetine disrupts feeding and energy metabolism in the goldfish Carassius auratus. Aquat Toxicol 100:128–137

    Article  CAS  Google Scholar 

  69. Oetken M, Nentwig G, Loffler D, Ternes T, Oehlmann J (2005) Effects of pharmaceuticals on aquatic invertebrates. Part I. The antiepileptic drug carbamazepine. Arch Environ Contam Toxicol 49:353–361

    Article  CAS  Google Scholar 

  70. Pery ARR, Gust M, Vollat B, Mons R, Ramil M, Fink G, Ternes T, Garric J (2008) Fluoxetine effects assessment on the life cycle of aquatic invertebrates. Chemosphere 73:300–304

    Article  CAS  Google Scholar 

  71. Zhang W, Zhang M, Lin KF, Sun WF, Xiong B, Guo MJ, Cui XH, Fu RB (2012) Eco-toxicological effect of Carbamazepine on Scenedesmus obliquus and Chlorella pyrenoidosa. Environ Toxicol Pharmacol 33:344–352

    Article  CAS  Google Scholar 

  72. Johnson DJ, Sanderson H, Brain RA, Wilson CJ, Solomon KR (2007) Toxicity and hazard of selective serotonin reuptake inhibitor antidepressants fluoxetine, fluvoxamine, and sertraline to algae. Ecotoxicol Environ Saf 67:128–139

    Article  CAS  Google Scholar 

  73. Flaherty CM, Dodson SI (2005) Effects of pharmaceuticals on Daphnia survival, growth, and reproduction. Chemosphere 61:200–207

    Article  CAS  Google Scholar 

  74. Lazzara R, Blazquez M, Porte C, Barata C (2012) Low environmental levels of fluoxetine induce spawning and changes in endogenous estradiol levels in the zebra mussel Dreissena polymorpha. Aquat Toxicol 106:123–130

    Article  CAS  Google Scholar 

  75. De Lange HJ, Noordoven W, Murk AJ, Lurling M, Peeters ETHM (2006) Behavioural responses of Gammarus pulex (Crustacea, Amphipoda) to low concentrations of pharmaceuticals. Aquat Toxicol 78:209–216

    Article  CAS  Google Scholar 

  76. Gaworecki KM, Klaine SJ (2008) Behavioral and biochemical responses of hybrid striped bass during and after fluoxetine exposure. Aquat Toxicol 88:207–213

    Article  CAS  Google Scholar 

  77. Jarvis AL, Bernot MJ, Bernot RJ (2014) The effects of the pharmaceutical carbamazepine on life history characteristics of flat-headed mayflies (Heptageniidae) and aquatic resource interactions. Ecotoxicology 23:1701–1712

    Article  CAS  Google Scholar 

  78. Nentwig G (2007) Effects of pharmaceuticals on aquatic invertebrates. Part II: the antidepressant drug fluoxetine. Arch Environ Contam Toxicol 52:163–170

    Article  CAS  Google Scholar 

  79. Spehar RL, Brooke LT, Markee TP, Kahl MD (2010) Comparative toxicity and bioconcentration of nonylphenol in freshwater organisms. Environ Toxicol Chem 29:2104–2111

    CAS  Google Scholar 

  80. Zhang L, Gibble R, Baer KN (2003) The effects of 4-nonylphenol and ethanol on acute toxicity, embryo development, and reproduction in Daphnia magna. Ecotoxicol Environ Saf 55:330–337

    Article  CAS  Google Scholar 

  81. Gibble R, Baer KN (2003) Effects of 4-nonylphenol on sexual maturation in Daphnia magna. Bull Environ Contam Toxicol 70:315–321

    Article  CAS  Google Scholar 

  82. LeBlanc GA, Mu XY, Rider CV (2000) Embryotoxicity of the alkylphenol degradation product 4-nonylphenol to the crustacean Daphnia magna. Environ Health Perspect 108:1133–1138

    Article  CAS  Google Scholar 

  83. Brennan SJ, Brougham CA, Roche JJ, Fogarty AM (2006) Multi-generational effects of four selected environmental oestrogens on Daphnia magna. Chemosphere 64:49–55

