Skip to main content
Log in

Additive Neuroprotective Effects of the Multifunctional Iron Chelator M30 with Enriched Diet in a Mouse Model of Amyotrophic Lateral Sclerosis

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Amyotrophic lateral sclerosis (ALS) is the most common degenerative disease of the motoneuron system, involving various abnormalities, such as mitochondrial dysfunction, oxidative stress, transitional metal accumulation, neuroinflammation, glutamate excitotoxicity, apoptosis, decreased supply of trophic factors, cytoskeletal abnormalities, and extracellular superoxide dismutase (SOD)-1 toxicity. These multiple disease etiologies implicated in ALS gave rise to the perception that future therapeutic approaches for the disease should be aimed at targeting multiple pathological pathways. In line with this view, we have evaluated in the current study the therapeutic effects of low doses of the novel multifunctional monoamine oxidase (MAO) inhibitor/iron-chelating compound, M30 in combination with high Calorie Energy supplemented Diet (CED) in the SOD1-G93A transgenic mouse model of ALS. Our results demonstrated that the combined administration of M30 with CED produced additive neuroprotective effects on motor performance and increased survival of SOD1-G93A mice. We also found that both M30 and M30/CED regimens caused a significant inhibition of MAO-A and -B activities and decreased the turnover of dopamine in the brain of SOD1-G93A mice. In addition, M30/CED combined treatment resulted in a significant increase in mRNA expression levels of various mitochondrial biogenesis and metabolism regulators, such as peroxisome proliferator-activated receptor-γ (PPARγ)-co activator 1 alpha (PGC-1α), PPARγ, uncoupling protein 1, and insulin receptor in the gastrocnemius muscle of SOD1-G93A mice. These results suggest that a combination of drug/agents with different, but complementary mechanisms may be beneficial in the treatment of ALS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adhihetty PJ, Beal MF (2008) Creatine and its potential therapeutic value for targeting cellular energy impairment in neurodegenerative diseases. Neuromolecular Med 10:275–290. doi:10.1007/s12017-008-8053-y

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Azzouz M, Hottinger A, Paterna JC, Zurn AD, Aebischer P, Bueler H (2000) Increased motoneuron survival and improved neuromuscular function in transgenic ALS mice after intraspinal injection of an adeno-associated virus encoding Bcl-2. Hum Mol Genet 9:803–811

    Article  PubMed  CAS  Google Scholar 

  • Bastos AF, Orsini M, Machado D, Mello MP, Nader S, Silva JG, da Silva Catharino AM, de Freitas MR, Pereira A, Pessoa LL, Sztajnbok FR, Leite MA, Nascimento OJ, Bastos VH (2011) Amyotrophic lateral sclerosis: one or multiple causes? Neurol Int 3:e4. doi:10.4081/ni.2011.e4

    Article  PubMed  PubMed Central  Google Scholar 

  • Benkler C, Offen D, Melamed E, Kupershmidt L, Amit T, Mandel S, Youdim MB, Weinreb O (2010) Recent advances in amyotrophic lateral sclerosis research: perspectives for personalized clinical application. EPMA J 1(2):343–361. doi:10.1007/s13167-010-0026-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Bryson JB, Hobbs C, Parsons MJ, Bosch KD, Pandraud A, Walsh FS, Doherty P, Greensmith L (2012) Amyloid precursor protein (APP) contributes to pathology in the SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Hum Mol Genet 21:3871–3882. doi:10.1093/hmg/dds215

    Article  PubMed  CAS  Google Scholar 

  • Carri MT, Ferri A, Cozzolino M, Calabrese L, Rotilio G (2003) Neurodegeneration in amyotrophic lateral sclerosis: the role of oxidative stress and altered homeostasis of metals. Brain Res Bull 61:365–374

    Article  PubMed  CAS  Google Scholar 

  • Cleveland DW, Rothstein JD (2001) From charcot to lou gehrig: deciphering selective motor neuron death in ALS. Nat Rev Neurosci 2:806–819

    Article  PubMed  CAS  Google Scholar 

  • Combs DJ, D’Alecy LG (1987) Motor performance in rats exposed to severe forebrain ischemia: effect of fasting and 1,3-butanediol. Stroke 18:503–511

    Article  PubMed  CAS  Google Scholar 

  • Cryan JF, Mombereau C, Vassout A (2005) The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev 29:571–625

