Skip to main content

Monoamine Oxidase Inhibitors: From Classic to New Clinical Approaches

  • Chapter
  • First Online:
Reactive Oxygen Species

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 264))

Abstract

Monoamine oxidases (MAOs) are involved in the oxidative deamination of different amines and neurotransmitters. This pointed them as potential targets for several disorders and along the last 70 years a wide variety of MAO inhibitors have been developed as successful drugs for the treatment of complex diseases, being the first drugs approved for depression in the late 1950s. The discovery of two MAO isozymes (MAO-A and B) with different substrate selectivity and tissue expression patterns led to novel therapeutic approaches and to the development of new classes of inhibitors, such as selective irreversible and reversible MAO-B inhibitors and reversible MAO-A inhibitors. Significantly, MAO-B inhibitors constitute a widely studied group of compounds, some of them approved for the treatment of Parkinson’s disease. Further applications are under development for the treatment of Alzheimer’s disease, amyotrophic lateral sclerosis, and cardiovascular diseases, among others. This review summarizes the most important aspects regarding the development and clinical use of MAO inhibitors, going through mechanistic and structural details, new indications, and future perspectives.

Graphical Abstract

Monoamine oxidases (MAOs) catalyze the oxidative deamination of different amines and neurotransmitters. The two different isozymes, MAO-A and MAO-B, are located at the outer mitochondrial membrane in different tissues. The enzymatic reaction involves formation of the corresponding aldehyde and releasing hydrogen peroxide (H2O2) and ammonia or a substituted amine depending on the substrate. MAO’s role in neurotransmitter metabolism made them targets for major depression and Parkinson’s disease, among other neurodegenerative diseases. Currently, these compounds are being studied for other diseases such as cardiovascular ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguiar LM et al (2008) CSC, an adenosine A(2A) receptor antagonist and MAO B inhibitor, reverses behavior, monoamine neurotransmission, and amino acid alterations in the 6-OHDA-lesioned rats. Brain Res 1191:192–199

    Article  CAS  PubMed  Google Scholar 

  • Akhondzadeh S et al (2003) Selegiline in the treatment of attention deficit hyperactivity disorder in children: a double blind and randomized trial. Prog Neuropsychopharmacol Biol Psychiatry 27(5):841–845

    Article  CAS  PubMed  Google Scholar 

  • Alda M et al (2017) Methylene blue treatment for residual symptoms of bipolar disorder: randomised crossover study. Br J Psychiatry 210(1):54–60

    Article  PubMed  Google Scholar 

  • Alia-Klein N et al (2008) Brain monoamine oxidase A activity predicts trait aggression. J Neurosci 28(19):5099–5104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson MC et al (1993) Monoamine oxidase inhibitors and the cheese effect. Neurochem Res 18(11):1145–1149

    Article  CAS  PubMed  Google Scholar 

  • Bar-Am O et al (2015) Neuroprotective and neurorestorative activities of a novel iron chelator-brain selective monoamine oxidase-A/monoamine oxidase-B inhibitor in animal models of Parkinson’s disease and aging. Neurobiol Aging 36(3):1529–1542

    Article  CAS  PubMed  Google Scholar 

  • Barbiero JK et al (2011) Acute but not chronic administration of pioglitazone promoted behavioral and neurochemical protective effects in the MPTP model of Parkinson’s disease. Behav Brain Res 216(1):186–192

    Article  CAS  PubMed  Google Scholar 

  • Barone P et al (2015) A randomized clinical trial to evaluate the effects of rasagiline on depressive symptoms in non-demented Parkinson’s disease patients. Eur J Neurol 22(8):1184–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartolo M et al (2015) An explorative study regarding the effect of l-deprenyl on cognitive and functional recovery in patients after stroke. J Neurol Sci 349(1-2):117–123

    Article  CAS  PubMed  Google Scholar 

  • Berlin I et al (1995) A reversible monoamine oxidase A inhibitor (moclobemide) facilitates smoking cessation and abstinence in heavy, dependent smokers. Clin Pharmacol Ther 58(4):444–452

    Article  CAS  PubMed  Google Scholar 

  • Berry MD (1999) R-2HMP: an orally active agent combining independent antiapoptotic and MAO-B-inhibitory activities. CNS Drug Rev 5(2):105–124

    Article  CAS  Google Scholar 

  • Bette S et al (2018) Safinamide in the management of patients with Parkinson’s disease not stabilized on levodopa: a review of the current clinical evidence. Ther Clin Risk Manag 14:1737–1745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binda C et al (2002) Structure of human monoamine oxidase B, a drug target for the treatment of neurological disorders. Nat Struct Biol 9(1):22–26

    Article  CAS  PubMed  Google Scholar 

  • Binda C et al (2003) Insights into the mode of inhibition of human mitochondrial monoamine oxidase B from high-resolution crystal structures. Proc Natl Acad Sci U S A 100(17):9750–9755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binda C et al (2004) Crystal structures of monoamine oxidase B in complex with four inhibitors of the N-propargylaminoindan class. J Med Chem 47(7):1767–1774

    Article  CAS  PubMed  Google Scholar 

  • Binda C et al (2005) Binding of rasagiline-related inhibitors to human monoamine oxidases: a kinetic and crystallographic analysis. J Med Chem 48(26):8148–8154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binda C et al (2007) Structures of human monoamine oxidase B complexes with selective noncovalent inhibitors: safinamide and coumarin analogs. J Med Chem 50(23):5848–5852