    Article  CAS  Google Scholar 

  84. Isidori M, Lavorgna M, Nardelli A, Parrella A (2006) Toxicity on crustaceans and endocrine disrupting activity on Saccharomyces cerevisiae of eight alkylphenols. Chemosphere 64:135–143

    Article  CAS  Google Scholar 

  85. TenEyck MC, Markee TP (2007) Toxicity of nonylphenol, nonylphenol monoethoxylate, and nonylphenol diethoxylate and mixtures of these compounds to Pimephales promelas (fathead minnow) and Ceriodaphnia dubia. Arch Environ Contam Toxicol 53:599–606

    Article  CAS  Google Scholar 

  86. Sun H, Gu X (2005) Comprehensive toxicity study of nonylphenol and short-chain nonylphenol polyethoxylates on Daphnia magna. Bull Environ Contam Toxicol 75:677–683

    Article  CAS  Google Scholar 

  87. Balch G, Metcalfe C (2006) Developmental effects in Japanese medaka (Oryzias latipes) exposed to nonylphenol ethoxylates and their degradation products. Chemosphere 62:1214–1223

    Article  CAS  Google Scholar 

  88. Vazquez GR, Meijide FJ, Da Cuna RH, Lo Nostro FL, Piazza YG, Babay PA, Trudeau VL, Maggese MC, Guerrero GA (2009) Exposure to waterborne 4-tert-octylphenol induces vitellogenin synthesis and disrupts testis morphology in the South American freshwater fish Cichlasoma dimerus (Teleostei, Perciformes). Comp Biochem Physiol C Toxicol Pharmacol 150:298–306

    Article  CAS  Google Scholar 

  89. Lee SB, Choi J (2007) Effects of bisphenol A and ethynyl estradiol exposure on enzyme activities, growth and development in the fourth instar larvae of Chironomus riparius (Diptera, Chironomidae). Ecotoxicol Environ Saf 68:84–90

    Article  CAS  Google Scholar 

  90. Planello R, Martinez-Guitarte JL, Morcillo G (2008) The endocrine disruptor bisphenol A increases the expression of HSP70 and ecdysone receptor genes in the aquatic larvae of Chironomus riparius. Chemosphere 71:1870–1876

    Article  CAS  Google Scholar 

  91. Segner H, Navas JM, Schafers C, Wenzel A (2003) Potencies of estrogenic compounds in in vitro screening assays and in life cycle tests with zebrafish in vivo. Ecotoxicol Environ Saf 54:315–322

    Article  CAS  Google Scholar 

  92. Watts MM, Pascoe D, Carroll K (2001) Survival and precopulatory behaviour of Gammarus pulex (L.) exposed to two xenoestrogens. Water Res 35:2347–2352

    Article  CAS  Google Scholar 

  93. Watts MM, Pascoe D, Carroll K (2001) Chronic exposure to 17 alpha-ethinylestradiol and bisphenol A-effects on development and reproduction in the freshwater invertebrate Chironomus riparius (Diptera : Chironomidae). Aquat Toxicol 55:113–124

    Article  CAS  Google Scholar 

  94. Mihaich EM, Friederich U, Caspers N, Hall AT, Klecka GM, Dimond SS, Staples CA, Ortego LS, Hentges SG (2009) Acute and chronic toxicity testing of bisphenol A with aquatic invertebrates and plants. Ecotoxicol Environ Saf 72:1392–1399

    Article  CAS  Google Scholar 

  95. Duan ZH, Zhu L, Zhu LY, Yao K, Zhu XS (2008) Individual and joint toxic effects of pentachlorophenol and bisphenol A on the development of zebrafish (Danio rerio) embryo. Ecotoxicol Environ Saf 71:774–780

    Article  CAS  Google Scholar 

  96. Saili KS, Corvi MM, Weber DN, Patel AU, Das SR, Przybyla J, Anderson KA, Tanguay RL (2012) Neurodevelopmental low-dose bisphenol A exposure leads to early life-stage hyperactivity and learning deficits in adult zebrafish. Toxicology 291:83–92

