Skip to main content

Integration of CNT-Based Chemical Sensors and Biosensors in Microfluidic Systems

  • Chapter
  • First Online:
Applications of Nanomaterials in Sensors and Diagnostics

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 14))

  • 2950 Accesses

Abstract

We describe and discuss the different components necessary for the construction of a microfluidic system including micropump, microvalve, micromixer and detection system. For the microfluidic detector, we focus on carbon nanotube (CNTs) based electrochemical sensors. The properties, structure and nomenclature of CNTs are briefly reviewed. CNT modification and the use of CNTs in conjunction with electrochemical microfluidic detection are then extensively discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bi H, Weng X, Qu H et al (2005) Strategy for allosteric analysis based on protein-patterned stationary phase in microfluidic chip. J Proteome Res 4(6):2154–2160

    Article  CAS  Google Scholar 

  2. Blanco-Gomez G, Glidle A, Flendrig LM et al (2009) Integration of low-power microfluidic pumps with biosensors within a laboratory-on-a-chip device. Anal Chem 81(4):1365–1370

    Article  CAS  Google Scholar 

  3. Chatrathi MP, Collins GE, Wang J (2007) Microchip-based electrochemical enzyme immunoassays. Methods Mol Biol (Clifton, NJ) 385:215–224

    Article  CAS  Google Scholar 

  4. Dong H, Li CM, Zhang YF et al (2007) Screen-printed microfluidic device for electrochemical immunoassay. Lab Chip 7(12):1752–1758

    Article  CAS  Google Scholar 

  5. Ferguson BS, Buchsbaum SF, Swensen JS et al (2009) Integrated microfluidic electrochemical DNA sensor. Anal Chem 81(15):6503–6508

    Article  CAS  Google Scholar 

  6. Ferguson BS, Buchsbaum SF, Wu TT et al (2011) Genetic analysis of h1n1 influenza virus from throat swab samples in a microfluidic system for point-of-care diagnostics. J Am Chem Soc 133(23):9129–9135

    Article  CAS  Google Scholar 

  7. He P, Greenway G, Haswell SJ (2010) Development of enzyme immobilized monolith micro-reactors integrated with microfluidic electrochemical cell for the evaluation of enzyme kinetics. Microfluid Nanofluidics 8(5):565–573

    Article  CAS  Google Scholar 

  8. Huang CJ, Chien HC, Chou TC et al (2011) Integrated microfluidic system for electrochemical sensing of glycosylated hemoglobin. Microfluid Nanofluidics 10(1):37–45

    Article  CAS  Google Scholar 

  9. Jiang JH, Bo ML, Jiang DC et al (2009) A novel fabrication route to integrating label-free detection of DNA hybridization in microfluidic channel. In: IFMBE proceedings, pp 140–143

    Google Scholar 

  10. Kwakye S, Baeumner A (2003) A microfluidic biosensor based on nucleic acid sequence recognition. Anal Bioanal Chem 376(7):1062–1068

    Article  CAS  Google Scholar 

  11. Lin L, Cai Y, Lin R et al (2011) New integrated in vivo microdialysis-electrochemical device for determination of the neurotransmitter dopamine in rat striatum of freely moving rats. Microchim Acta 172(1):217–223

    CAS  Google Scholar 

  12. Liu RH, Yang J, Lenigk R et al (2004) Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Anal Chem 76(7):1824–1831

    Article  CAS  Google Scholar 

  13. Njoroge SK, Chen HW, Witek MA et al (2011) Integrated microfluidic systems for DNA analysis. Top Curr Chem 304:203–260

    Article  CAS  Google Scholar 

  14. Park S, Zhang Y, Lin S et al (2011) Advances in microfluidic PCR for point-of-care infectious disease diagnostics. Biotechnol Adv 29:830–839

    Article  CAS  Google Scholar 

  15. Pavlovic E, Lai RY, Wu TT et al (2008) Microfluidic device architecture for electrochemical patterning and detection of multiple DNA sequences. Langmuir 24(3):1102–1107

    Article  CAS  Google Scholar 

  16. Pereira SV, Bertolino FA, Messina GA et al (2011) Microfluidic immunosensor with gold nanoparticle platform for the determination of immunoglobulin g anti-Echinococcus granulosus antibodies. Anal Biochem 409(1):98–104

    Article  CAS  Google Scholar 

  17. Abdelgawad M, Watson MWL, Wheeler AR (2009) Hybrid microfluidics: a digital-to-channel interface for in-line sample processing and chemical separations. Lab Chip 9(8):1046–1051

    Article  CAS  Google Scholar 

  18. Srinivasan V, Pamula VK, Fair RB (2004) Droplet-based microfluidic lab-on-a-chip for glucose detection. Anal Chim Acta 507(1):145–150

    Article  CAS  Google Scholar 

  19. Zhao Y, Chakrabarty K (2011) Fault diagnosis in lab-on-chip using digital microfluidic logic gates. J Electron Test 27(1):69–83

    Article  Google Scholar 

  20. Laser DJ, Santiago JG (2004) A review of micropumps. J Micromech Microeng 14(6):R35–R64

    Article  Google Scholar 

  21. Roman GT, Kennedy RT (2007) Fully integrated microfluidic separations systems for biochemical analysis. J Chromatogr A 1168(1–2):170–188

    CAS  Google Scholar 

  22. Pennathur S (2008) Flow control in microfluidics: are the workhorse flows adequate? Lab Chip 8(3):383–387

    Article  CAS  Google Scholar 

  23. Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77(3):977–1026

    Article  CAS  Google Scholar 

  24. Atalay YT, Vermeir S, Witters D et al (2011) Microfluidic analytical systems for food analysis. Trends Food Sci Technol 22(7):386–404

    Article  CAS  Google Scholar 

  25. Nguyen NT, Wu Z (2005) Micromixers – a review. J Micromech Microeng 15(2):R1–R16

    Article  Google Scholar 

  26. Zhang C, Xing D, Li Y (2007) Micropumps, microvalves, and micromixers within PCR microfluidic chips: advances and trends. Biotechnol Adv 25(5):483–514

    Article  CAS  Google Scholar 

  27. Crevillen AG, Avila M, Pumera M et al (2007) Food analysis on microfluidic devices using ultrasensitive carbon nanotubes detectors. Anal Chem 79(19):7408–7415

    Article  CAS  Google Scholar 

  28. Jayarajah CN, Skelley AM, Fortner AD et al (2007) Analysis of neuroactive amines in fermented beverages using a portable microchip capillary electrophoresis system. Anal Chem 79(21):8162–8169

    Article  CAS  Google Scholar 

  29. Revermann T, Götz S, Künnemeyer J et al (2008) Quantitative analysis by microchip capillary electrophoresis – current limitations and problem-solving strategies. Analyst 133(2):167–174

    Article  CAS  Google Scholar 

  30. Karuwan C, Sukthang K, Wisitsoraat A et al (2011) Electrochemical detection on electrowetting-on-dielectric digital microfluidic chip. Talanta 84(5):1384–1389

    Article  CAS  Google Scholar 

  31. Paik P, Pamula VK, Fair RB (2003) Rapid droplet mixers for digital microfluidic systems. Lab Chip 3(4):253–259

    Article  CAS  Google Scholar 

  32. Nisar A, Afzulpurkar N, Mahaisavariya B et al (2008) Mems-based micropumps in drug delivery and biomedical applications. Sens Actuators B Chem 130(2):917–942

    Article  CAS  Google Scholar 

  33. Smits JG (1990) Piezoelectric micropump with three valves working peristaltically. Sens Actuators A Phys 21(1–3):203–206

    Article  Google Scholar 

  34. Van de Pol FCM, Van Lintel HTG, Elwenspoek M et al (1990) A thermopneumatic micropump based on micro-engineering techniques. Sens Actuators A Phys 21(1–3):198–202

    Google Scholar 

  35. Stemme E, Stemme G (1993) A valveless diffuser/nozzle-based fluid pump. Sens Actuators A Phys 39(2):159–167

    Article  CAS  Google Scholar 

  36. Hsu YC, Lin SJ, Hou CC (2008) Development of peristaltic antithrombogenic micropumps for in vitro and ex vivo blood transportation tests. Microsyst Technol 14(1):31–41

    Article  CAS  Google Scholar 

  37. Jeong OC, Park SW, Yang SS et al (2005) Fabrication of a peristaltic PDMS micropump. Sens Actuators A Phys 123–124:453–458

    Article  CAS  Google Scholar 

  38. Teymoori MM, Abbaspour-Sani E (2004) Design and simulation of a novel electrostatic peristaltic micromachined pump for drug delivery applications. Sens Actuators A Phys 117(2):222–229

    Article  CAS  Google Scholar 

  39. Lee SW, Sim WY, Yang SS (2000) Fabrication and in vitro test of a microsyringe. Sens Actuators A Phys 83(1):17–23

    Article  CAS  Google Scholar 

  40. Suzuki H, Yoneyama R (2002) A reversible electrochemical nanosyringe pump and some considerations to realize low-power consumption. Sens Actuators B Chem 86(2–3):242–250