    Article  CAS  PubMed  Google Scholar 

  • Binda C et al (2011a) Molecular insights into human monoamine oxidase B inhibition by the glitazone anti-diabetes drugs. ACS Med Chem Lett 3(1):39–42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Binda C et al (2011b) Interactions of monoamine oxidases with the antiepileptic drug zonisamide: specificity of inhibition and structure of the human monoamine oxidase B complex. J Med Chem 54(3):909–912

    Article  CAS  PubMed  Google Scholar 

  • Blesa J et al (2015) Oxidative stress and Parkinson’s disease. Front Neuroanat 9:91

    PubMed  PubMed Central  Google Scholar 

  • Bonato JM et al (2018) Pioglitazone reduces mortality, prevents depressive-like behavior, and impacts hippocampal neurogenesis in the 6-OHDA model of Parkinson’s disease in rats. Exp Neurol 300:188–200

    Article  CAS  PubMed  Google Scholar 

  • Bonivento D et al (2010) Potentiation of ligand binding through cooperative effects in monoamine oxidase B. J Biol Chem 285(47):36849–36856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borgohain R et al (2014) Two-year, randomized, controlled study of safinamide as add-on to levodopa in mid to late Parkinson’s disease. Mov Disord 29(10):1273–1280

    Article  CAS  PubMed  Google Scholar 

  • Borroni E et al (2017) Sembragiline: a novel, selective monoamine oxidase type B inhibitor for the treatment of Alzheimer’s disease. J Pharmacol Exp Ther 362(3):413–423

    Article  CAS  PubMed  Google Scholar 

  • Buneeva O et al (2018) The effect of neurotoxin MPTP and neuroprotector isatin on the profile of ubiquitinated brain mitochondrial proteins. Cell 7(8):91

    Article  CAS  Google Scholar 

  • Burke WJ et al (1993) L-deprenyl in the treatment of mild dementia of the Alzheimer type: results of a 15-month trial. J Am Geriatr Soc 41(11):1219–1225

    Article  CAS  PubMed  Google Scholar 

  • Cai Z (2014) Monoamine oxidase inhibitors: promising therapeutic agents for Alzheimer’s disease (Review). Mol Med Rep 9(5):1533–1541

    Article  CAS  PubMed  Google Scholar 

  • Campi N, Todeschini GP, Scarzella L (1990) Selegiline versus L-acetylcarnitine in the treatment of Alzheimer-type dementia. Clin Ther 12(4):306–314

    CAS  PubMed  Google Scholar 

  • Carta AR et al (2011) Rosiglitazone decreases peroxisome proliferator receptor-gamma levels in microglia and inhibits TNF-alpha production: new evidences on neuroprotection in a progressive Parkinson’s disease model. Neuroscience 194:250–261

    Article  CAS  PubMed  Google Scholar 

  • Caslake R et al (2009) Monoamine oxidase B inhibitors versus other dopaminergic agents in early Parkinson’s disease. Cochrane Database Syst Rev 4:CD006661

    Google Scholar 

  • Castagnoli K et al (2003) Inhibition of human MAO-A and MAO-B by a compound isolated from flue-cured tobacco leaves and its neuroprotective properties in the MPTP mouse model of neurodegeneration. Inflammopharmacology 11(2):183–188

    Article  CAS  PubMed  Google Scholar 

  • Cattaneo C et al (2018) Long-term efficacy of safinamide on Parkinson’s disease chronic pain. Adv Ther 35(4):515–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen JY et al (2013) Dopamine imbalance in Huntington’s disease: a mechanism for the lack of behavioral flexibility. Front Neurosci 7:114

    PubMed  PubMed Central  Google Scholar 

  • Chouinard G et al (1993) Brofaromine in depression: a Canadian multicenter placebo trial and a review of standard drug comparative studies. Clin Neuropharmacol 16(Suppl 2):S51–S54

    PubMed  Google Scholar 

  • Coelho Cerqueira E et al (2011) Molecular insights into human monoamine oxidase (MAO) inhibition by 1,4-naphthoquinone: evidences for menadione (vitamin K3) acting as a competitive and reversible inhibitor of MAO. Bioorg Med Chem 19(24):7416–7424

    Article  CAS  PubMed  Google Scholar 

  • Cote F et al (2004) Recent advances in understanding serotonin regulation of cardiovascular function. Trends Mol Med 10(5):232–238

    Article  CAS  PubMed  Google Scholar 

  • Croisier E et al (2005) Microglial inflammation in the Parkinsonian substantia nigra: relationship to alpha-synuclein deposition. J Neuroinflammation 2:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Curet O et al (1996) Befloxatone, a new reversible and selective monoamine oxidase-A inhibitor. I. Biochemical profile. J Pharmacol Exp Ther 277(1):253–264

    CAS  PubMed  Google Scholar 

  • Cutillas B, Ambrosio S, Unzeta M (2002) Neuroprotective effect of the monoamine oxidase inhibitor PF 9601N [N-(2-propynyl)-2-(5-benzyloxy-indolyl) methylamine] on rat nigral neurons after 6-hydroxydopamine-striatal lesion. Neurosci Lett 329(2):165–168