    Article  CAS  Google Scholar 

  97. Duft M, Schmitt C, Bachmann J, Brandelik C, Schulte-Oehlmann U, Oehlmann J (2007) Prosobranch snails as test organisms for the assessment of endocrine active chemicals - an overview and a guideline proposal for a reproduction test with the freshwater mudsnail Potamopyrgus antipodarum. Ecotoxicology 16:169–182

    Article  CAS  Google Scholar 

  98. Kang IJ, Yokota H, Oshima Y, Tsuruda Y, Oe T, Imada N, Tadokoro H, Honjo T (2002) Effects of bisphenol A on the reproduction of Japanese medaka (Oryzias latipes). Environ Toxicol Chem 21:2394–2400

    Article  CAS  Google Scholar 

  99. Sieratowicz A, Stange D, Schulte-Oehlmann U, Oehlmann J (2011) Reproductive toxicity of bisphenol A and cadmium in Potamopyrgus antipodarum and modulation of bisphenol A effects by different test temperature. Environ Pollut 159:2766–2774

    Article  CAS  Google Scholar 

  100. Sieratowicz A, Kaiser D, Behr M, Oetken M, Oehlmann J (2011) Acute and chronic toxicity of four frequently used UV filter substances for Desmodesmus subspicatus and Daphnia magna. J Environ Sci Health A Tox Hazard Subst Environ Eng 46:1311–1319

    Article  CAS  Google Scholar 

  101. Hatef A, Alavi SMH, Abdulfatah A, Fontaine P, Rodina M, Linhart O (2012) Adverse effects of bisphenol A on reproductive physiology in male goldfish at environmentally relevant concentrations. Ecotoxicol Environ Saf 76:56–62

    Article  CAS  Google Scholar 

  102. Lahnsteiner F, Berger B, Kletzl M, Weismann T (2005) Effect of bisphenol A on maturation and quality of semen and eggs in the brown trout, Salmo trutta f. fario. Aquat Toxicol 75:213–224

    Article  CAS  Google Scholar 

  103. Debenest T, Gagne F, Petit AN, Andre C, Kohli M, Blaise C (2010) Ecotoxicity of a brominated flame retardant (tetrabromobisphenol A) and its derivatives to aquatic organisms. Comp Biochem Physiol C Toxicol Pharmacol 152:407–412

    Article  CAS  Google Scholar 

  104. Debenest T, Gagne F, Petit AN, Kohli M, Eullafroy P, Blaise C (2010) Monitoring of a flame retardant (tetrabromobisphenol A) toxicity on different microalgae assessed by flow cytometry. J Environ Monit 12:1918–1923

    Article  CAS  Google Scholar 

  105. Liu HL, Yu Y, Kong FX, He LN, Yu HX, Giesy JP, Wang XR (2008) Effects of tetrabromobisphenol A on the green alga Chlorella pyrenoidosa. J Environ Sci Health A Tox Hazard Subst Environ Eng 43:1271–1278

    Article  CAS  Google Scholar 

  106. Huijun Liu H, Xiong M (2009) Comparative toxicity of racemic metolachlor and S-metolachlor to Chlorella pyrenoidosa. Aquat Toxicol 93:100–106

    Article  CAS  Google Scholar 

  107. Deng J, Yu LQ, Liu CS, Yu K, Shi XJ, Yeung LWY, Lam PKS, Wu RSS, Zhou BS (2009) Hexabromocyclododecane-induced developmental toxicity and apoptosis in zebrafish embryos. Aquat Toxicol 93:29–36

    Article  CAS  Google Scholar 

  108. Kuiper RV, van den Brandhof EJ, Leonards PEG, van der Ven LTM, Wester PW, Vos JG (2007) Toxicity of tetrabromobisphenol A (TBBPA) in zebrafish (Danio rerio) in a partial life-cycle test. Arch Toxicol 81:1–9

    Article  CAS  Google Scholar 

  109. Deng J, Liu CS, Yu LQ, Zhou BS (2010) Chronic exposure to environmental levels of tribromophenol impairs zebrafish reproduction. Toxicol Appl Pharmacol 243:87–95

    Article  CAS  Google Scholar 

  110. Kallqvist T, Grung M, Tollefsen KE (2006) Chronic toxicity of 2,4,2′,4′-tetrabromodiphenyl ether on the marine alga Skeletonema costatum and the crustacean Daphnia magna. Environ Toxicol Chem 25:1657–1662