    Article  CAS  Google Scholar 

  41. Dapper J, Clemens M, Ehrfeld W et al (1997) Micro gear pumps for dosing of viscous fluids. J Micromech Microeng 7(3):230–232

    Article  Google Scholar 

  42. Feng GH, Kim ES (2005) Piezoelectrically actuated dome-shaped diaphragm micropump. J Microelectromech Syst 14(2):192–199

    Article  Google Scholar 

  43. Kan J, Yang Z, Peng T et al (2005) Design and test of a high-performance piezoelectric micropump for drug delivery. Sens Actuators A Phys 121(1):156–161

    Article  CAS  Google Scholar 

  44. Koch M, Harris N, Evans AGR et al (1998) A novel micromachined pump based on thick-film piezoelectric actuation. Sens Actuators A Phys 70(1–2):98–103

    Article  CAS  Google Scholar 

  45. Benard WL, Kahn H, Heuer AH et al (1997) Titanium-nickel shape-memory alloy actuated micropump. In: Proceedings of the international conference on solid-state sensors and actuators, vol 1, pp 361–364

    Google Scholar 

  46. Benard WL, Kahn H, Heuer AH et al (1998) Thin-film shape-memory alloy actuated micropumps. J Microelectromech Syst 7(2):245–251

    Article  CAS  Google Scholar 

  47. Zhan C, Lo T, Liu L et al (1996) A silicon membrane micropump with integrated bimetallic actuator. Chin J Electron 5(2):33–35

    Google Scholar 

  48. Guo S, Nakamura T, Fukuda T et al (1997) Development of the micro pump using ICPF actuator. In: Proceedings of the IEEE international conference on robotics and automation, vol 1, pp 266–271

    Google Scholar 

  49. Bourouina T, Bosseboeuf A, Grandchamp JP (1997) Design and simulation of an electrostatic micropump for drug-delivery applications. J Micromech Microeng 7(3):186–188

    Article  CAS  Google Scholar 

  50. MacHauf A, Nemirovsky Y, Dinnar U (2005) A membrane micropump electrostatically actuated across the working fluid. J Micromech Microeng 15(12):2309–2316

    Article  Google Scholar 

  51. Gong Q, Zhou Z, Yang Y et al (2000) Design, optimization and simulation on microelectromagnetic pump. Sens Actuators A Phys 83(1):200–207

    Article  CAS  Google Scholar 

  52. Yamahata C, Lotto C, Al-Assaf E et al (2005) A PMMA valveless micropump using electromagnetic actuation. Microfluid Nanofluidics 1(3):197–207

    Article  Google Scholar 

  53. Liao CS, Lee GB, Liu HS et al (2005) Miniature RT-PCR system for diagnosis of RNA-based viruses. Nucleic Acids Res 33(18)

    Google Scholar 

  54. Lien KY, Lee WC, Lei HY et al (2007) Integrated reverse transcription polymerase chain reaction systems for virus detection. Biosens Bioelectron 22(8):1739–1748

    Article  CAS  Google Scholar 

  55. Jeong OC, Yang SS (2000) Fabrication and test of a thermopneumatic micropump with a corrugated p+ diaphragm. Sens Actuators A Phys 83(1):249–255

    Article  CAS  Google Scholar 

  56. Kim JH, Na KH, Kang CJ et al (2005) A disposable thermopneumatic-actuated micropump stacked with PDMS layers and ito-coated glass. Sens Actuators A Phys 120(2):365–369

    Article  CAS  Google Scholar 

  57. Boden R, Lehto M, Simu U et al (2005) A polymeric paraffin micropump with active valves for high-pressure microfluidics. In: Digest of technical papers – international conference on solid state sensors and actuators and microsystems, TRANSDUCERS ’05, vol 1, pp 201–204

    Google Scholar 

  58. Sim WY, Yoon HJ, Jeong OC et al (2003) A phase-change type micropump with aluminum flap valves. J Micromech Microeng 13(2):286–294

    Article  Google Scholar 

  59. Huang L, Wang W, Murphy MC et al (2000) Liga fabrication and test of a dc type magnetohydrodynamic (MHD) micropump. Microsyst Technol 6(6):235–240

    Article  Google Scholar 

  60. Jang J, Lee SS (2000) Theoretical and experimental study of MHD (magnetohydrodynamic) micropump. Sens Actuators A Phys 80(1):84–89

    Article  CAS  Google Scholar 

  61. Munchow G, Dadic D, Doffing F et al (2005) Automated chip-based device for simple and fast nucleic acid amplification. Expert Rev Mol Diagn 5(4):613–620

    Article  Google Scholar 

  62. Darabi J, Rada M, Ohadi M et al (2002) Design, fabrication, and testing of an electrohydrodynamic ion-drag micropump. J Microelectromech Syst 11(6):684–690

    Article  CAS  Google Scholar 

  63. Fuhr G, Hagedorn R, Muller T et al (1992) Pumping of water solutions in microfabricated electrohydrodynamic systems. 25–30

    Google Scholar 

  64. Chen L, Wang H, Ma J et al (2005) Fabrication and characterization of a multi-stage electroosmotic pump for liquid delivery. Sens Actuators B Chem 104(1):117–123

    Article  CAS  Google Scholar 

  65. Zeng S, Chen CH, Mikkelsen JC Jr et al (2001) Fabrication and characterization of electroosmotic micropumps. Sens Actuators B Chem 79(2–3):107–114

    Article  CAS  Google Scholar 

  66. Yun KS, Cho IJ, Bu JU et al (2002) A surface-tension driven micropump for low-voltage and low-power operations. J Microelectromech Syst 11(5):454–461

    Article  CAS  Google Scholar 

  67. Zahn JD, Deshmukh A, Pisano AP et al (2004) Continuous on-chip micropumping for microneedle enhanced drug delivery. Biomed Microdevices 6(3):183–190

    Article  CAS  Google Scholar 

  68. Tsai JH, Lin L (2001) A thermal bubble actuated micro nozzle-diffuser pump. In: Proceedings of the IEEE micro electro mechanical systems (MEMS), pp 409–412

    Google Scholar 

  69. Yoshimi Y, Shinoda K, Mishima M et al (2004) Development of an artificial synapse using an electrochemical micropump. J Artif Organs 7(4):210–215

    Article  Google Scholar 

  70. Luginbuhl P, Collins SD, Racine GA et al (1997) Microfabricated lamb wave device based on PZT sol–gel thin film for mechanical transport of solid particles and liquids. J Microelectromech Syst 6(4):337–346

    Article  CAS  Google Scholar 

  71. Nguyen NT, Meng AH, Black J et al (2000) Integrated flow sensor for in situ measurement and control of acoustic streaming in flexural plate wave micropumps. Sens Actuators A Phys 79(2):115–121

    Article  CAS  Google Scholar 

  72. Effenhauser CS, Harttig H, Kramer P (2002) An evaporation-based disposable micropump concept for continuous monitoring applications. Biomed Microdevices 4(1):27–32

    Article  Google Scholar 

  73. Carrozza MC, Croce N, Magnani B et al (1995) A piezoelectric-driven stereolithography-fabricated micropump. J Micromech Microeng 5(2):177–179

    Article  Google Scholar 

  74. Prakash R, Kaler KVIS (2007) An integrated genetic analysis microfluidic platform with valves and a PCR chip reusability method to avoid contamination. Microfluid Nanofluidics 3(2):177–187

    Article  CAS  Google Scholar 

  75. Fan ZH, Ricco AJ, Tan W et al (2003) Integrating multiplexed PCR with CE for detecting microorganisms. Micro Total Anal Syst 849

    Google Scholar 

  76. Koh CG, Tan W, Zhao MQ et al (2003) Integrating polymerase chain reaction, valving, and electrophoresis in a plastic device for bacterial detection. Anal Chem 75(17):4591–4598

    Article  CAS  Google Scholar 

  77. Gong H, Ramalingam N, Chen L et al (2006) Microfluidic handling of PCR solution and DNA amplification on a reaction chamber array biochip. Biomed Microdevices 8(2):167–176

    Article  CAS  Google Scholar 

  78. Kohl M, Dittmann D, Quandt E et al (2000) Thin film shape memory microvalves with adjustable operation temperature. Sens Actuators A Phys 83(1):214–219

    Article  CAS  Google Scholar 

  79. Zdeblick MJ, Anderson R, Jankowski J et al (1994) Thermopneumatically actuated microvalves and integrated electro-fluidic circuits. In: Solid-state sensor and actuator workshop, pp 251–255

    Google Scholar 

  80. Felton MJ (2003) The new generation of microvalves. Anal Chem 75(19):429A–432A

    CAS  Google Scholar 

  81. Esashi M, Shoji S, Nakano A (1989) Normally closed microvalve and mircopump fabricated on a silicon wafer. Sens Actuators 20(1–2):163–169