    Article  CAS  PubMed  Google Scholar 

  • Da Prada M et al (1988) On tyramine, food, beverages and the reversible MAO inhibitor moclobemide. J Neural Transm Suppl 26:31–56

    PubMed  Google Scholar 

  • Dakic V et al (2016) Harmine stimulates proliferation of human neural progenitors. PeerJ 4:e2727

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dasgupta S et al (2018) Recognition dynamics of dopamine to human monoamine oxidase B: role of Leu171/Gln206 and conserved water molecules in the active site cavity. J Biomol Struct Dyn 36(6):1439–1462

    Article  CAS  PubMed  Google Scholar 

  • De Colibus L et al (2005) Three-dimensional structure of human monoamine oxidase A (MAO A): relation to the structures of rat MAO A and human MAO B. Proc Natl Acad Sci U S A 102(36):12684–12689

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dong J et al (2016) Current pharmaceutical treatments and alternative therapies of Parkinson’s disease. Curr Neuropharmacol 14(4):339–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dos Santos RG, Hallak JE (2017) Effects of the natural beta-carboline alkaloid harmine, a main constituent of Ayahuasca, in memory and in the hippocampus: a systematic literature review of preclinical studies. J Psychoactive Drugs 49(1):1–10

    Article  PubMed  Google Scholar 

  • Edmondson DE, Binda C (2018) Monoamine oxidases. Subcell Biochem 87:117–139

    Article  CAS  PubMed  Google Scholar 

  • Edmondson DE et al (2009) Molecular and mechanistic properties of the membrane-bound mitochondrial monoamine oxidases. Biochemistry 48(20):4220–4230

    Article  CAS  PubMed  Google Scholar 

  • Esteban G et al (2014) Kinetic and structural analysis of the irreversible inhibition of human monoamine oxidases by ASS234, a multi-target compound designed for use in Alzheimer’s disease. Biochim Biophys Acta 1844(6):1104–1110

    Article  CAS  PubMed  Google Scholar 

  • Evranos-Aksoz B et al (2017) New human monoamine oxidase A inhibitors with potential anti-depressant activity: design, synthesis, biological screening and evaluation of pharmacological activity. Comb Chem High Throughput Screen 20(6):461–473

    CAS  PubMed  Google Scholar 

  • Fabbri M et al (2015) Clinical pharmacology review of safinamide for the treatment of Parkinson’s disease. Neurodegener Dis Manag 5(6):481–496

    Article  PubMed  Google Scholar 

  • Fasipe OJ (2019) The emergence of new antidepressants for clinical use: agomelatine paradox versus other novel agents. IBRO Rep 6:95–110

    Article  PubMed  PubMed Central  Google Scholar 

  • Filip V, Kolibas E (1999) Selegiline in the treatment of Alzheimer’s disease: a long-term randomized placebo-controlled trial. Czech and Slovak Senile Dementia of Alzheimer Type Study Group. J Psychiatry Neurosci 24(3):234–243

    CAS  PubMed  PubMed Central  Google Scholar 

  • Finberg JP (2014) Update on the pharmacology of selective inhibitors of MAO-A and MAO-B: focus on modulation of CNS monoamine neurotransmitter release. Pharmacol Ther 143(2):133–152

    Article  CAS  PubMed  Google Scholar 

  • Finberg JP, Rabey JM (2016) Inhibitors of MAO-A and MAO-B in psychiatry and neurology. Front Pharmacol 7:340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fowler JS et al (1997) Age-related increases in brain monoamine oxidase B in living healthy human subjects. Neurobiol Aging 18(4):431–435

    Article  CAS  PubMed  Google Scholar 

  • Fowler JS et al (2010) Reversible inhibitors of monoamine oxidase-A (RIMAs): robust, reversible inhibition of human brain MAO-A by CX157. Neuropsychopharmacology 35(3):623–631

    Article  CAS  PubMed  Google Scholar 

  • Gal S et al (2005) Novel multifunctional neuroprotective iron chelator-monoamine oxidase inhibitor drugs for neurodegenerative diseases. In vivo selective brain monoamine oxidase inhibition and prevention of MPTP-induced striatal dopamine depletion. J Neurochem 95(1):79–88

    Article  CAS  PubMed  Google Scholar 

  • Gal S, Abassi ZA, Youdim MB (2010) Limited potentiation of blood pressure in response to oral tyramine by the anti-Parkinson brain selective multifunctional monoamine oxidase-AB inhibitor, M30. Neurotox Res 18(2):143–150

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Miralles M et al (2016) Treatment with the MAO-A inhibitor clorgyline elevates monoamine neurotransmitter levels and improves affective phenotypes in a mouse model of Huntington disease. Exp Neurol 278:4–10

    Article  CAS  PubMed  Google Scholar 

  • Gillman PK (2006) A review of serotonin toxicity data: implications for the mechanisms of antidepressant drug action. Biol Psychiatry 59(11):1046–1051

    Article  CAS  PubMed  Google Scholar 

  • Golko-Perez S et al (2016) Additive neuroprotective effects of the multifunctional iron chelator M30 with enriched diet in a mouse model of amyotrophic lateral sclerosis. Neurotox Res 29(2):208–217