    Article  PubMed  CAS  Google Scholar 

  • Dorst J, Cypionka J, Ludolph AC (2013) High-caloric food supplements in the treatment of amyotrophic lateral sclerosis: a prospective interventional study. Amyotroph Lateral Scler Frontotemporal Degener 14:533–536. doi:10.3109/21678421.2013.823999

    Article  PubMed  CAS  Google Scholar 

  • Funalot B, Desport JC, Sturtz F, Camu W, Couratier P (2009) High metabolic level in patients with familial amyotrophic lateral sclerosis. Amyotroph Lateral Scler 10:113–117

    Article  PubMed  CAS  Google Scholar 

  • Gal S, Zheng H, Fridkin M, Youdim MB (2005) Novel multifunctional neuroprotective iron chelator-monoamine oxidase inhibitor drugs for neurodegenerative diseases. In vivo selective brain monoamine oxidase inhibition and prevention of MPTP-induced striatal dopamine depletion. J Neurochem 95:79–88

    Article  PubMed  CAS  Google Scholar 

  • Garbuzova-Davis S, Willing AE, Milliken M, Saporta S, Sowerby B, Cahill DW, Sanberg PR (2001) Intraspinal implantation of hNT neurons into SOD1 mice with apparent motor deficit. Amyotroph Lateral Scler Other Motor Neuron Disord 2:175–180. doi:10.1080/14660820152882179

    Article  PubMed  CAS  Google Scholar 

  • Genton L, Viatte V, Janssens JP, Heritier AC, Pichard C (2011) Nutritional state, energy intakes and energy expenditure of amyotrophic lateral sclerosis (ALS) patients. Clin Nutr 30:553–559. doi:10.1016/j.clnu.2011.06.004

    Article  PubMed  CAS  Google Scholar 

  • Gurney ME (1997) The use of transgenic mouse models of amyotrophic lateral sclerosis in preclinical drug studies. J Neurol Sci 152(Suppl 1):S67–73

    Article  PubMed  CAS  Google Scholar 

  • Ignjatovic A, Stevic Z, Lavrnic D, Nikolic-Kokic A, Blagojevic D, Spasic M, Spasojevic I (2012) Inappropriately chelated iron in the cerebrospinal fluid of amyotrophic lateral sclerosis patients. Amyotroph Lateral Scler 13(4):357–362

    Article  PubMed  CAS  Google Scholar 

  • Ikeda K, Hirayama T, Takazawa T, Kawabe K, Iwasaki Y (2012) Relationships between disease progression and serum levels of lipid, urate, creatinine and ferritin in Japanese patients with amyotrophic lateral sclerosis: a cross-sectional study. Intern Med 51:1501–1508

    Article  PubMed  CAS  Google Scholar 

  • Imon Y, Yamaguchi S, Yamamura Y, Tsuji S, Kajima T, Ito K, Nakamura S (1995) Low intensity areas observed on T2-weighted magnetic resonance imaging of the cerebral cortex in various neurological diseases. J Neurol Sci 134(Suppl):27–32

    Article  PubMed  Google Scholar 

  • Ince PG, Shaw PJ, Candy JM, Mantle D, Tandon L, Ehmann WD, Markesbery WR (1994) Iron, selenium and glutathione peroxidase activity are elevated in sporadic motor neuron disease. Neurosci Lett 182:87–90

    Article  PubMed  CAS  Google Scholar 

  • Jeong SY, Rathore KI, Schulz K, Ponka P, Arosio P, David S (2009) Dysregulation of iron homeostasis in the CNS contributes to disease progression in a mouse model of amyotrophic lateral sclerosis. J Neurosci 29:610–619

    Article  PubMed  CAS  Google Scholar 

  • Kasarskis EJ, Tandon L, Lovell MA, Ehmann WD (1995) Aluminum, calcium, and iron in the spinal cord of patients with sporadic amyotrophic lateral sclerosis using laser microprobe mass spectroscopy: a preliminary study. J Neurol Sci 130(2):203–208

    Article  PubMed  CAS  Google Scholar 

  • Klivenyi P, Kiaei M, Gardian G, Calingasan NY, Beal MF (2004) Additive neuroprotective effects of creatine and cyclooxygenase 2 inhibitors in a transgenic mouse model of amyotrophic lateral s1clerosis. J Neurochem 88:576–582.