    Google Scholar 

  82. Fahrenberg J, Bier W, Maas D et al (1995) A microvalve system fabricated by thermoplastic molding. J Micromech Microeng 5(2):169–171

    Article  CAS  Google Scholar 

  83. Pal R, Yang M, Johnson BN et al (2004) Phase change microvalve for integrated devices. Anal Chem 76(13):3740–3748

    Article  CAS  Google Scholar 

  84. Wang J, Chen Z, Mauk M et al (2005) Self-actuated, thermo-responsive hydrogel valves for lab on a chip. Biomed Microdevices 7(4):313–322

    Article  CAS  Google Scholar 

  85. Liu Y, Rauch CB, Stevens RL et al (2002) DNA amplification and hybridization assays in integrated plastic monolithic devices. Anal Chem 74(13):3063–3070

    Article  CAS  Google Scholar 

  86. Liu RH, Bonanno J, Yang J et al (2004) Single-use, thermally actuated paraffin valves for microfluidic applications. Sens Actuators B Chem 98(2–3):328–336

    Article  CAS  Google Scholar 

  87. Pal R, Yang M, Lin R et al (2005) An integrated microfluidic device for influenza and other genetic analyses. Lab Chip 5(10):1024–1032

    Article  CAS  Google Scholar 

  88. Gui L, Liu J (2004) Ice valve for a mini/micro flow channel. J Micromech Microeng 14(2):242–246

    Article  Google Scholar 

  89. Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu Rev Fluid Mech 36:381–411

    Article  Google Scholar 

  90. Stroock AD, Dertinger SKW, Ajdari A et al (2002) Chaotic mixer for microchannels. Science 295(5555):647–651

    Article  CAS  Google Scholar 

  91. Hashimoto M, Barany F, Soper SA (2006) Polymerase chain reaction/ligase detection reaction/hybridization assays using flow-through microfluidic devices for the detection of low-abundant DNA point mutations. Biosens Bioelectron 21(10):1915–1923

    Article  CAS  Google Scholar 

  92. Legendre LA, Bienvenue JM, Roper MG et al (2006) A simple, valveless microfluidic sample preparation device for extraction and amplification of DNA from nanoliter-volume samples. Anal Chem 78(5):1444–1451

    Article  CAS  Google Scholar 

  93. Mastrangelo CH, Burns MA, Burke DT (1999) Integrated microfabricated devices for genetic assays. In: Microprocesses and nanotechnology conference, Yokohama, pp 1–2

    Google Scholar 

  94. Chang YH, Lee GB, Huang FC et al (2006) Integrated polymerase chain reaction chips utilizing digital microfluidics. Biomed Microdevices 8(3):215–225

    Article  CAS  Google Scholar 

  95. Curcio M, Roeraade J (2003) Continuous segmented-flow polymerase chain reaction for high-throughput miniaturized DNA amplification. Anal Chem 75(1):1–7

    Article  CAS  Google Scholar 

  96. Mohr S, Zhang YH, Macaskill A et al (2007) Numerical and experimental study of a droplet-based PCR chip. Microfluid Nanofluidics 3(5):611–621

    Article  CAS  Google Scholar 

  97. Jacobson SC, McKnight TE, Ramsey JM (1999) Microfluidic devices for electrokinetically driven parallel and serial mixing. Anal Chem 71(20):4455–4459

    Article  CAS  Google Scholar 

  98. Lee CY, Lee GB, Lin JL et al (2005) Integrated microfluidic systems for cell lysis, mixing/pumping and DNA amplification. J Micromech Microeng 15(6):1215–1223

    Article  CAS  Google Scholar 

  99. Liu RH, Yang J, Pindera MZ et al (2002) Bubble-induced acoustic micromixing. Lab Chip 2(3):151–157

    Article  CAS  Google Scholar 

  100. Bau HH, Zhong J, Yi M (2001) A minute magneto hydro dynamic (MHD) mixer. Sens Actuators B Chem 79(2–3):207–215

    Article  CAS  Google Scholar 

  101. Gotz S, Karst U (2007) Recent developments in optical detection methods for microchip separations. Anal Bioanal Chem 387(1):183–192

    Article  CAS  Google Scholar 

  102. Newman CID, Giordano BC, Cooper CL et al (2008) Microchip micellar electrokinetic chromatography separation of alkaloids with UV-absorbance spectral detection. Electrophoresis 29(4):803–810

    Article  CAS  Google Scholar 

  103. Ibanez-Garcia N, Mercader MB, Mendes Da Rocha Z et al (2006) Continuous flow analytical microsystems based on low-temperature co-fired ceramic technology. Integrated potentiometric detection based on solvent polymeric ion-selective electrodes. Anal Chem 78(9):2985–2992

    Article  CAS  Google Scholar 

  104. Rashid M, Dou YH, Auger V et al (2010) Recent developments in polymer microfluidic devices with capillary electrophoresis and electrochemical detection. Micro Nanosyst 2(2):108–136

    Article  CAS  Google Scholar 

  105. Wang J, Polsky R, Tian B et al (2000) Voltammetry on microfluidic chip platforms. Anal Chem 72(21):5285–5289

    Article  CAS  Google Scholar 

  106. Mishra NN, Retterer S, Zieziulewicz TJ et al (2005) On-chip micro-biosensor for the detection of human CD4+ cells based on ac impedance and optical analysis. Biosens Bioelectron 21(5):696–704

    Article  CAS  Google Scholar 

  107. Triroj N, Lapierre-Devlin MA, Kelley SO et al (2006) Microfluidic three-electrode cell array for low-current electrochemical detection. IEEE Sens J 6(6):1395–1402

    Article  CAS  Google Scholar 

  108. Moon BU, Koster S, Wientjes KJC et al (2010) An enzymatic microreactor based on chaotic micromixing for enhanced amperometric detection in a continuous glucose monitoring application. Anal Chem 82(16):6756–6763

    Article  CAS  Google Scholar 

  109. Schwarz MA (2004) Enzyme-catalyzed amperometric oxidation of neurotransmitters in chip-capillary electrophoresis. Electrophoresis 25(12):1916–1922

    Article  CAS  Google Scholar 

  110. Moreira NH, De Jesus De Almeida AL, De Oliveira Piazzeta MH et al (2009) Fabrication of a multichannel PDMS/glass analytical microsystem with integrated electrodes for amperometric detection. Lab Chip 9(1):115–121

    Article  CAS  Google Scholar 

  111. Sassa F, Laghzali H, Fukuda J et al (2010) Coulometric detection of components in liquid plugs by microfabricated flow channel and electrode structures. Anal Chem 82(20):8725–8732

    Article  CAS  Google Scholar 

  112. Wang R, Lin J, Lassiter K et al (2011) Evaluation study of a portable impedance biosensor for detection of avian influenza virus. J Virol Methods 178(1–2):52–58

    Article  CAS  Google Scholar 

  113. Segerink LI, Sprenkels AJ, Ter Braak PM et al (2010) On-chip determination of spermatozoa concentration using electrical impedance measurements. Lab Chip 10(8):1018–1024

    Article  CAS  Google Scholar 

  114. Sabounchi P, Morales AM, Ponce P et al (2008) Sample concentration and impedance detection on a microfluidic polymer chip. Biomed Microdevices 10(5):661–670

    Article  CAS  Google Scholar 

  115. Crevillen AG, Pumera M, Gonzalez MC et al (2009) Towards lab-on-a-chip approaches in real analytical domains based on microfluidic chips/electrochemical multi-walled carbon nanotube platforms. Lab Chip 9(2):346–353

    Article  CAS  Google Scholar 

  116. Hervas M, Lopez MA, Escarpa A (2011) Integrated electrokinetic magnetic bead-based electrochemical immunoassay on microfluidic chips for reliable control of permitted levels of zearalenone in infant foods. Analyst 136(10):2131–2138

    Article  CAS  Google Scholar 

  117. Kovaehev N, Canals A, Escarpa A (2010) Fast and selective microfluidic chips for electrochemical antioxidant sensing in complex samples. Anal Chem 82(7):2925–2931

    Article  CAS  Google Scholar 

  118. Shiddiky MJA, Park H, Shim YB (2006) Direct analysis of trace phenolics with a microchip: in-channel sample preconcentration, separation, and electrochemical detection. Anal Chem 78(19):6809–6817

    Article  CAS  Google Scholar 

  119. Fritsch I, Aguilar ZP (2007) Advantages of downsizing electrochemical detection for DNA assays. Anal Bioanal Chem 387(1):159–163

    Article  CAS  Google Scholar 

  120. Yang SY, DeFranco JA, Sylvester YA et al (2009) Integration of a surface-directed microfluidic system with an organic electrochemical transistor array for multi-analyte biosensors. Lab Chip 9(5):704–708

    Article  CAS  Google Scholar 

  121. Zhang Q, Jagannathan L, Subramanian V (2010) Label-free low-cost disposable DNA hybridization detection systems using organic TFTS. Biosens Bioelectron 25(5):972–977