    Article  CAS  PubMed  Google Scholar 

  • Grover ND et al (2013) Zonisamide: a review of the clinical and experimental evidence for its use in Parkinson’s disease. Indian J Pharmacol 45(6):547–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henriot S et al (1994) Lazabemide (Ro 19-6327), a reversible and highly sensitive MAO-B inhibitor: preclinical and clinical findings. J Neural Transm Suppl 41:321–325

    CAS  PubMed  Google Scholar 

  • Hoon M et al (2017) The design and evaluation of an l-dopa-lazabemide prodrug for the treatment of Parkinson’s disease. Molecules 22(12):2076

    Article  PubMed Central  CAS  Google Scholar 

  • Hubalek F, Pohl J, Edmondson DE (2003) Structural comparison of human monoamine oxidases A and B: mass spectrometry monitoring of cysteine reactivities. J Biol Chem 278(31):28612–28618

    Article  CAS  PubMed  Google Scholar 

  • Hubalek F et al (2005) Demonstration of isoleucine 199 as a structural determinant for the selective inhibition of human monoamine oxidase B by specific reversible inhibitors. J Biol Chem 280(16):15761–15766

    Article  CAS  PubMed  Google Scholar 

  • Huuskonen C et al (2019) Monoamine oxidase A inhibition protects the myocardium after experimental acute volume overload. Anatol J Cardiol 21(1):39–45

    CAS  PubMed  Google Scholar 

  • Jankovic J et al (2014) Symptomatic efficacy of rasagiline monotherapy in early Parkinson’s disease: post-hoc analyses from the ADAGIO trial. Parkinsonism Relat Disord 20(6):640–643

    Article  PubMed  Google Scholar 

  • Jo S et al (2014) GABA from reactive astrocytes impairs memory in mouse models of Alzheimer’s disease. Nat Med 20(8):886–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Justo LA et al (2016) Effects and mechanism of action of isatin, a MAO inhibitor, on in vivo striatal dopamine release. Neurochem Int 99:147–157

    Article  CAS  PubMed  Google Scholar 

  • Kaludercic N et al (2010) Monoamine oxidase A-mediated enhanced catabolism of norepinephrine contributes to adverse remodeling and pump failure in hearts with pressure overload. Circ Res 106(1):193–202

    Article  CAS  PubMed  Google Scholar 

  • Kaludercic N et al (2014) Monoamine oxidase B prompts mitochondrial and cardiac dysfunction in pressure overloaded hearts. Antioxid Redox Signal 20(2):267–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy BP et al (2003) Early and persistent alterations in prefrontal cortex MAO A and B in Alzheimer’s disease. J Neural Transm 110(7):789–801

    Article  CAS  PubMed  Google Scholar 

  • Khalil AA, Davies B, Castagnoli N Jr (2006) Isolation and characterization of a monoamine oxidase B selective inhibitor from tobacco smoke. Bioorg Med Chem 14(10):3392–3398

    Article  CAS  PubMed  Google Scholar 

  • Korchounov A, Winter Y, Rossy W (2012) Combined beneficial effect of rasagiline on motor function and depression in de novo PD. Clin Neuropharmacol 35(3):121–124

    Article  CAS  PubMed  Google Scholar 

  • Kupershmidt L et al (2012) Multi-target, neuroprotective and neurorestorative M30 improves cognitive impairment and reduces Alzheimer’s-like neuropathology and age-related alterations in mice. Mol Neurobiol 46(1):217–220

    Article  CAS  PubMed  Google Scholar 

  • Lange DJ et al (1998) Selegiline is ineffective in a collaborative double-blind, placebo-controlled trial for treatment of amyotrophic lateral sclerosis. Arch Neurol 55(1):93–96

    Article  CAS  PubMed  Google Scholar 

  • Langston JW et al (1984) Pargyline prevents MPTP-induced parkinsonism in primates. Science 225(4669):1480–1482

    Article  CAS  PubMed  Google Scholar 

  • Le W et al (1997) (−)-Deprenyl protection of 1-methyl-4 phenylpyridinium ion (MPP+)-induced apoptosis independent of MAO-B inhibition. Neurosci Lett 224(3):197–200

    Article  CAS  PubMed  Google Scholar 

  • Lee KC, Chen JJ (2007) Transdermal selegiline for the treatment of major depressive disorder. Neuropsychiatr Dis Treat 3(5):527–537

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee EY et al (2012) Rosiglitazone, a PPAR-gamma agonist, protects against striatal dopaminergic neurodegeneration induced by 6-OHDA lesions in the substantia nigra of rats. Toxicol Lett 213(3):332–344

    Article  CAS  PubMed  Google Scholar 

  • Li M et al (2006) Functional role of the “aromatic cage” in human monoamine oxidase B: structures and catalytic properties of Tyr435 mutant proteins. Biochemistry 45(15):4775–4784

    Article  CAS  PubMed  Google Scholar 

  • Liu F et al (2017a) Harmine produces antidepressant-like effects via restoration of astrocytic functions. Prog Neuro-Psychopharmacol Biol Psychiatry 79(Pt B):258–267

    Article  CAS  Google Scholar 

  • Liu X et al (2017b) Harmine is an inflammatory inhibitor through the suppression of NF-kappaB signaling. Biochem Biophys Res Commun 489(3):332–338