    Article  CAS  Google Scholar 

  111. Evandri MG, Costa LG, Bolle P (2003) Evaluation of brominated diphenyl ether-99 toxicity with Raphidocelis subcapitata and Daphnia magna. Environ Toxicol Chem 22:2167–2172

    Article  CAS  Google Scholar 

  112. Hardy ML, Krueger HO, Blankinship AS, Thomas S, Kendall TZ, Desjardins D (2012) Studies and evaluation of the potential toxicity of decabromodiphenyl ethane to five aquatic and sediment organisms. Ecotoxicol Environ Saf 75:73–79

    Article  CAS  Google Scholar 

  113. Bettinetti R, Cuccato D, Galassi S, Provini A (2002) Toxicity of 4-nonylphenol in spiked sediment to three populations of Chironomus riparius. Chemosphere 46:201–207

    Article  CAS  Google Scholar 

  114. Bettinetti R, Provini A (2002) Toxicity of 4-nonylphenol to Tubifex tubifex and Chironomus riparius in 28-day whole-sediment tests. Ecotoxicol Environ Saf 53:113–121

    Article  CAS  Google Scholar 

  115. Maenpaa K, Kukkonen JVK (2006) Bioaccumulation and toxicity of 4-nonylphenol (4-NP) and 4-(2-dodecyl)-benzene sulfonate (LAS) in Lumbriculus variegatus (Oligochaeta) and Chironomus riparius (Insecta). Aquat Toxicol 77:329–338

    Article  CAS  Google Scholar 

  116. Gao QT, Wong YS, Tam NFY (2011) Removal and biodegradation of nonylphenol by different Chlorella species. Mar Pollut Bull 63:445–451

    Article  CAS  Google Scholar 

  117. Gao QT, Tam NFY (2011) Growth, photosynthesis and antioxidant responses of two microalgal species, Chlorella vulgaris and Selenastrum capricornutum, to nonylphenol stress. Chemosphere 82:346–354

    Article  CAS  Google Scholar 

  118. Lin LL, Janz DM (2006) Effects of binary mixtures of xenoestrogens on gonadal development and reproduction in zebrafish. Aquat Toxicol 80:382–395

    Article  CAS  Google Scholar 

  119. Perron MC, Juneau P (2011) Effect of endocrine disrupters on photosystem II energy fluxes of green algae and cyanobacteria. Environ Res 111:520–529

    Article  CAS  Google Scholar 

  120. Seki M, Yokota H, Maeda M, Tadokoro H, Kobayashi K (2003) Effects of 4-nonylphenol and 4-tert-octylphenol on sex differentiation and vitellogenin induction in medaka (Oryzias latipes). Environ Toxicol Chem 22:1507–1516

    Article  CAS  Google Scholar 

  121. Schoenfuss HL, Baftell SE, Bistodeau TB, Cediel RA, Grove KJ, Zintek L, Lee KE, Barber LB (2007) Impairment of the reproductive potential of male fathead minnows by environmentally relevant exposures to 4-nonylphenol. Aquat Toxicol 86:91–98

    Article  CAS  Google Scholar 

  122. Bistodeau TJ, Barber LB, Bartell SE, Cediel RA, Grove KJ, Klaustermeier J, Woodard JC, Lee KE, Schoenfuss HL (2006) Larval exposure to environmentally relevant mixtures of alkylphenolethoxylates reduces reproductive competence in male fathead minnows. Aquat Toxicol 79:268–277

    Article  CAS  Google Scholar 

  123. Zhou GJ, Peng FQ, Yang B, Ying GG (2013) Cellular responses and bioremoval of nonylphenol and octylphenol in the freshwater green microalga Scenedesmus obliquus. Ecotoxicol Environ Saf 87:10–16

    Article  CAS  Google Scholar 

  124. Bhattacharya H, Xiao Q, Lun L (2008) Toxicity studies of nonylphenol on rosy barb (Puntius conchonious): a biochemical and histopathological evaluation. Tissue Cell 40:243–249