    Article  CAS  Google Scholar 

  122. Sharma S, Buchholz K, Luber SM et al (2006) Silicon-on-insulator microfluidic device with monolithic sensor integration for μTAS applications. J Microelectromech Syst 15(2):308–313

    Article  CAS  Google Scholar 

  123. Shin KS, Lee SW, Han KC et al (2007) Amplification of fluorescence with packed beads to enhance the sensitivity of miniaturized detection in microfluidic chip. Biosens Bioelectron 22(9–10):2261–2267

    Article  CAS  Google Scholar 

  124. Mecomber JS, Stalcup AM, Hurd D et al (2006) Analytical performance of polymer-based microfluidic devices fabricated by computer numerical controlled machining. Anal Chem 78(3):936–941

    Article  CAS  Google Scholar 

  125. Darain F, Gan KL, Tjin SC (2009) Antibody immobilization on to polystyrene substrate – on-chip immunoassay for horse IgG based on fluorescence. Biomed Microdevices 11(3):653–661

    Article  CAS  Google Scholar 

  126. Matsubara Y, Murakami Y, Kobayashi M et al (2004) Application of on-chip cell cultures for the detection of allergic response. Biosens Bioelectron 19(7):741–747

    Article  CAS  Google Scholar 

  127. Chandrasekaran A, Acharya A, You JL et al (2007) Hybrid integrated silicon microfluidic platform for fluorescence based biodetection. Sensors 7(9):1901–1915

    Article  Google Scholar 

  128. Al Lawati HAJ, Suliman FEO, Al Kindy SMZ et al (2010) Enhancement of on chip chemiluminescence signal intensity of tris(1,10-phenanthroline)-ruthenium(ii) peroxydisulphate system for analysis of chlorpheniramine maleate in pharmaceutical formulations. Talanta 82(5):1999–2002

    Article  CAS  Google Scholar 

  129. Lv Y, Zhang Z, Chen F (2002) Chemiluminescence biosensor chip based on a microreactor using carrier air flow for determination of uric acid in human serum. Analyst 127(9):1176–1179

    Article  CAS  Google Scholar 

  130. Thongchai W, Liawruangath B, Liawruangrath S et al (2010) A microflow chemiluminescence system for determination of chloramphenicol in honey with preconcentration using a molecularly imprinted polymer. Talanta 82(2):560–566

    Article  CAS  Google Scholar 

  131. Heyries KA, Loughran MG, Hoffmann D et al (2008) Microfluidic biochip for chemiluminescent detection of allergen-specific antibodies. Biosens Bioelectron 23(12):1812–1818

    Article  CAS  Google Scholar 

  132. Hosono H, Satoh W, Fukuda J et al (2007) On-chip handling of solutions and electrochemiluminescence detection of amino acids. Sens Actuators B Chem 122(2):542–548

    Article  CAS  Google Scholar 

  133. Hosono H, Satoh W, Fukuda J et al (2007) Microanalysis system based on electrochemiluminescence detection. Sens Mater 19(4):191–201

    CAS  Google Scholar 

  134. Roda A, Guardigli M, Michelini E et al (2009) Bioluminescence in analytical chemistry and in vivo imaging. Trends Analyt Chem 28(3):307–322

    Article  CAS  Google Scholar 

  135. Tran TH, Chang WJ, Kim YB et al (2007) The effect of fluidic conditions on the continuous-flow bioluminescent detection of ATP in a microfluidic device. Biotechnol Bioprocess Eng 12(5):470–474

    Article  CAS  Google Scholar 

  136. Maehana K, Tani H, Kamidate T (2006) On-chip genotoxic bioassay based on bioluminescence reporter system using three-dimensional microfluidic network. Anal Chim Acta 560(1–2):24–29

    Article  CAS  Google Scholar 

  137. Liu J, Eddings MA, Miles AR et al (2009) In situ microarray fabrication and analysis using a microfluidic flow cell array integrated with surface plasmon resonance microscopy. Anal Chem 81(11):4296–4301

    Article  CAS  Google Scholar 

  138. Escobedo C, Vincent S, Choudhury AIK et al (2011) Integrated nanohole array surface plasmon resonance sensing device using a dual-wavelength source. J Micromech Microeng 21(11)

    Google Scholar 

  139. Hsu WT, Hsieh WH, Cheng SF et al (2011) Integration of fiber optic-particle plasmon resonance biosensor with microfluidic chip. Anal Chim Acta 697(1–2):75–82

    Article  CAS  Google Scholar 

  140. Huang C, Bonroy K, Reekmans G et al (2009) Localized surface plasmon resonance biosensor integrated with microfluidic chip. Biomed Microdevices 11(4):893–901

    Article  CAS  Google Scholar 

  141. Okan M, Balci O, Kocabas C (2011) A microfluidic based differential plasmon resonance sensor. Sens Actuators B Chem 160(1):670–676

    Article  CAS  Google Scholar 

  142. Hiep HM, Nakayama T, Saito M et al (2008) A microfluidic chip based on localized surface plasmon resonance for real-time monitoring of antigen-antibody reactions. Jpn J Appl Phys 47(2 Pt 2):1337–1341

    Article  CAS  Google Scholar 

  143. Chien WY, Khalid MZ, Hoa XD et al (2009) Monolithically integrated surface plasmon resonance sensor based on focusing diffractive optic element for optofluidic platforms. Sens Actuators B Chem 138(2):441–445

    Article  CAS  Google Scholar 

  144. Huang C, Bonroy K, Reekman G et al (2009) An on-chip localized surface plasmon resonance-based biosensor for label-free monitoring of antigen-antibody reaction. Microelectron Eng 86(12):2437–2441

    Article  CAS  Google Scholar 

  145. Hemmi A, Usui T, Moto A et al (2011) A surface plasmon resonance sensor on a compact disk-type microfluidic device. J Sep Sci 34(20):2913–2919

    Article  CAS  Google Scholar 

  146. Ashok PC, Singh GP, Tan KM et al (2010) Fiber probe based microfluidic raman spectroscopy. Opt Express 18(8):7642–7649

    Article  CAS  Google Scholar 

  147. Lim C, Hong J, Chung BG et al (2010) Optofluidic platforms based on surface-enhanced Raman scattering. Analyst 135(5):837–844

    Article  CAS  Google Scholar 

  148. Quang LX, Lim C, Seong GH et al (2008) A portable surface-enhanced Raman scattering sensor integrated with a lab-on-a-chip for field analysis. Lab Chip 8(12):2214–2219

    Article  CAS  Google Scholar 

  149. Ackermann KR, Henkel T, Popp J (2007) Quantitative online detection of low-concentrated drugs via a sers microfluidic system. Chemphyschem 8(18):2665–2670

    Article  CAS  Google Scholar 

  150. Chen L, Choo J (2008) Recent advances in surface-enhanced Raman scattering detection technology for microfluidic chips. Electrophoresis 29(9):1815–1828

    Article  CAS  Google Scholar 

  151. Chandrasekaran A, Packirisamy M (2006) Absorption detection of enzymatic reaction using optical microfluidics based intermittent flow microreactor system. IEE Proc Nanobiotechnol 153(6):137–143

    Article  CAS  Google Scholar 

  152. Gordon R, Sinton D, Kavanagh KL et al (2008) A new generation of sensors based on extraordinary optical transmission. Acc Chem Res 41(8):1049–1057

    Article  CAS  Google Scholar 

  153. Zhao L, Cheng P, Li J et al (2009) Analysis of nonadherent apoptotic cells by a quantum dots probe in a microfluidic device for drug screening. Anal Chem 81(16):7075–7080

    Article  CAS  Google Scholar 

  154. Stewart ME, Yao J, Maria J et al (2009) Multispectral thin film biosensing and quantitative imaging using 3D plasmonic crystals. Anal Chem 81(15):5980–5989

    Article  CAS  Google Scholar 

  155. Luan L, Evans RD, Jokerst NM et al (2008) Integrated optical sensor in a digital microfluidic platform. IEEE Sens J 8(5):628–635

    Article  CAS  Google Scholar 

  156. Fang X, Liu Y, Kong J et al (2010) Loop-mediated isothermal amplification integrated on microfluidic chips for point-of-care quantitative detection of pathogens. Anal Chem 82(7):3002–3006

    Article  CAS  Google Scholar 

  157. Lagally ET, Simpson PC, Mathies RA (2000) Monolithic integrated microfluidic DNA amplification and capillary electrophoresis analysis system. Sens Actuators B Chem 63(3):138–146

    Article  CAS  Google Scholar 

  158. Nguyen TH, Pei R, Qiu C et al (2009) An aptameric microfluidic system for specific purification, enrichment, and mass spectrometric detection of biomolecules. J Microelectromech Syst 18(6):1198–1207

    Article  CAS  Google Scholar 

  159. Wei H, Li H, Mao S et al (2011) Cell signaling analysis by mass spectrometry under coculture conditions on an integrated microfluidic device. Anal Chem 83(24):9306–9313