    Article  CAS  PubMed  Google Scholar 

  • Liu Y et al (2019) Attenuation of ischemic stroke-caused brain injury by a monoamine oxidase inhibitor involves improved proteostasis and reduced neuroinflammation. Mol Neurobiol 57(2):937–948

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lotufo-Neto F, Trivedi M, Thase ME (1999) Meta-analysis of the reversible inhibitors of monoamine oxidase type A moclobemide and brofaromine for the treatment of depression. Neuropsychopharmacology 20(3):226–247

    Article  CAS  PubMed  Google Scholar 

  • Ludolph AC et al (2018) Safety and efficacy of rasagiline as an add-on therapy to riluzole in patients with amyotrophic lateral sclerosis: a randomised, double-blind, parallel-group, placebo-controlled, phase 2 trial. Lancet Neurol 17(8):681–688

    Article  CAS  PubMed  Google Scholar 

  • Machado MMF et al (2019) PPAR-gamma agonist pioglitazone reduces microglial proliferation and NF-kappaB activation in the substantia nigra in the 6-hydroxydopamine model of Parkinson’s disease. Pharmacol Rep 71(4):556–564

    Article  CAS  PubMed  Google Scholar 

  • Mallajosyula JK et al (2008) MAO-B elevation in mouse brain astrocytes results in Parkinson’s pathology. PLoS One 3(2):e1616

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marco-Contelles J et al (2016) ASS234, as a new multi-target directed propargylamine for Alzheimer’s disease therapy. Front Neurosci 10:294

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin HL et al (2012) Pharmacological manipulation of peroxisome proliferator-activated receptor gamma (PPARgamma) reveals a role for anti-oxidant protection in a model of Parkinson’s disease. Exp Neurol 235(2):528–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mawhinney M, Cole D, Azzaro AJ (2003) Daily transdermal administration of selegiline to guinea-pigs preferentially inhibits monoamine oxidase activity in brain when compared with intestinal and hepatic tissues. J Pharm Pharmacol 55(1):27–34

    Article  CAS  PubMed  Google Scholar 

  • Meiser J, Weindl D, Hiller K (2013) Complexity of dopamine metabolism. Cell Commun Signal 11(1):34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer JH et al (2006) Elevated monoamine oxidase a levels in the brain: an explanation for the monoamine imbalance of major depression. Arch Gen Psychiatry 63(11):1209–1216

    Article  CAS  PubMed  Google Scholar 

  • Milczek EM et al (2011) The ‘gating’ residues Ile199 and Tyr326 in human monoamine oxidase B function in substrate and inhibitor recognition. FEBS J 278(24):4860–4869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morais M et al (2014) The effects of chronic stress on hippocampal adult neurogenesis and dendritic plasticity are reversed by selective MAO-A inhibition. J Psychopharmacol 28(12):1178–1183

    Article  PubMed  CAS  Google Scholar 

  • Muller T, Mohr JD (2019) Pharmacokinetics of monoamine oxidase B inhibitors in Parkinson’s disease: current status. Expert Opin Drug Metab Toxicol 15(5):429–435

    Article  PubMed  Google Scholar 

  • Muller T et al (2013) Switch from selegiline to rasagiline is beneficial in patients with Parkinson’s disease. J Neural Transm 120(5):761–765

    Article  PubMed  CAS  Google Scholar 

  • Murata M et al (2015) Zonisamide improves wearing-off in Parkinson’s disease: a randomized, double-blind study. Mov Disord 30(10):1343–1350

    Article  CAS  PubMed  Google Scholar 

  • Murata M et al (2016) Randomized placebo-controlled trial of zonisamide in patients with Parkinson’s disease. Neurol Clin Neurosci 4(1):10–15

    Article  CAS  Google Scholar 

  • Murata M et al (2018) Adjunct zonisamide to levodopa for DLB parkinsonism: a randomized double-blind phase 2 study. Neurology 90(8):e664–e672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myllyla VV et al (1997) Selegiline as the primary treatment of Parkinson’s disease--a long-term double-blind study. Acta Neurol Scand 95(4):211–218

    Article  CAS  PubMed  Google Scholar 

  • Nagatsu T, Sawada M (2006) Molecular mechanism of the relation of monoamine oxidase B and its inhibitors to Parkinson’s disease: possible implications of glial cells. J Neural Transm Suppl 71:53–65

    CAS  Google Scholar 

  • Nandigama RK, Miller JR, Edmondson DE (2001) Loss of serotonin oxidation as a component of the altered substrate specificity in the Y444F mutant of recombinant human liver MAO A. Biochemistry 40(49):14839–14846

    Article  CAS  PubMed  Google Scholar 

  • Nave S et al (2017) Sembragiline in moderate Alzheimer’s disease: results of a randomized, double-blind, placebo-controlled phase II trial (MAyflOwer RoAD). J Alzheimers Dis 58(4):1217–1228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neurol L (2015) Pioglitazone in early Parkinson’s disease: a phase 2, multicentre, double-blind, randomised trial. Lancet Neurol 14(8):795–803

    Article  CAS  Google Scholar 

  • Nishijima H et al (2018) Zonisamide enhances motor effects of levodopa, not of apomorphine, in a rat model of Parkinson’s disease. Parkinsons Dis 2018:8626783