    Article  PubMed  CAS  Google Scholar 

  • Klopstock T, Elstner M, Bender A (2011) Creatine in mouse models of neurodegeneration and aging. Amino Acids 40:1297–1303. doi:10.1007/s00726-011-0850-1

    Article  PubMed  CAS  Google Scholar 

  • Kriz J, Gowing G, Julien JP (2003) Efficient three-drug cocktail for disease induced by mutant superoxide dismutase. Ann Neurol 53(4):429–436. doi:10.1002/ana.10500

    Article  PubMed  CAS  Google Scholar 

  • Kumar MJ, Andersen JK (2004) Perspectives on MAO-B in aging and neurological disease: where do we go from here? Mol Neurobiol 30:77–89

    Article  PubMed  CAS  Google Scholar 

  • Kupershmidt L, Weinreb O, Amit T, Mandel S, Carri MT, Youdim MB (2009) Neuroprotective and neuritogenic activities of novel multimodal iron-chelating drugs in motor-neuron-like NSC-34 cells and transgenic mouse model of amyotrophic lateral sclerosis. Faseb J 23:3766–3779

    Article  PubMed  CAS  Google Scholar 

  • Kupershmidt L, Amit T, Bar-Am O, Youdim MB, Weinreb O (2012a) Neuroprotection by the multitarget iron chelator M30 on age-related alterations in mice. Mech Ageing Dev 133:267–274

    Article  PubMed  CAS  Google Scholar 

  • Kupershmidt L, Amit T, Bar-Am O, Youdim MB, Weinreb O (2012b) The novel multi-target iron chelating-radical scavenging compound M30 possesses beneficial effects on major hallmarks of Alzheimer’s disease. Antioxid Redox Signal 17:860–877

    Article  PubMed  CAS  Google Scholar 

  • Kwan JY, Jeong SY, Van Gelderen P, Deng HX, Quezado MM, Danielian LE, Butman JA, Chen L, Bayat E, Russell J, Siddique T, Duyn JH, Rouault TA, Floeter MK (2012) Iron accumulation in deep cortical layers accounts for MRI signal abnormalities in ALS: correlating 7 tesla MRI and pathology. PLoS ONE 7:e35241

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lawler JM, Barnes WS, Wu G, Song W, Demaree S (2002) Direct antioxidant properties of creatine. Biochem Biophys Res Commun 290:47–52. doi:10.1006/bbrc.2001.6164

    Article  PubMed  CAS  Google Scholar 

  • Liang H, Ward WF, Jang YC, Bhattacharya A, Bokov AF, Li Y, Jernigan A, Richardson A, Van Remmen H (2011) PGC-1alpha protects neurons and alters disease progression in an amyotrophic lateral sclerosis mouse model. Muscle Nerve 44:947–956. doi:10.1002/mus.22217

    Article  PubMed  CAS  Google Scholar 

  • Lowell BB, Spiegelman BM (2000) Towards a molecular understanding of adaptive thermogenesis. Nature 404:652–660. doi:10.1038/35007527

    PubMed  CAS  Google Scholar 

  • Ludolph AC, Bendotti C, Blaugrund E, Hengerer B, Loffler JP, Martin J, Meininger V, Meyer T, Moussaoui S, Robberecht W, Scott S, Silani V, Van Den Berg LH (2007) Guidelines for the preclinical in vivo evaluation of pharmacological active drugs for ALS/MND: report on the 142nd ENMC international workshop. Amyotroph Lateral Scler 8:217–223. doi:10.1080/17482960701292837

    Article  PubMed  CAS  Google Scholar 

  • Mechlovich D, Amit T, Bar-Am O, Weinreb O, Youdim MB (2014) Molecular targets of the multifunctional iron-chelating drug, M30, in the brains of mouse models of type 2 diabetes mellitus. Br J Pharmacol 171:5636–5649. doi:10.1111/bph.12862

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Musaro A (2013) Understanding ALS: new therapeutic approaches. FEBS J 280:4315–4322. doi:10.1111/febs.12087

    Article  PubMed  CAS  Google Scholar 

  • Muyderman H, Chen T (2014) Mitochondrial dysfunction in amyotrophic lateral sclerosis—a valid pharmacological target? Br J Pharmacol 171:2191–2205. doi:10.1111/bph.12476