    Article  CAS  Google Scholar 

  160. Bai HY, Lin SL, Chan SA et al (2010) Characterization and evaluation of two-dimensional microfluidic chip-HPLC coupled to tandem mass spectrometry for quantitative analysis of 7-aminoflunitrazepam in human urine. Analyst 135(10):2737–2742

    Article  CAS  Google Scholar 

  161. Thorslund S, Lindberg P, Andrén PE et al (2005) Electrokinetic-driven microfluidic system in poly(dimethylsiloxane) for mass spectrometry detection integrating sample injection, capillary electrophoresis, and electrospray emitter on-chip. Electrophoresis 26(24):4674–4683

    Article  CAS  Google Scholar 

  162. Sikanen T, Tuomikoski S, Ketola RA et al (2007) Fully microfabricated and integrated SU-8-based capillary electrophoresis-electrospray ionization microchips for mass spectrometry. Anal Chem 79(23):9135–9144

    Article  CAS  Google Scholar 

  163. Lazar IM, Grym J, Foret F (2006) Microfabricated devices: a new sample introduction approach to mass spectrometry. Mass Spectrom Rev 25(4):573–594

    Article  CAS  Google Scholar 

  164. Leifheit M, Bergmann W, Greiser J (2008) Application of exchangeable biochemical reactors with oxidase-catalase-co-immobilizates and immobilized microorganisms in a microfluidic chip-calorimeter. Eng Life Sci 8(5):540–545

    Article  CAS  Google Scholar 

  165. Zhang Y, Tadigadapa S (2004) Calorimetric biosensors with integrated microfluidic channels. Biosens Bioelectron 19(12):1733–1743

    Article  CAS  Google Scholar 

  166. Waggoner PS, Tan CP, Craighead HG (2010) Microfluidic integration of nanomechanical resonators for protein analysis in serum. Sens Actuators B Chem 150(2):550–555

    Article  CAS  Google Scholar 

  167. Ricciardi C, Canavese G, Castagna R et al (2010) Integration of microfluidic and cantilever technology for biosensing application in liquid environment. Biosens Bioelectron 26(4):1565–1570

    Article  CAS  Google Scholar 

  168. Mahabadi KA, Rodriguez I, Lim CY et al (2010) Capacitively coupled contactless conductivity detection with dual top-bottom cell configuration for microchip electrophoresis. Electrophoresis 31(6):1063–1070

    CAS  Google Scholar 

  169. Pumera M, Wang J, Opekar F et al (2002) Contactless conductivity detector for microchip capillary electrophoresis. Anal Chem 74(9):1968–1971

    Article  CAS  Google Scholar 

  170. Lee H, Sun E, Ham D et al (2008) Chip-NMR biosensor for detection and molecular analysis of cells. Nat Med 14(8):869–874

    Article  CAS  Google Scholar 

  171. Mitsakakis K, Gizeli E (2011) Detection of multiple cardiac markers with an integrated acoustic platform for cardiovascular risk assessment. Anal Chim Acta 699(1):1–5

    Article  CAS  Google Scholar 

  172. Liu C, Yy M, Zg C et al (2008) Dual fluorescence/contactless conductivity detection for microfluidic chip. Anal Chim Acta 621(2):171–177

    Article  CAS  Google Scholar 

  173. Yi C, Zhang Q, Li CW et al (2006) Optical and electrochemical detection techniques for cell-based microfluidic systems. Anal Bioanal Chem 384(6):1259–1268

    Article  CAS  Google Scholar 

  174. Wellman AD, Sepaniak MJ (2007) Multiplexed, waveguide approach to magnetically assisted transport evanescent field fluoroassays. Anal Chem 79(17):6622–6628

    Article  CAS  Google Scholar 

  175. James CD, McClain J, Pohl KR et al (2010) High-efficiency magnetic particle focusing using dielectrophoresis and magnetophoresis in a microfluidic device. J Micromech Microeng 20(4)

    Google Scholar 

  176. van Lintel HTG, van De Pol FCM, Bouwstra S (1988) A piezoelectric micropump based on micromachining of silicon. Sens Actuators 15(2):153–167

    Article  Google Scholar 

  177. Pan T, McDonald SJ, Kai EM et al (2005) A magnetically driven PDMS micropump with ball check-valves. J Micromech Microeng 15(5):1021–1026

    Article  Google Scholar 

  178. Gervais L, Delamarche E (2009) Toward one-step point-of-care immunodiagnostics using capillary-driven microfluidics and PDMS substrates. Lab Chip 9(23):3330–3337

    Article  CAS  Google Scholar 

  179. Martinez AW, Phillips ST, Whitesides GM et al (2010) Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem 82(1):3–10

    Article  CAS  Google Scholar 

  180. Nie Z, Nijhuis CA, Gong J et al (2010) Electrochemical sensing in paper-based microfluidic devices. Lab Chip 10(4):477–483

    Article  CAS  Google Scholar 

  181. Carvalhal RF, Kfouri MS, De Piazetta MHO et al (2010) Electrochemical detection in a paper-based separation device. Anal Chem 82(3):1162–1165

    Article  CAS  Google Scholar 

  182. Iijima S (1991) Helical microtubes of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  183. Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-mm diameter. Nature 363:603–605

    Article  CAS  Google Scholar 

  184. Thess A, Lee R, Nikolaev H et al (1998) Crystalline ropes of metallic carbon nanotubes. Science 273:483–487

    Article  Google Scholar 

  185. Yacaman M, Yoshida M, Rendon L et al (1993) Catalytic growth of carbon microtubules with fullerene structure. Appl Phys Lett 62:202–204

    Article  Google Scholar 

  186. Bethune D, Kiang C, de Vries M et al (1993) Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363:605–607

    Article  CAS  Google Scholar 

  187. Ci L, Rao Z, Zhou Z et al (2002) Double wall carbon nanotubes promoted by sulfur in a floating iron catalyst CVD system. Chem Phys Lett 359:63–67

    Article  CAS  Google Scholar 

  188. Lehman J, Terrones M, Mansfield E et al (2011) Evaluating the characteristics of multiwall carbon nanotubes. Carbon 49:2581–2602

    Article  CAS  Google Scholar 

  189. Popov V (2004) Carbon nanotubes: properties and application. Mat Sci Eng R Rep 43:61–102

    Article  CAS  Google Scholar 

  190. Burghard M (2005) Electronic and vibrational properties of chemically modified single-wall carbon nanotubes. Surf Sci Rep 58:1–109

    CAS  Google Scholar 

  191. Krueger A (2010) Carbon materials and nanotechnology. Wiley, Weinheim, pp 123–281

    Book  Google Scholar 

  192. Harris P (2009) Carbon nanotube science. Synthesis, properties and applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  193. Ye J-S, Shen F-S (2007) Carbon nanotube-based sensor. In: Kumar C (ed) Nanomaterials for biosensors. Wiley, Weinheim

    Google Scholar 

  194. Fam D, Palaniappan A, Tok A (2011) A review on the technological aspects influencing commercialization of carbon nanotube sensors. Sens Actuators B Chem 157:1–7

    Article  CAS  Google Scholar 

  195. Vashist S, Zheng D, Al-Rubeaan K et al (2011) Advances in carbon nanotube based electrochemical sensors for bioanalytical applications. Biotechnol Adv 29:169–188

    Article  CAS  Google Scholar 

  196. Yanez-Sedeno P, Pingarron J, Riu J et al (2010) Electrochemical sensing based on carbon nanotubes. Trends Analyt Chem 29:939–953

    Article  CAS  Google Scholar 

  197. Saito R, Fujita M, Dresselhaus G et al (1992) Electronic structure of chiral graphene tubules. Appl Phys Lett 60:2204–2206

    Article  CAS  Google Scholar 

  198. Phanthong C, Somasundrum M (2009) Enhanced sensitivity of 4-chlorophenol detection by the use of nitrobenzene as a liquid membrane over a carbon nanotube-modified glassy carbon electrode. Electroanalysis 20:1024–1027

    Article  CAS  Google Scholar 

  199. Wang J, Mussameh M, Lin Y (2003) Solubilization of carbon nanotubes by nafion toward the preparation of amperometric biosensors. J Am Chem Soc 125:2408–2409

    Article  CAS  Google Scholar 

  200. Wang J, Musameh M (2003) Carbon nanotube/teflon composite electrochemical sensors and biosensors. Anal Chem 75:2075–2079

    Article  CAS  Google Scholar 

  201. Wang Z, Liu J, Liang Q et al (2002) Carbon nanotube-modified electrodes for the simultaneous determination of dopamine and ascorbic acid. Analyst 127:653–658

    Article  CAS  Google Scholar 

  202. Rubianes M, Rivas G (2003) Carbon nanotubes paste electrode. Electrochem Commun 5:689–694

    Article  CAS  Google Scholar 

  203. Wang J, Li M, Shi Z et al (2002) Electrocatalytic oxidation of norepinephrine at a glassy carbon electrode modified with single wall carbon nanotubes. Electroanalysis 14:225–230