    Article  CAS  Google Scholar 

  125. Quinn B, Gagne F, Blaise C, Costello MJ, Wilson JG, Mothersill C (2006) Evaluation of the lethal and sub-lethal toxicity and potential endocrine disrupting effect of nonylphenol on the zebra mussel (Dreissena polymorpha). Comp Biochem Physiol C Toxicol Pharmacol 142:118–127

    Article  CAS  Google Scholar 

  126. Kahru A, Dubourguier HC (2010) Review: from ecotoxicology to nanoecotoxicology. Toxicology 269:105–119

    Article  CAS  Google Scholar 

  127. Baun A, Hartmann NB, Grieger K, Kusk KO (2008) Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology 17:387–395

    Article  CAS  Google Scholar 

  128. Kümmerer K (2010) Pharmaceuticals in the environment. Annu Rev Environ Resour 35:57–75

    Article  Google Scholar 

  129. Murray KE, Thomas SM, Bodour AA (2010) Prioritizing research for trace pollutants and emerging contaminants in the freshwater environment. Environ Pollut 158:3462–3471

    Article  CAS  Google Scholar 

  130. Oehlmann J, Schulte-Oehlmann U, Tillmann M, Markert B (2000) Effects of endocrine disruptors on prosobranch snails (Mollusca : Gastropoda) in the laboratory. Part I: bisphenol A and octylphenol as xeno-estrogens. Ecotoxicology 9:383–397

    Article  CAS  Google Scholar 

  131. Brausch JM, Rand GM (2011) A review of personal care products in the aquatic environment: environmental concentrations and toxicity. Chemosphere 82:1518–1532

    Article  CAS  Google Scholar 

  132. Orvos DR, Versteeg DJ, Inauen J, Capdevielle M, Rothenstein A, Cunningham V (2002) Aquatic toxicity of triclosan. Environ Toxicol Chem 21:1338–1349

    Article  CAS  Google Scholar 

  133. Dobbins LL, Usenko S, Brain RA, Brooks BW (2009) Probabilistic ecological hazard assessment of parabens using Daphnia magna and Pimephales promelas. Environ Toxicol Chem 28:2744–2753

    Article  CAS  Google Scholar 

  134. Terasaki M, Makino M, Tatarazako N (2009) Acute toxicity of parabens and their chlorinated by-products with Daphnia magna and Vibrio fischeri bioassays. J Appl Toxicol 29:242–247

    Article  CAS  Google Scholar 

  135. Yamamoto H, Tamura I, Hirata Y, Kato J, Kagota K, Katsuki S, Yamamoto A, Kagami Y, Tatarazako N (2011) Aquatic toxicity and ecological risk assessment of seven parabens: individual and additive approach. Sci Total Environ 410:102–111

    Article  CAS  Google Scholar 

  136. Ozaez I, Martinez-Guitarte JL, Morcillo G (2014) The UV filter benzophenone 3 (BP-3) activates hormonal genes mimicking the action of ecdysone and alters embryo development in the insect Chironomus riparius (Diptera). Environ Pollut 192:19–26

    Article  CAS  Google Scholar 

  137. Fent K, Kunz PY, Zenker A, Rapp M (2010) A tentative environmental risk assessment of the UV-filters 3-(4-methylbenzylidene-camphor), 2-ethyl-hexyl-4-trimethoxycinnamate, benzophenone-3, benzophenone-4 and 3-benzylidene camphor. Mar Environ Res 69:S4–S6

    Article  CAS  Google Scholar 

  138. Coronado M, De Haro H, Deng X, Rempel MA, Lavado R, Schlenk D (2008) Estrogenic activity and reproductive effects of the UV-filter oxybenzone (2-hydroxy-4-methoxyphenyl-methanone) in fish. Aquat Toxicol 90:182–187

    Article  CAS  Google Scholar 

  139. Kim S, Jung D, Kho Y, Choi K (2014) Effects of benzophenone-3 exposure on endocrine disruption and reproduction of Japanese medaka (Oryzias latipes)-a two generation exposure study. Aquat Toxicol 155:244–252

    Article  CAS  Google Scholar 

  140. Kunz PY, Gries T, Fent K (2006) The ultraviolet filter 3-benzylidene camphor adversely affects reproduction in fathead minnow (Pimephales promelas). Toxicol Sci 93:311–321