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Oba H, Araki T, Ohtomo K, Monzawa S, Uchiyama G, Koizumi K, Nogata Y, Kachi K, Shiozawa Z, Kobayashi M (1993) Amyotrophic lateral sclerosis: T2 shortening in motor cortex at MR imaging. Radiology 189:843–846

    Article  PubMed  CAS  Google Scholar 

  • Olesen J, Kiilerich K, Pilegaard H (2010) PGC-1alpha-mediated adaptations in skeletal muscle. Pflugers Arch 460:153–162. doi:10.1007/s00424-010-0834-0

    Article  PubMed  CAS  Google Scholar 

  • Palamiuc L, Schlagowski A, Ngo ST, Vernay A, Dirrig-Grosch S, Henriques A, Boutillier AL, Zoll J, Echaniz-Laguna A, Loeffler JP, Rene F (2015) A metabolic switch toward lipid use in glycolytic muscle is an early pathologic event in a mouse model of amyotrophic lateral sclerosis. EMBO Mol Med 7:526–546. doi:10.15252/emmm.201404433

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Puigserver P, Spiegelman BM (2003) Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev 24:78–90. doi:10.1210/er.2002-0012

    Article  PubMed  CAS  Google Scholar 

  • Rio A, Cawadias E (2007) Nutritional advice and treatment by dietitians to patients with amyotrophic lateral sclerosis/motor neurone disease: a survey of current practice in England, Wales, Northern Ireland and Canada. J Hum Nutr Diet 20:3–13. doi:10.1111/j.1365-277X.2007.00745.x

    Article  PubMed  CAS  Google Scholar 

  • Rippon GA, Scarmeas N, Gordon PH, Murphy PL, Albert SM, Mitsumoto H, Marder K, Rowland LP, Stern Y (2006) An observational study of cognitive impairment in amyotrophic lateral sclerosis. Arch Neurol 63:345–352

    Article  PubMed  Google Scholar 

  • Rona-Voros K, Weydt P (2010) The role of PGC-1alpha in the pathogenesis of neurodegenerative disorders. Curr Drug Targets 11:1262–1269

    Article  PubMed  Google Scholar 

  • Sasaki S, Iwata M (1999) Ultrastructural change of synapses of Betz cells in patients with amyotrophic lateral sclerosis. Neurosci Lett 268:29–32

    Article  PubMed  CAS  Google Scholar 

  • Schmitt F, Hussain G, Dupuis L, Loeffler JP, Henriques A (2014) A plural role for lipids in motor neuron diseases: energy, signaling and structure. Front Cell Neurosci 8:25. doi:10.3389/fncel.2014.00025

    Article  PubMed  PubMed Central  Google Scholar 

  • Scott S, Kranz JE, Cole J, Lincecum JM, Thompson K, Kelly N, Bostrom A, Theodoss J, Al-Nakhala BM, Vieira FG, Ramasubbu J, Heywood JA (2008) Design, power, and interpretation of studies in the standard murine model of ALS. Amyotroph Lateral Scler 9:4–15

    Article  PubMed  CAS  Google Scholar 

  • Siklos L, Engelhardt J, Harati Y, Smith RG, Joo F, Appel SH (1996) Ultrastructural evidence for altered calcium in motor nerve terminals in amyotropic lateral sclerosis. Ann Neurol 39:203–216. doi:10.1002/ana.410390210

    Article  PubMed  CAS  Google Scholar 

  • Song W, Song Y, Kincaid B, Bossy B, Bossy-Wetzel E (2013) Mutant SOD1G93A triggers mitochondrial fragmentation in spinal cord motor neurons: neuroprotection by SIRT3 and PGC-1alpha. Neurobiol Dis 51:72–81. doi:10.1016/j.nbd.2012.07.004

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jager S, Handschin C, Zheng K, Lin J, Yang W, Simon DK, Bachoo R, Spiegelman BM (2006) Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127:397–408. doi:10.1016/j.cell.2006.09.024

    Article  PubMed  CAS  Google Scholar 

  • Tipton KF, McCrodden JM, Kalir AS, Youdim MBH (1982) Inhibition of rat liver monoamine oxidase by alpha-methyl- and N-propargyl-amine derivatives. Biochem Pharmacol 31:1251–1255