    Article  CAS  Google Scholar 

  204. Banks C, Compton R (2006) New elements from old: from carbon nanotubes to edge plane pyrolytic graphite. Analyst 131:15–21

    Article  CAS  Google Scholar 

  205. Gooding J, Wibowo R, Lin J et al (2003) Protein electrochemistry using aligned carbon nanotube arrays. J Am Chem Soc 125:9006–9007

    Article  CAS  Google Scholar 

  206. Davies J, Coles R, Hill H (1997) Protein electrochemistry at carbon nanotube electrodes. J Electroanal Chem 440:279–282

    Article  Google Scholar 

  207. Zhao G, Zhang L, Wei X et al (2003) Myoglobin on multi-walled carbon nanotubes modified electrode: direct electrochemistry and electrocatalysis. Electrochem Commun 5:825–829

    Article  CAS  Google Scholar 

  208. Wang L, Wang J, Zhou F (2004) Direct electrochemistry of catalase at a gold electrode modified with single-wall carbon nanotubes. Electroanalysis 16:627–632

    Article  CAS  Google Scholar 

  209. Patolsky F, Weizmann Y, Willner I et al (2004) Long-range electrical contacting of redox enzymes by SWCNT connectors. Angew Chem Int Ed 43:2113–2117

    Article  CAS  Google Scholar 

  210. Star A, Stoddart J, Steurman D et al (2001) Preparation and properties of polymer-wrapped single-walled carbon nanotubes. Angew Chem Int Ed 40:1721–1775

    Article  CAS  Google Scholar 

  211. Riggs J, Guo Z, Carroll D et al (2000) Strong luminescence of solubilized carbon nanotubes. J Am Chem Soc 122:5879–5880

    Article  CAS  Google Scholar 

  212. Manne S, Cleveland J, Gaub H (1994) Direct visualization of surfactant hemimicelles by force microscopy of the electrical double layer. Langmuir 10:4409–4413

    Article  CAS  Google Scholar 

  213. Islam M, Rojas E, Bergey D et al (2003) High weight fraction surfactant solubilization of single-wall nanotubes in water. Nano Lett 3:269–273

    Article  CAS  Google Scholar 

  214. Yan Y, Zhang M, Gong K et al (2005) Adsorption of methylene blue dye onto carbon nanotubes:? A route to an electrochemically functional nanostructure and its layer-by-layer assembled nanocomposite. Chem Mater 17:3457–3463

    Article  CAS  Google Scholar 

  215. Palangsuntikul R, Somasundrum M, Surareungchai W (2000) Kinetic and analytical comparison of horseradish peroxidase on bare and redox-modified single-walled carbon nanotubes. Electrochim Acta 56:470–475

    Article  CAS  Google Scholar 

  216. Liu C-H, Li J-J, Zhang H-L et al (2008) Structure dependent interaction between organic dyes and carbon nanotubes. Colloids Surf A 313–314:9–12

    Article  CAS  Google Scholar 

  217. Hirsch A, Vostrowsky O (2005) Functionalization of carbon nanotubes. Top Curr Chem 245:193–237

    CAS  Google Scholar 

  218. Tasis D, Tagmatarchis N, Bianco A (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136

    Article  CAS  Google Scholar 

  219. Prato M, Kostarelos K, Bianco A (2008) Functionalized carbon nanotubes in drug design and discovery. Acc Chem Res 41:60–68

    Article  CAS  Google Scholar 

  220. Tsang S, Chen Y, Harris P et al (1994) A simple chemical method of opening and filling carbon nanotubes. Nature 372:159–162

    Article  CAS  Google Scholar 

  221. Hiura H, Ebbesen T, Tanigaki K (1995) Opening and purification of carbon nanotubes in high yields. Adv Mater 7:275–276

    Article  CAS  Google Scholar 

  222. Chen J, Hamon M, Hu H et al (1998) Solution properties of single-walled carbon nanotubes. Science 282:95–98

    Article  CAS  Google Scholar 

  223. Liu J, Rinzler A, Dai H et al (1998) Fullerene pipes. Science 280:1253–1256

    Article  CAS  Google Scholar 

  224. Coleman K, Chakraborty A, Bailey S et al (2007) Iodination of single-walled carbon nanotubes. Chem Mater 19:1076–1081

    Article  CAS  Google Scholar 

  225. Aizawa M, Shaffer M (2003) Silylation of multi-walled carbon nanotubes. Chem Phys Lett 368:121–124

    Article  CAS  Google Scholar 

  226. Mickelson E, Huffman C, Rinnzler A (1998) Fluorination of single-wall carbon nanotubes. Chem Phys Lett 296:188–194

    Article  CAS  Google Scholar 

  227. Holzinger M, Vostrowsky O, Hirsch A (2001) Sidewall functionalization of carbon nanotubes. Angew Chem Int Ed 40:4002–4005

    Article  CAS  Google Scholar 

  228. Holzinger M, Abraham J, Whelan P (2003) Functionalization of single-walled carbon nanotubes with R-oxycarbonyl nitrenes. J Am Chem Soc 125:8566–8580

    Article  CAS  Google Scholar 

  229. Georgakilas V, Kordatos K, Prato M (2002) Organic functionalization of carbon nanotubes. J Am Chem Soc 124:760–761

    Article  CAS  Google Scholar 

  230. Banerjee S, Wong S (2002) Rational sidewall functionalization and purification of single-walled carbon nanotubes by solution-phase ozonolysis. J Phys Chem B 106:12144–12151

    Article  CAS  Google Scholar 

  231. Hemraj-Benny T, Wong S (2006) Silylation of single-walled carbon nanotubes. Chem Mater 18:4827–4839

    Article  CAS  Google Scholar 

  232. Bahr J, Yang J, Kosynkin D et al (2001) Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: a bucky paper electrode. J Am Chem Soc 123:6536–6542

    Article  CAS  Google Scholar 

  233. Tsang S, Davis J, Green M et al (1995) Immobilization of small proteins in carbon nanotubes: high resolution transmission electron microscopy study and catalytic activity. Chem Commun 1803–1804

    Google Scholar 

  234. Davis J, Green M, Hill H et al (1998) The immobilization of proteins in carbon nanotubes. Inorg Chim Acta 272:261–266

    Article  CAS  Google Scholar 

  235. Feng W, Ji P (2011) Enzymes immobilized on carbon nanotubes. Biotechnol Adv. doi:101016/jbiotechadv201107007

  236. Cui D (2007) Advances and prospects on biomolecules functionalized carbon nanotubes. J Nanosci Nanotechnol 7:1298–1314

    Article  CAS  Google Scholar 

  237. Matsuura K, Saito T, Okazaki T et al (2006) Selectivity of water-soluble proteins in single-walled carbon nanotube dispersions. Chem Phys Lett 429:497–502

    Article  CAS  Google Scholar 

  238. Nepal D, Geckeler K (2006) PH-sensitive dispersion and debundling of single-walled carbon nanotubes: lysozyme as a tool. Small 2:406–412

    Article  CAS  Google Scholar 

  239. Yu C, Yen M, Chen L (2010) A bioanode based on MWCNT/protein assisted co-immobilization of glucose oxidase and 2,5-dihydroxybenzaldehyde for glucose fuel cells. Biosens Bioelectron 25:2515–2521

    Article  CAS  Google Scholar 

  240. Das D, Das P (2009) Superior activity of strucurally deprived enzyme-carbon nanotube hybrids in cationic reverse micelles. Langmuir 25:2515–2521

    Google Scholar 

  241. Lee C, Tsai Y (2009) Preparation of multiwalled carbon nanotube-chitosan-alcohol dehydrogenase nanobiocomposite for amperometric detection of ethanol. Sens Actuators B 138:518–523

    Article  CAS  Google Scholar 

  242. Lee K, Komathi S, Nam N et al (2010) Sulfonated polyaniline network grafted multiwall carbon nanotubes for enzyme immobilization, direct electrochemistry and biosensing of glucose. Microchem J 95:74–79

    Article  CAS  Google Scholar 

  243. Wu X, Zhao B, Wu P et al (2009) Effects of ionic liquids on enzymatic catalysis of the glucose oxidase toward the oxidation of glucose. J Phys Chem B 113:13365–13373

    Article  CAS  Google Scholar 

  244. Panhius M, Salvador-Morales C, Franklin E et al (2003) Characterization of an interaction between functionalized carbon nanotubes and an enzyme. J Nanosci Nanotechnol 3:209–213

    Article  CAS  Google Scholar 

  245. Decher G (1997) Fuzzy nanoassemblies. Towards layered polymeric multicomposites. Science 277:1232–1237

    Article  CAS  Google Scholar 

  246. Nagoka Y, Shiratori S, Einaga Y (2008) Photo-control of adhesion properties by detachment of the outermost layer in layer-by-layer assembled multilayer films of preyssler-type polyoxometalate and polyethyleneimine. Chem Mater 20:4004–4010