    Article  CAS  Google Scholar 

  141. Weisbrod CJ, Kunz PY, Zenker AK, Fent K (2007) Effects of the UV filter benzophenone-2 on reproduction in fish. Toxicol Appl Pharmacol 225:255–266

    Article  CAS  Google Scholar 

  142. Kaiser D, Sieratowicz A, Zielke H, Oetken M, Hollert H, Oehlmann J (2012) Ecotoxicological effect characterisation of widely used organic UV filters. Environ Pollut 163:84–90

    Article  CAS  Google Scholar 

  143. Schmitt C, Oetken M, Dittberner O, Wagner M, Oehlmann J (2008) Endocrine modulation and toxic effects of two commonly used UV screens on the aquatic invertebrates Potamopyrgus antipodarum and Lumbriculus variegates. Environ Pollut 152:322–329

    Article  CAS  Google Scholar 

  144. Forbes VE, Palmqvist A, Bach L (2006) The use and misuse of biomarkers in ecotoxicology. Environ Toxicol Chem 25:272–280

    Article  CAS  Google Scholar 

  145. Lock MA (1993) Attached microbial communities in rivers. In: Ford TE (ed) Aquatic microbiology. Blackwell, Oxford, pp 113–138

    Google Scholar 

  146. Sabater S, Guasch H, Ricart M, Romaní AM, Vidal G, Klünder C, Schmitt-Jansen M (2007) Monitoring the effect of chemicals on biological communities. The biofilm as an interface. Anal Bioanal Chem 387:1425–1434

    Article  CAS  Google Scholar 

  147. Sabater S (2000) Diatom communities as indicators of environmental stress in the Guadiamar River, S-W Spain, following a major mine tailings spill. J Appl Phycol 12:113–124

    Article  CAS  Google Scholar 

  148. Romaní AM, Sabater S (2001) Structure and activity of rock and sand biofilms in a Mediterranean stream. Ecology 82:3232–3245

    Article  Google Scholar 

  149. Ricart M, Guasch H, Barceló D et al (2010) Primary and complex stressors in polluted mediterranean rivers: pesticide effects on biological communities. J Hydrol 383(1–2):52–61

    Article  CAS  Google Scholar 

  150. Corcoll N, Bonet B, Morin S, Tlili A, Leira M, Guasch H (2012) The effect of metals on photosynthesis processes and diatom metrics of biofilm from a metal-contaminated river: a translocation experiment. Ecol Indic 18:620–631

    Article  CAS  Google Scholar 

  151. Bonet B, Corcoll N, Acuňa V, Sigg L, Behra R, Guasch H (2013) Seasonal changes in antioxidant enzyme activities of freshwater biofilms in a metal polluted Mediterranean stream. Sci Total Environ 444:60–72

    Article  CAS  Google Scholar 

  152. Ivorra N, Bremer S, Guasch H, Kraak MHS, Admiraal W (2000) Differences in the sensitivity of benthic microalgae to Zn and Cd regarding biofilm development and exposure history. Environ Toxicol Chem 19:1332

    Article  CAS  Google Scholar 

  153. Guasch H, Admiraal W, Sabater S (2003) Contrasting effects of organic and inorganic toxicants on freshwater periphyton. Aquat Toxicol 64:165–175

    Article  CAS  Google Scholar 

  154. Corcoll N, Bonet B, Leira M, Guasch H (2011) Chl-a fluorescence parameters as biomarkers of metal toxicity in fluvial biofilms: an experimental study. Hydrobiologia 673:119–136

    Article  CAS  Google Scholar 

  155. Romaní AM, Sabater S (1999) Epilithic ectoenzyme activity in a nutrient-rich Mediterranean river. Aquat Sci 61:122–132

    Article  Google Scholar 

  156. Krammer K, Lange-Bertalot H (1989–1991) Bacillariophyceae. Subwasserflora von Mitteleuropa, vol 2. Fischer, Stuttgart, 521 pp

    Google Scholar 

  157. Wellnitz T, Rader RB (2003) Mechanisms influencing community composition and succession in mountain stream periphyton: interactions between scouring history, grazing, and irradiance. J North Am Benthol Soc 22:528–541