    Article  PubMed  CAS  Google Scholar 

  • Tsunemi T, La Spada AR (2012) PGC-1alpha at the intersection of bioenergetics regulation and neuron function: from Huntington’s disease to Parkinson’s disease and beyond. Prog Neurobiol 97:142–151. doi:10.1016/j.pneurobio.2011.10.004

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Urushitani M, Ezzi SA, Julien JP (2007) Therapeutic effects of immunization with mutant superoxide dismutase in mice models of amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 104:2495–2500

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vaisman N, Lusaus M, Nefussy B, Niv E, Comaneshter D, Hallack R, Drory VE (2009) Do patients with amyotrophic lateral sclerosis (ALS) have increased energy needs? J Neurol Sci 279:26–29

    Article  PubMed  Google Scholar 

  • Veyrat-Durebex C, Corcia P, Mucha A, Benzimra S, Mallet C, Gendrot C, Moreau C, Devos D, Piver E, Pages JC, Maillot F, Andres CR, Vourc’h P, Blasco H (2014) Iron metabolism disturbance in a French cohort of ALS patients. Biomed Res Int 2014:485723–485729. doi:10.1155/2014/485723

    Article  PubMed  PubMed Central  Google Scholar 

  • Vielhaber S, Kunz D, Winkler K, Wiedemann FR, Kirches E, Feistner H, Heinze HJ, Elger CE, Schubert W, Kunz WS (2000) Mitochondrial DNA abnormalities in skeletal muscle of patients with sporadic amyotrophic lateral sclerosis. Brain 123:1339–1348

    Article  PubMed  Google Scholar 

  • Villena JA (2015) New insights into PGC-1 coactivators: redefining their role in the regulation of mitochondrial function and beyond. FEBS J 282:647–672. doi:10.1111/febs.13175

    Article  PubMed  CAS  Google Scholar 

  • Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM (1992) Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem J 281:21–40

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wang Q, Zhang X, Chen S, Zhang X, Zhang S, Youdium M, Le W (2011) Prevention of motor neuron degeneration by novel iron chelators in SOD1G93A transgenic mice of amyotrophic lateral sclerosis. Neurodegener Dis 8:310–321

    Article  PubMed  CAS  Google Scholar 

  • Wiedemann FR, Manfredi G, Mawrin C, Beal MF, Schon EA (2002) Mitochondrial DNA and respiratory chain function in spinal cords of ALS patients. J Neurochem 80:616–625

    Article  PubMed  CAS  Google Scholar 

  • Winkler EA, Sengillo JD, Sagare AP, Zhao Z, Ma Q, Zuniga E, Wang Y, Zhong Z, Sullivan JS, Griffin JH, Cleveland DW, Zlokovic BV (2014) Blood-spinal cord barrier disruption contributes to early motor-neuron degeneration in ALS-model mice. Proc Natl Acad Sci USA 111:E1035–1042. doi:10.1073/pnas.1401595111

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115–124. doi:10.1016/S0092-8674(00)80611-X

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Narayanan M, Friedlander RM (2003) Additive neuroprotective effects of minocycline with creatine in a mouse model of ALS. Ann Neurol 53:267–270. doi:10.1002/ana.10476

    Article  PubMed  CAS  Google Scholar 

  • Zhao W, Varghese M, Yemul S, Pan Y, Cheng A, Marano P, Hassan S, Vempati P, Chen F, Qian X, Pasinetti GM (2011) Peroxisome proliferator activator receptor gamma coactivator-1alpha (PGC-1alpha) improves motor performance and survival in a mouse model of amyotrophic lateral sclerosis. Mol Neurodegener 6:51–59. doi:10.1186/1750-1326-6-51

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are grateful to The Israeli ALS Research Association (Haifa, Israel), and Rappaport Family Research, Technion-Israel Institute of Technology for their supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orly Weinreb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golko-Perez, S., Mandel, S., Amit, T. et al. Additive Neuroprotective Effects of the Multifunctional Iron Chelator M30 with Enriched Diet in a Mouse Model of Amyotrophic Lateral Sclerosis. Neurotox Res 29, 208–217 (2016). https://doi.org/10.1007/s12640-015-9574-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-015-9574-4

Keywords

Navigation