    Article  CAS  Google Scholar 

  247. Wang Y, Joshi P, Hobbs K (2006) Nanostructured biosensors built by layer-by-layer electrostatic assembly of enzyme-coated single-walled carbon nanotubes and redox polymers. Langmuir 22:9776–9783

    Article  CAS  Google Scholar 

  248. Bi S, Zhou H, Zhang S (2009) Multilayers enzyme-coated carbon nanotubes as biolabel for ultrasensitive chemiluminescence immunoassy of cancer biomarker. Biosens Bioelectron 24:2961–2966

    Article  CAS  Google Scholar 

  249. Munge B, Liu G, Collins G et al (2005) Multiple enzyme layers on carbon nanotubes for electrochemical detection down to 80 DNA copies. Anal Chem 77:4662–4666

    Article  CAS  Google Scholar 

  250. Huang W, Taylor S, Fu K et al (2002) Attaching proteins to carbon nanotubes via diimide-activated amide-activated amidation. Nano Lett 2:311–314

    Article  CAS  Google Scholar 

  251. Pang H, Liu J, Hu D et al (2010) Immobilization of laccase onto l-aminopyrene functionalized carbon nanotubes and their electrocatalytic activity for oxygen reduction. Electrochim Acta 55:6611–6616

    Article  CAS  Google Scholar 

  252. Kim B, Kang B, Bahk Y et al (2009) Immobilization of horseradish peroxidase on multi-walled carbon nanotubes and its enzymatic stability. Curr Appl Phys 9:e263–e265

    Article  Google Scholar 

  253. Teker K, Sirdeshmukh R, Sivakumar K et al (2005) Applications of carbon nanotubes for cancer research. Nanobiotechnology 1:171–182

    Article  CAS  Google Scholar 

  254. Liu G, Chen H, Peng H et al (2011) A carbon nanotube-based highly-sensitive electrochemical immunosensor for rapid and portable detection of clenbuterol. Biosens Bioelectron. doi:101016/jbios201107037

  255. O’Conor M, Kim S, Killard A et al (2004) Mediated amperometric immunoassay using single walled carbon nanotube forests. Analyst 129:1176–1180

    Article  CAS  Google Scholar 

  256. Villamizar R, Maroto A, Ruis F et al (2008) Fast detection of Salmonella infantis with carbon nanotube field effect transistors. Biosens Bioelectron 24:279–283

    Article  CAS  Google Scholar 

  257. Chunglok W, Khownarumit P, Rijiravanich P et al (2011) Electrochemical immunoassay platform for high sensitivity protein detection based on redox-modified carbon nanotube labels. Analyst 136:2969–2974

    Article  CAS  Google Scholar 

  258. Leng C, Wu J, Xu Q et al (2011) A highly sensitive disposable immunosensor through direct electro-oxidation of oxygen catalyzed by palladium nanoparticle decorated carbon nanotube label. Biosens Bioelectron 27:71–76

    Article  CAS  Google Scholar 

  259. Liu S, Lin Q, Zhang X et al (2011) Electrochemical immunosensor for salbutamol detection based on CS-Fe3O4-PAMAM-GNPS nanocomposites and HRP-MWCNTS-Ab bioconjugates for signa amplification. Sens Actuators B Chem 156:71–78

    Article  CAS  Google Scholar 

  260. Shao N, Lu S, Wickstrom E et al (2007) Integrated molecular targeting of IGF1R and HER2 surface receptors and destruction of breast cancer cells using single wall carbon nanotubes. Nanotechnology 18:315101

    Article  CAS  Google Scholar 

  261. Zheng M, Jagota A, Strano M et al (2003) DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater 2:338–342

    Article  CAS  Google Scholar 

  262. Heller D, Jeng E, Yeung T et al (2006) Optical detection of DNA conformational polymorphism on single-walled carbon nanotubes. Science 311:508–511

    Article  CAS  Google Scholar 

  263. Jeng E, Moll A, Roy A et al (2006) Detection of DNA hybridization using the near-infrared band-gap fluorescence of single-walled carbon nanotubes. Nano Lett 6:371–375

    Article  CAS  Google Scholar 

  264. Dwyer C, Guthold M, Falvo M et al (2002) DNA-functionalized single-walled carbon nanotubes. Nanotechnology 13:601–604

    Article  CAS  Google Scholar 

  265. He P, Li S, Dai L et al (2005) DNA-modified carbon nanotubes for self-assembling and biosensing applications. Synth Met 154:17–20

    Article  CAS  Google Scholar 

  266. Wang J, Liu G, Jan M (2004) Ultrasensitive electrical biosensing of proteins and DNA: carbon nanotube derived amplification of the recognition and transduction events. J Am Chem Soc 126:3010–3011

    Article  CAS  Google Scholar 

  267. Agui L, Yanez-Sedeno P, Pingarron JM (2008) Role of carbon nanotubes in electroanalytical chemistry. A review. Anal Chim Acta 622:11–47

    Article  CAS  Google Scholar 

  268. Guo M, Chen J, Li J et al (2005) Fabrication of polyaniline/carbon nanotube composite modified electrode and its electrocatalytic property to the reduction of nitrite. Anal Chim Acta 532:71–77

    Article  CAS  Google Scholar 

  269. Li Y, Wang P, Wang L et al (2007) Overoxidized polypyrrole film directed single-walled carbon nanotubes immobilization on glassy carbon electrode and its sensing applications. Biosens Bioelectron 22:3120–3125

    Article  CAS  Google Scholar 

  270. Tang Q, Luo X, Wen R (2005) Construction of a heteropolyanion-containing polypyrrole/carbon nanotube modified electrode and its electrocatalytic property. Anal Lett 38:1445–1456

    Article  CAS  Google Scholar 

  271. Lin X, Li Y (2006) A sensitive determination of estrogens with a Pt nano-clusters/multi-walled carbon nanotubes modified glassy carbon electrode. Biosens Bioelectron 22:253–259

    Article  CAS  Google Scholar 

  272. Yuan PS, Wu HQ, Xu HY et al (2007) Synthesis characterization and electrocatalytic properties of FeCo alloy nanoparticles supported on carbon nanotubes. Mater Chem Phys 105:391–394

    Article  CAS  Google Scholar 

  273. Yang P, Wei W, Tao C (2007) Determination of trace thiocyanate with nano-silver coated multi-walled carbon nanotubes modified glassy carbon electrode. Anal Chim Acta 585:331–336

    Article  CAS  Google Scholar 

  274. Dai X, Wildgoose GG, Compton RG (2006) Designer electrode interfaces simultaneously comprising three different metal nanoparticle (Au, Ag, Pd)/carbon microsphere/carbon nanotube composites: progress towards combinatorial electrochemistry. Analyst 131:1241–1247

    Article  CAS  Google Scholar 

  275. Liu H, Wang G, Chen D et al (2008) Fabrication of polythionine/NPAu/MWNTs modified electrode for simultaneous determination of adenine and guanine in DNA. Sens Actuators B Chem 128:414–421

    Article  CAS  Google Scholar 

  276. Valentini F, Amine A, Orlanducci S et al (2003) Carbon nanotube purification: preparation and characterization of carbon nanotube paste electrodes. Anal Chem 75:5413–5421

    Article  CAS  Google Scholar 

  277. Abbar JC, Malode SJ, Nandibewoor ST (2012) Electrochemical detection of a hemorheologic drug pentoxifylline at a multi-walled carbon nanotube paste electrode. Bioelectrochemistry 83:1–7

    Article  CAS  Google Scholar 

  278. Zheng L, Song J (2007) Voltammetric behaviour of urapidil and its determination at multi-wall carbon nanotube paste electrode. Talanta 73:943–947

    Article  CAS  Google Scholar 

  279. Arvand M, Ansari R, Heydari L (2011) Electrocatalyic oxidation and differential pulse voltammetric detection of sulfamethoxazole using carbon nanotube paste electrode. Mat Sci Eng C 31:1819–1825

    Article  CAS  Google Scholar 

  280. Malode SJ, Shetti NP, Nandibewoor ST (2012) Voltammetric behaviour of theophylline and its determination at multi-wall carbon nanotube paste electrode. Colloids Surf B Biointerfaces 97:1–6

    Article  CAS  Google Scholar 

  281. Lawrence NS, Deo RP, Wang J (2004) Determination of homocysteine at carbon nanotube paste electrodes. Talanta 63:443–449

    Article  CAS  Google Scholar 

  282. Tavana T, Khalilzadeh MA, Karimi-Maleh H et al (2012) Sensitive voltammetric determination of epinephrine in the presence of acetaminophen at a novel ionic liquid modified carbon nanotubes paste electrode. J Mol Liq 168:69–74

    Article  CAS  Google Scholar 

  283. Mazloum-Ardakani M, Ganjipour B, Beitollahi H et al (2011) Simultaneous determination of levodopa, carbidopa and tryptophan using nanostructured electrochemical sensor based on novel hydroquinone and carbon nanotubes: application to the analysis of some real samples. Electrochim Acta 56:9113–9120