    PubMed  PubMed Central  Google Scholar 

  • Ogata A et al (2003) Isatin, an endogenous MAO inhibitor, improves bradykinesia and dopamine levels in a rat model of Parkinson’s disease induced by Japanese encephalitis virus. J Neurol Sci 206(1):79–83

    Article  CAS  PubMed  Google Scholar 

  • Oki M et al (2017) Zonisamide ameliorates levodopa-induced dyskinesia and reduces expression of striatal genes in Parkinson model rats. Neurosci Res 122:45–50

    Article  CAS  PubMed  Google Scholar 

  • Olanow CW et al (2009) A double-blind, delayed-start trial of rasagiline in Parkinson’s disease. N Engl J Med 361(13):1268–1278

    Article  CAS  PubMed  Google Scholar 

  • Ooi J, Hayden MR, Pouladi MA (2015) Inhibition of excessive monoamine oxidase A/B activity protects against stress-induced neuronal death in Huntington disease. Mol Neurobiol 52(3):1850–1861

    Article  CAS  PubMed  Google Scholar 

  • Oz M, Lorke DE, Petroianu GA (2009) Methylene blue and Alzheimer’s disease. Biochem Pharmacol 78(8):927–932

    Article  CAS  PubMed  Google Scholar 

  • Panarsky R, Luques L, Weinstock M (2012) Anti-inflammatory effects of ladostigil and its metabolites in aged rat brain and in microglial cells. J Neuroimmune Pharmacol 7(2):488–498

    Article  PubMed  Google Scholar 

  • Park JH et al (2019) Newly developed reversible MAO-B inhibitor circumvents the shortcomings of irreversible inhibitors in Alzheimer’s disease. Sci Adv 5(3):eaav0316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parkinson Study G (1989) Effect of deprenyl on the progression of disability in early Parkinson’s disease. N Engl J Med 321(20):1364–1371

    Article  Google Scholar 

  • Parkinson Study G (1994) A controlled trial of lazabemide (Ro 19-6327) in levodopa-treated Parkinson’s disease. Arch Neurol 51(4):342–347

    Article  Google Scholar 

  • Parkinson Study G (2002) A controlled trial of rasagiline in early Parkinson disease: the TEMPO study. Arch Neurol 59(12):1937–1943

    Article  Google Scholar 

  • Parkinson Study G (2004) A controlled, randomized, delayed-start study of rasagiline in early Parkinson disease. Arch Neurol 61(4):561–566

    Article  Google Scholar 

  • Perez V, Unzeta M (2003) PF 9601N [N-(2-propynyl)-2-(5-benzyloxy-indolyl) methylamine], a new MAO-B inhibitor, attenuates MPTP-induced depletion of striatal dopamine levels in C57/BL6 mice. Neurochem Int 42(3):221–229

    Article  CAS  PubMed  Google Scholar 

  • Pérez V et al (1999) Relevance of benzyloxy group in 2-indolyl methylamines in the selective MAO-B inhibition. Br J Pharmacol 127(4):869–876

    Article  PubMed  PubMed Central  Google Scholar 

  • Pimentel LS et al (2015) The multi-target drug m30 shows pro-cognitive and anti-inflammatory effects in a rat model of Alzheimer’s disease. J Alzheimers Dis 47(2):373–383

    Article  CAS  PubMed  Google Scholar 

  • Pinto M et al (2016) Pioglitazone ameliorates the phenotype of a novel Parkinson’s disease mouse model by reducing neuroinflammation. Mol Neurodegener 11:25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Poewe W et al (2017) Parkinson disease. Nat Rev Dis Primers 3:17013

    Article  PubMed  Google Scholar 

  • Przuntek H et al (1999) SELEDO: a 5-year long-term trial on the effect of selegiline in early Parkinsonian patients treated with levodopa. Eur J Neurol 6(2):141–150

    Article  CAS  PubMed  Google Scholar 

  • Rabey JM et al (2000) Rasagiline mesylate, a new MAO-B inhibitor for the treatment of Parkinson’s disease: a double-blind study as adjunctive therapy to levodopa. Clin Neuropharmacol 23(6):324–330

    Article  CAS  PubMed  Google Scholar 

  • Ramachandraih CT et al (2011) Antidepressants: from MAOIs to SSRIs and more. Indian J Psychiatry 53(2):180–182

    Article  PubMed  PubMed Central  Google Scholar 

  • Rascol O et al (2005) Rasagiline as an adjunct to levodopa in patients with Parkinson’s disease and motor fluctuations (LARGO, Lasting effect in Adjunct therapy with Rasagiline Given Once daily, study): a randomised, double-blind, parallel-group trial. Lancet 365(9463):947–954

    Article  CAS  PubMed  Google Scholar 

  • Rascol O et al (2011) A double-blind, delayed-start trial of rasagiline in Parkinson’s disease (the ADAGIO study): prespecified and post-hoc analyses of the need for additional therapies, changes in UPDRS scores, and non-motor outcomes. Lancet Neurol 10(5):415–423

    Article  CAS  PubMed  Google Scholar 

  • Rubinstein S et al (2006) Placebo-controlled study examining effects of selegiline in children with attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol 16(4):404–415