    Article  Google Scholar 

  158. Sabater S, Sabater F (1988) Diatom assemblages in the River Ter. Archiv für Hydrobiol 111:397–408

    Google Scholar 

  159. Uehlinger U, König C, Reichert P (2000) Variability of photosynthesis‐irradiance curves and ecosystem respiration in a small river. Freshw Biol 44:493–507

    Article  Google Scholar 

  160. Guasch H, Serra A, Corcoll N, Bonet B, Leira M (2010) Metal ecotoxicology in fluvial biofilms: potential influence of water scarcity. In: Water scarcity in the Mediterranean, vol 8. The Handbook of Environmental Chemistry. pp 41–53. doi:10.1007/698_2009_25

  161. De Castro-Català N, Muñoz I, Armendáriz L, Campos B, Barceló D, López-Doval J, Pérez S, Petrovic M, Picó Y, Riera JL (2015) Invertebrate community responses to emerging water pollutants in Iberian river basins. Sci Total Environ 503–504:142–150

    Article  CAS  Google Scholar 

  162. Belenguer V, Martinez-Capel F, Masiá A, Picó Y (2014) Patterns of presence and concentration of pesticides in fish and waters of the Júcar River (Eastern Spain). J Hazard Mater 265:271–279

    Article  CAS  Google Scholar 

  163. Muñoz I, López-Doval JC, Ricart M et al (2009) Bridging levels of pharmaceuticals in river water with biological community structure in the Llobregat river basin (NE Spain). Environ Toxicol Chem 2:2706–2714

    Article  Google Scholar 

  164. Rosi-Marshall EJ, Royer TV (2012) Pharmaceutical compounds and ecosystem function: an emerging research challenge for aquatic ecologists. Ecosystems 15:867–880

    Article  CAS  Google Scholar 

  165. Warwick RM (1986) A new method for detecting pollution effects on marine macrobenthic communities. Mar Biol 92:557–562

    Article  Google Scholar 

  166. Barata C, Damasio J, López MA, Kuster M, López de Alda M, Barceló D et al (2007) Combined use of biomarkers and in situ bioassays in Daphnia magna to monitor environmental hazards of pesticides in the field. Environ Toxicol Chem 26:370–379

    Article  CAS  Google Scholar 

  167. Rivetti C, Campos B, Faria M, De Castro Català N, Malik A, Muñoz I, Tauler R, Soares AMVM, Osorio V, Pérez S, Gorga M, Petrovic M, Mastroianni N, López De Alda M, Masiá A, Campo J, Picó Y, Guasch H, Barceló D, Barata C (2015) Transcriptomic, biochemical and individual markers in transplanted Daphnia magna to characterize impacts in the field. Sci Total Environ 503–504:200–212

    Article  CAS  Google Scholar 

  168. Damásio J, Fernández-Sanjuan M, Sánchez-Avila J et al (2011) Multi-biochemical responses of benthic macroinvertebrate species as a complementary tool to diagnose the cause of community impairment in polluted rivers. Water Res 45:3599–3613

    Article  CAS  Google Scholar 

  169. De Castro-Català N, López-Doval J, Gorga M, Petrovic M, Muñoz I (2013) Is reproduction of the snail Physella acuta affected by endocrine disrupting compounds? An in situ bioassay in three Iberian basins. J Hazard Mater 263:248–255

    Article  CAS  Google Scholar 

  170. Sundermann A, Gerhardt M, Kappes H, Haase P (2013) Stressor prioritisation in riverine ecosystems: which environmental factors shape benthic invertebrate assemblage metrics? Ecol Indic 27:83–96

    Article  Google Scholar 

  171. Sprague JB (1970) Measurement of pollutant toxicity to fish, II-utilizing and applying bioassay results. Water Res 4:3–32

    Article  CAS  Google Scholar 

  172. Backhaus T, Faust M (2012) Predictive environmental risk assessment of chemical mixtures: a conceptual framework. Environ Sci Tech 46:2564–2573

    Article  CAS  Google Scholar 

  173. Ginebreda A, Kuzmanovic M, Petrovic M, Barceló D (2015) Contaminants of emerging concern in Mediterranean watersheds. Hdb Environ Chem. doi:10.1007/698_2015_5016