    Article  CAS  Google Scholar 

  284. Beitollahi H, Sheikhshoaie I (2011) Electrocatalytic and simultaneous determination of isoproterenol uric acid and folic acid at molybdenum (VI) complex-carbon nanotube paste electrode. Electrochim Acta 56:10259–10263

    Article  CAS  Google Scholar 

  285. Patrascu D, David I, David V et al (2011) Selective voltammetric determination of electroactive neuromodulating species in biological samples using iron (III) phthalocyanine modified multi-wall carbon nanotubes paste electrode. Sens Actuators B Chem 156:731–736

    Article  CAS  Google Scholar 

  286. Balan I, David IG, David V et al (2011) Electrocatalytic voltammetric determination of guanine at a cobalt phthalocyanine modified carbon nanotubes paste electrode. J Electroanal Chem 654:8–12

    Article  CAS  Google Scholar 

  287. Zheng L, Song J-F (2009) Nickel (II)-baicalein complex modified multiwall carbon nanotube paste electrode and its electrcatalytic oxidation toward glycine. Anal Biochem 391:56–63

    Article  CAS  Google Scholar 

  288. Shahrokhian S, Kamazadeh Z, Bezaatpour A et al (2008) Differential pulse voltammetric determination of N-acetylcysteine by the electrocatalytic oxidation at the surface of carbon nanotube-paste electrode modified with cobalt salophen complexes. Sens Actuators B Chem 133:599–606

    Article  CAS  Google Scholar 

  289. Qu J, Zou X, Liu B et al (2007) Assembly of polyoxmetalates on carbon nanotubes paste electrode and its catalytic behaviours. Anal Chim Acta 599:51–57

    Article  CAS  Google Scholar 

  290. Antiochia R, Gorton L (2007) Development of a carbon nanotube paste electrode osmium polymer-mediated biosensor for determination of glucose in alcoholic beverages. Biosens Bioelectron 22:2611–2617

    Article  CAS  Google Scholar 

  291. Pereira AC, Aguiar M, Kisner A et al (2007) Amperometric biosensor for lactate based on lactate dehydrogenase and meldola blue coimmobilized on multi-wall carbon nanotube. Sens Actuators B Chem 124:269–276

    Article  CAS  Google Scholar 

  292. Janegitz BC, Marcolino-Junior LH, Campana-Filho SP et al (2009) Anodic stripping voltammetric determination of copper (II) using a functionalized carbon nanotubes paste electrode modified with crosslinked chitosan. Sens Actuators B Chem 142:260–266

    Article  CAS  Google Scholar 

  293. Tashkhourian J, Nezhad MRH, Khodavesi J et al (2009) Silver nanoparticles modified carbon nanotube paste electrode for simultaneous determination of dopamine and ascorbic acid. J Electroanal Chem 633:85–91

    Article  CAS  Google Scholar 

  294. Merisalu M, Kruusma J, Banks CE (2010) Metallic impurity free carbon nanotube paste electrodes. Electrochem Commun 12:144–147

    Article  CAS  Google Scholar 

  295. Wang J, Musameh M (2004) Screen-printed carbon nanotube paste electrodes. Analyst 129:512–515

    Article  CAS  Google Scholar 

  296. Chattopadhyay D, Galeska I, Papadimitrakopoulos F (2001) Metal-assisted organization of shortened carbon nanotubes in monolayer and multilayer forest assemblies. J Am Chem Soc 26:9451–9452

    Article  CAS  Google Scholar 

  297. Liu Z, Shen Z, Zhu T et al (2000) Organizing single-walled carbon nanotubes on gold using a wet chemical self-assembling technique. Langmuir 16:3569–3573

    Article  CAS  Google Scholar 

  298. Kim B, Sigmund W (2003) Self-alignment of shortened multiwall carbon nanotubes on polyelectrolyte layers. Langmuir 19:4848–4851

    Article  CAS  Google Scholar 

  299. Wu B, Zhang J, Zhong W (2001) Chemical alignment of oxidatively shortened single-walled carbon nanotubes on silver surface. J Phys Chem B 105:5075–5078

    Article  CAS  Google Scholar 

  300. Yang Y, Huang S, He H et al (1999) Patterned growth of well-aligned carbon nanotubes: a photolithographic approach. J Am Chem Soc 121:10832–10833

    Article  CAS  Google Scholar 

  301. Chen G (2007) Carbon nanotube and diamond as electrochemical detectors in microchip and conventional capillary electrophoresis. Talanta 74:326–332

    Article  CAS  Google Scholar 

  302. Wang J, Chen G, Chatrathi M et al (2004) Capillary electrophoresis microchip with a carbon nanotube-modified electrochemical detector. Anal Chem 76:298–302

    Article  CAS  Google Scholar 

  303. Panini N, Messina G, Salinas E et al (2008) Integrated microfluidic systems with an immunosensor modified with carbon nanotubes for detection of prostate specific antigen (PSA) in human serum samples. Biosens Bioelectron 23:1145–1151

    Article  CAS  Google Scholar 

  304. Shi B-X, Wang Y, Zhang K et al (2011) Monitoring of dopamine release in single cell using ultrasensitive ito microsensors modified with carbon nanotubes. Biosens Bioelectron 26:2917–2921

    Article  CAS  Google Scholar 

  305. Hong C-C, Wang C-Y, Peng K-T et al (2011) A microfluidic chip plat-form with electrochemical carbon nanotubes electrodes for pre-clinical evaluation of antibiotic nanocapsules. Biosens Bioelectron 26:3620–3626

    Article  CAS  Google Scholar 

  306. Pumera M, Llopis X, Merkoci A et al (2006) Microchip capillary electrophoresis with a single-wall carbon nanotube/gold electrochemical detector for de-termination of aminophenols and neurotransmitters. Microchim Acta 152:261–265

    Article  CAS  Google Scholar 

  307. Vlakova M, Schwarz M (2007) Determination of cationic neurotransmitters and metabolites in brain homogenates by microchip electrophoresis and carbon nanotube-modified amperometry. J Chromatogr A 1142:214–221

    Article  CAS  Google Scholar 

  308. Chen G, Zhang L, Wang J (2004) Miniaturized capillary electrophoresis system with a carbon nanotube microelectrode for rapid separation and detection of thiols. Talanta 64:1018–1023

    Article  CAS  Google Scholar 

  309. Wang J, Chen G, Wang M et al (2004) Carbon-nanotube/copper composite electrodes for capillary electrophoresis microchip detection of carbohydrates. Analyst 129:512–515

    Article  CAS  Google Scholar 

  310. Snider R, Ciobanu M, Rue A et al (2008) A multiwall carbon nanotube/dihydropyran composite film electrode for insulin detection in a microphysiometer chamber. Anal Chim Acta 609:44–52

    Article  CAS  Google Scholar 

  311. Xu J, Zhang H, Chen G (2007) Carbon nanotube/polystyrene composite electrode for microchip electrophoretic determination of rutin and quercetin in flos Sophorae immaturus. Talanta 73:932–937

    Article  CAS  Google Scholar 

  312. Olive-Monllau R, Martinez-Cisneros C, Bartoli J et al (2011) Integration of a sensitive carbon nanotube composite electrode in a ceramic microanalyzer for the amperometric determination of free chlorine. Sens Actuators B Chem 151:416–422

    Article  CAS  Google Scholar 

  313. Chicharro A, Sanchez E, Bermejo A et al (2005) Carbon nanotubes paste electrodes as new detectors for capillary electrophoresis. Anal Chim Acta 543:84–91

    Article  CAS  Google Scholar 

  314. Kim J, Baek J, Kim H et al (2006) Integration of enzyme immobilised single-walled carbon nanotubes mass into the microfluidic platform and its application for the glucose detection. Sens Actuators A Phys 128:7–13

    Article  CAS  Google Scholar 

  315. Wisitsoraat A, Sritongkham P, Karuwan C et al (2010) Fast cholesterol detection using flow injection microfluidic device with functionalized carbon nanotubes based electrochemical sensor. Biosens Bioelectron 26:1514–1520

    Article  CAS  Google Scholar 

  316. Karuwan C, Wisitoraat A, Maturos T et al (2009) Flow injection based microfluidic device with carbon nanotube electrode for rapid salbutamol detection. Talanta 79:995–1000

    Article  CAS  Google Scholar 

  317. Phokharatkul D, Karuwan C, Lomas T et al (2011) AAO-CNTs electrode on microfluidic flow injection system for rapid iodide sensing. Talanta 84:1390–1395

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pornpimol Sritongkham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sritongkham, P., Wisitsoraat, A., Tuantranont, A., Somasundrum, M. (2012). Integration of CNT-Based Chemical Sensors and Biosensors in Microfluidic Systems. In: Tuantranont, A. (eds) Applications of Nanomaterials in Sensors and Diagnostics. Springer Series on Chemical Sensors and Biosensors, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/5346_2012_42

Download citation

Publish with us

Policies and ethics