    Article  PubMed  Google Scholar 

  • Ryan M, Eatmon CV, Slevin JT (2019) Drug treatment strategies for depression in Parkinson disease. Expert Opin Pharmacother 20(11):1351–1363

    Article  CAS  PubMed  Google Scholar 

  • Sagi Y, Drigues N, Youdim MB (2005) The neurochemical and behavioral effects of the novel cholinesterase-monoamine oxidase inhibitor, ladostigil, in response to L-dopa and L-tryptophan, in rats. Br J Pharmacol 146(4):553–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanches RF et al (2016) Antidepressant effects of a single dose of ayahuasca in patients with recurrent depression: a SPECT study. J Clin Psychopharmacol 36(1):77–81

    Article  CAS  PubMed  Google Scholar 

  • Sano H, Murata M, Nambu A (2015) Zonisamide reduces nigrostriatal dopaminergic neurodegeneration in a mouse genetic model of Parkinson’s disease. J Neurochem 134(2):371–381

    Article  CAS  PubMed  Google Scholar 

  • Santhanasabapathy R, Sudhandiran G (2015) Farnesol attenuates lipopolysaccharide-induced neurodegeneration in Swiss albino mice by regulating intrinsic apoptotic cascade. Brain Res 1620:42–56

    Article  CAS  PubMed  Google Scholar 

  • Sanz E et al (2008) Anti-apoptotic effect of Mao-B inhibitor PF9601N [N-(2-propynyl)-2-(5-benzyloxy-indolyl) methylamine] is mediated by p53 pathway inhibition in MPP+-treated SH-SY5Y human dopaminergic cells. J Neurochem 105(6):2404–2417

    Article  CAS  PubMed  Google Scholar 

  • Schapira AH et al (2013) Long-term efficacy and safety of safinamide as add-on therapy in early Parkinson’s disease. Eur J Neurol 20(2):271–280

    Article  CAS  PubMed  Google Scholar 

  • Schneider LS et al (2019) Low-dose ladostigil for mild cognitive impairment: a phase 2 placebo-controlled clinical trial. Neurology 93(15):e1474–e1484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segura-Aguilar J et al (2014) Protective and toxic roles of dopamine in Parkinson’s disease. J Neurochem 129(6):898–915

    Article  CAS  PubMed  Google Scholar 

  • Shulman KI, Herrmann N, Walker SE (2013) Current place of monoamine oxidase inhibitors in the treatment of depression. CNS Drugs 27(10):789–797

    Article  CAS  PubMed  Google Scholar 

  • Sian J et al (1994) Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia. Ann Neurol 36(3):348–355

    Article  CAS  PubMed  Google Scholar 

  • Sivenius J et al (2001) Selegiline treatment facilitates recovery after stroke. Neurorehabil Neural Repair 15(3):183–190

    Article  CAS  PubMed  Google Scholar 

  • Smith KM, Eyal E, Weintraub D (2015) Combined rasagiline and antidepressant use in Parkinson disease in the ADAGIO study: effects on nonmotor symptoms and tolerability. JAMA Neurol 72(1):88–95

    Article  PubMed  Google Scholar 

  • Soliman A et al (2012) Convergent effects of acute stress and glucocorticoid exposure upon MAO-A in humans. J Neurosci 32(48):17120–17127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Son SY et al (2008) Structure of human monoamine oxidase A at 2.2-Å resolution: the control of opening the entry for substrates/inhibitors. Proc Natl Acad Sci U S A 105(15):5739–5744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonsalla PK et al (2010) The antiepileptic drug zonisamide inhibits MAO-B and attenuates MPTP toxicity in mice: clinical relevance. Exp Neurol 221(2):329–334

    Article  CAS  PubMed  Google Scholar 

  • Statland JM et al (2019) Rasagiline for amyotrophic lateral sclerosis: a randomized, controlled trial. Muscle Nerve 59(2):201–207

    Article  CAS  PubMed  Google Scholar 

  • Stocchi F, Torti M (2016) Adjuvant therapies for Parkinson’s disease: critical evaluation of safinamide. Drug Des Devel Ther 10:609–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stocchi F et al (2006) Symptom relief in Parkinson disease by safinamide: biochemical and clinical evidence of efficacy beyond MAO-B inhibition. Neurology 67(7 Suppl 2):S24–S29

    Article  CAS  PubMed  Google Scholar 

  • Sturm S et al (2017) Positron emission tomography measurement of brain MAO-B inhibition in patients with Alzheimer’s disease and elderly controls after oral administration of sembragiline. Eur J Nucl Med Mol Imaging 44(3):382–391

    Article  CAS  PubMed  Google Scholar 

  • Szoko E et al (2018) Pharmacological aspects of the neuroprotective effects of irreversible MAO-B inhibitors, selegiline and rasagiline, in Parkinson’s disease. J Neural Transm (Vienna) 125(11):1735–1749

    Article  CAS  Google Scholar 

  • Tariot PN et al (1987) Cognitive effects of L-deprenyl in Alzheimer’s disease. Psychopharmacology 91(4):489–495

    Article  CAS  PubMed  Google Scholar 

  • Tripathi AC et al (2018) Privileged scaffolds as MAO inhibitors: retrospect and prospects. Eur J Med Chem 145:445–497