    Google Scholar 

  174. Kuzmanović M, Ginebreda A, Petrović M, Barceló D (2015) Risk assessment based prioritization of 200 organic micropollutants in 4 Iberian rivers. Sci Total Environ 503–504:289–299

    Article  CAS  Google Scholar 

  175. Beketov MA, Liess M (2008) An indicator for effects of organic toxicants on lotic invertebrate communities: independence of confounding environmental factors over an extensive river continuum. Environ Pollut 156:980–987

    Article  CAS  Google Scholar 

  176. Liess M, Von Der Ohe PC (2005) Analyzing effects of pesticides on invertebrate communities in streams. Environ Toxicol Chem 24:954–965

    Article  CAS  Google Scholar 

  177. Beketov MA, Foit K, Schäfer RB, Schriever CA, Sacchi A, Capri E et al (2009) SPEAR indicates pesticide effects in streams - comparative use of species- and family-level biomonitoring data. Environ Pollut 157:1841–1848

    Article  CAS  Google Scholar 

  178. Beketov MA, Kefford BJ, Schäfer RB, Liess M (2013) Pesticides reduce regional biodiversity of stream invertebrates. Proc Natl Acad Sci U S A 110:11039–11043

    Article  CAS  Google Scholar 

  179. Pestana JLT, Alexander AC, Culp JM (2009) Structural and functional responses of benthic invertebrates to imidacloprid in outdoor stream mesocosms. Environ Pollut 157:2328–2334

    Article  CAS  Google Scholar 

  180. Martinović D, Hogarth WT, Jones RE, Sorensen PW (2007) Environmental estrogens suppress hormones, behavior, and reproductive fitness in male fathead minnows. Environ Toxicol Chem 26:271–278

    Article  Google Scholar 

  181. De Castro-Català N, Kuzmanovic M, Roig N, Sierra J, Ginebreda A, Barceló D, Pérez S, Petrovic M, Picó Y, Schuhmacher M, Muñoz I (2016) Ecotoxicity of sediments in rivers: invertebrate community, toxicity bioassays and the toxic unit approach as complementary assessment tools. Sci Total Environ 540:297–306

    Article  CAS  Google Scholar 

  182. Stockdale A, Tipping E, Lofts S, Ormerod SJ, Clements WH, Blust R (2010) Toxicity of proton-metal mixtures in the field: linking stream macroinvertebrate species diversity to chemical speciation and bioavailability. Aquat Toxicol 100:112–119

    Article  CAS  Google Scholar 

  183. Holmstrup M, Bindesbøl AM, Oostingh GJ et al (2010) Interactions between effects of environmental chemicals and natural stressors: a review. Sci Total Environ 408:3746–3762

    Article  CAS  Google Scholar 

  184. Laskowski R, Bednarska AJ, Kramarz PE, Loureiro S, Scheil V, Kudłek S, Holmstrup M (2010) Interactions between toxic chemicals and natural environmental factors - a meta-analysis and case studies. Sci Total Environ 408:3763–3774

    Article  CAS  Google Scholar 

  185. Heugens EHW, Hendriks JA, Dekker T, Van Straalen NM, Admiraal W (2002) A review of the effects of multiple stressors on aquatic organisms and analysis of uncertainty factors for use in risk assessment. Crit Rev Toxicol 31(3):247–384

    Article  Google Scholar 

Download references

Acknowledgments

The present work was funded by the Spanish Ministry of Economics and Competitiveness through the Consolider-Ingenio 2010 Program (project Scarce CSD2009-00065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Muñoz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Muñoz, I., López-Doval, J.C., De Castro-Català, N., Kuzmanovic, M., Ginebreda, A., Sabater, S. (2015). Effects of Emerging Contaminants on Biodiversity, Community Structure, and Adaptation of River Biota. In: Petrovic, M., Sabater, S., Elosegi, A., Barceló, D. (eds) Emerging Contaminants in River Ecosystems. The Handbook of Environmental Chemistry, vol 46. Springer, Cham. https://doi.org/10.1007/698_2015_5013

Download citation

Publish with us

Policies and ethics