    Article  CAS  PubMed  Google Scholar 

  • Ulusoy GK et al (2011) Effects of pioglitazone and retinoic acid in a rotenone model of Parkinson’s disease. Brain Res Bull 85(6):380–384

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay AK et al (2008) Determination of the oligomeric states of human and rat monoamine oxidases in the outer mitochondrial membrane and octyl beta-D-glucopyranoside micelles using pulsed dipolar electron spin resonance spectroscopy. Biochemistry 47(6):1554–1566

    Article  CAS  PubMed  Google Scholar 

  • Villeneuve C et al (2013) p53-PGC-1alpha pathway mediates oxidative mitochondrial damage and cardiomyocyte necrosis induced by monoamine oxidase-A upregulation: role in chronic left ventricular dysfunction in mice. Antioxid Redox Signal 18(1):5–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinreb O et al (2012) Ladostigil: a novel multimodal neuroprotective drug with cholinesterase and brain-selective monoamine oxidase inhibitory activities for Alzheimer’s disease treatment. Curr Drug Targets 13(4):483–494

    Article  CAS  PubMed  Google Scholar 

  • Yasar S, Goldberg JP, Goldberg SR (1996) Are metabolites of l-deprenyl (selegiline) useful or harmful? Indications from preclinical research. J Neural Transm Suppl 48:61–73

    CAS  PubMed  Google Scholar 

  • Yasar S et al (2006) Metabolic transformation plays a primary role in the psychostimulant-like discriminative-stimulus effects of selegiline [(R)-(−)-deprenyl]. J Pharmacol Exp Ther 317(1):387–394

    Article  CAS  PubMed  Google Scholar 

  • Yogev-Falach M et al (2006) A multifunctional, neuroprotective drug, ladostigil (TV3326), regulates holo-APP translation and processing. FASEB J 20(12):2177–2179

    Article  CAS  PubMed  Google Scholar 

  • Youdim MB (2012) M30, a brain permeable multitarget neurorestorative drug in post nigrostriatal dopamine neuron lesion of parkinsonism animal models. Parkinsonism Relat Disord 18(Suppl 1):S151–S154

    Article  PubMed  Google Scholar 

  • Youdim MB (2013) Multi target neuroprotective and neurorestorative anti-Parkinson and anti-Alzheimer drugs ladostigil and m30 derived from rasagiline. Exp Neurobiol 22(1):1–10

    Article  PubMed  PubMed Central  Google Scholar 

  • Youdim MB, Edmondson D, Tipton KF (2006) The therapeutic potential of monoamine oxidase inhibitors. Nat Rev Neurosci 7(4):295–309

    Article  CAS  PubMed  Google Scholar 

  • Youdim MB et al (2014) Promises of novel multi-target neuroprotective and neurorestorative drugs for Parkinson’s disease. Parkinsonism Relat Disord 20(Suppl 1):S132–S136

    Article  PubMed  Google Scholar 

  • Zanderigo F et al (2018) [(11)C]Harmine binding to brain monoamine oxidase A: test-retest properties and noninvasive quantification. Mol Imaging Biol 20(4):667–681

    Article  CAS  PubMed  Google Scholar 

  • Zanotti-Fregonara P, Bottlaender M (2014) [11C]befloxatone distribution is well correlated to monoamine oxidase A protein levels in the human brain. J Cereb Blood Flow Metab 34(12):1951–1952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zanotti-Fregonara P et al (2014) Imaging of monoamine oxidase-A in the human brain with [11C]befloxatone: quantification strategies and correlation with mRNA transcription maps. Nucl Med Commun 35(12):1254–1261

    Article  CAS  PubMed  Google Scholar 

  • Zheng H et al (2005) Novel multifunctional neuroprotective iron chelator-monoamine oxidase inhibitor drugs for neurodegenerative diseases: in vitro studies on antioxidant activity, prevention of lipid peroxide formation and monoamine oxidase inhibition. J Neurochem 95(1):68–78

    Article  CAS  PubMed  Google Scholar 

  • Zheng H, Fridkin M, Youdim MB (2010) Site-activated chelators derived from anti-Parkinson drug rasagiline as a potential safer and more effective approach to the treatment of Alzheimer’s disease. Neurochem Res 35(12):2117–2123

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Zhao ZQ, Xie JX (2001) Effects of isatin on rotational behavior and DA levels in caudate putamen in Parkinsonian rats. Brain Res 917(1):127–132

    Article  CAS  PubMed  Google Scholar 

  • Zhou S, Chen G, Huang G (2018) Design, synthesis and biological evaluation of lazabemide derivatives as inhibitors of monoamine oxidase. Bioorg Med Chem 26(17):4863–4870

    Article  CAS  PubMed  Google Scholar 

  • Zisook S (1985) A clinical overview of monoamine oxidase inhibitors. Psychosomatics 26(3):240–251

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael León .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Duarte, P., Cuadrado, A., León, R. (2020). Monoamine Oxidase Inhibitors: From Classic to New Clinical Approaches. In: Schmidt, H.H.H.W., Ghezzi, P., Cuadrado, A. (eds) Reactive Oxygen Species . Handbook of Experimental Pharmacology, vol 264. Springer, Cham. https://doi.org/10.1007/164_2020_384

Download citation

Publish with us

Policies and ethics