Skip to main content

Monoclonal Antibodies: Past, Present and Future

  • Chapter
  • First Online:
Concepts and Principles of Pharmacology

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 260))

Abstract

Monoclonal antibodies (mAbs) are immunoglobulins designed to target a specific epitope on an antigen. Immunoglobulins of identical amino-acid sequence were originally produced by hybridomas grown in culture and, subsequently, by recombinant DNA technology using mammalian cell expression systems. The antigen-binding region of the mAb is formed by the variable domains of the heavy and light chains and contains the complementarity-determining region that imparts the high specificity for the target antigen. The pharmacokinetics of mAbs involves target-mediated and non-target-related factors that influence their disposition.

Preclinical safety evaluation of mAbs differs substantially from that of small molecular (chemical) entities. Immunogenicity of mAbs has implications for their pharmacokinetics and safety. Early studies of mAbs in humans require careful consideration of the most suitable study population, route/s of administration, starting dose, study design and the potential difference in pharmacokinetics in healthy subjects compared to patients expressing the target antigen.

Of the ever-increasing diversity of therapeutic indications for mAbs, we have concentrated on two that have proved dramatically successful. The contribution that mAbs have made to the treatment of inflammatory conditions, in particular arthritides and inflammatory bowel disease, has been nothing short of revolutionary. Their benefit has also been striking in the treatment of solid tumours and, most recently, as immunotherapy for a wide variety of cancers. Finally, we speculate on the future with various new approaches to the development of therapeutic antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aalberse RC, Stapel SO, Schuurman J, Rispens T (2009) Immunoglobulin G4: an odd antibody. Clin Exp Allergy 39:469–477

    Article  CAS  PubMed  Google Scholar 

  • Aggeletopoulou I, Assimakopoulos SF, Konstantakis C, Triantos C (2018) Interleukin 12/Interleukin 23 pathway: biological basis and therapeutic effect in patients with Crohn’s disease. World J Gastroenterol 24:4093–4103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alegre ML, Peterson LJ, Xu D et al (1994) A non-activating “humanized” anti-CD3 monoclonal antibody retains immunosuppressive properties in vivo. Transplantation 57:1537–1543

    Article  CAS  PubMed  Google Scholar 

  • Angal S, King DJ, Bodmer MW, Turner A, Lawson AD, Roberts G, Pedley B, Adair JR (1993) A single amino acid substitution abolishes the heterogeneity of chimeric mouse/human (IgG4) antibody. Mol Immunol 30:105–108

    Article  CAS  PubMed  Google Scholar 

  • Annibali O et al (2018) PD-1 /PD-L1 checkpoint in hematological malignancies. Leuk Res 67:45–55

    Article  CAS  PubMed  Google Scholar 

  • Antonioli L, Yegutkin GG, Pacher P, Blandizzi C, Hasko G (2016) Anti-CD-73 in cancer immunotherapy: awakening new opportunities. Trends Cancer 2:95–109

    Article  PubMed  PubMed Central  Google Scholar 

  • Bakri SJ, Snyder MR, Reid JM, Pulido JS, Ezzat MK, Singh R (2007) Pharmacokinetics of intravitreal ranibizumab (Lucentis). Ophthalmology 114:2179–2182

    Article  PubMed  Google Scholar 

  • Baldo BA (2013) Adverse events to monoclonal antibodies used for cancer therapy: focus on hypersensitivity responses. Oncoimmunology e26333:2

    Google Scholar 

  • Baselga J et al (2012) Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl Med 366:109–119

    Article  CAS  Google Scholar 

  • Bathon J, Martin RW, Fleischmann et al (2000) A comparison of etanercept and methotrexate in patients with early rheumatoid arthritis. New Engl J Med 343:1586–1593

    Article  CAS  PubMed  Google Scholar 

  • Behm BW, Bickston SJ (2008) Tumor necrosis factor-alpha antibody for maintenance of remission in Crohn’s disease. Cochrane Database Syst Rev:CD006893. https://doi.org/10.1002/14651858.CD006893

  • Belai EB (2014) PD-1 blockage delays murine squamous cell carcinoma development. Carcinogenesis 35:424–431

    Article  CAS  PubMed  Google Scholar 

  • Blackwell K et al (2018) The global need for a trastuzumab biosimilar for patients with HER2-positive breast cancer. Clin Breast Cancer 18:95–113

    Article  PubMed  Google Scholar 

  • Bolt S, Routledge E, Lloyd I et al (1993) The generation of a humanized, non-mitogenic CD3 monoclonal antibody which retains in vitro immunosuppressive properties. Eur J Immunol 23:403–411

    Article  CAS  PubMed  Google Scholar 

  • Boswell CA, Tesar D, Mukhyala K, Thell FP, Fielder PJ, Khawli LI (2010) Effects of charge on antibody tissue distribution and pharmacokinetics. Bioconjug Chem 21:2153–2163

    Article  CAS  PubMed  Google Scholar 

  • Braegger CP, Nicholls S, Murch SH, Stephens S, MacDonald TT (1992) Tumour necrosis factor alpha in stool as a marker of intestinal inflammation. Lancet 339:89–91

    Article  CAS  PubMed  Google Scholar 

  • Brambell FW (1966) The transmission of immunity from mother to young and the catabolism of immunoglobulins. Lancet 2:1087–1093

    Article  CAS  PubMed  Google Scholar 

  • Brambell FW, Hemmings WA, Morris IG (1964) A theoretical model of gamma-globulin catabolism. Nature 203:1352–1354

    Article  CAS  PubMed  Google Scholar 

  • Brennan FM, Chantry D, Jackson A, Maini RN, Feldmann M (1989) Inhibitory effect of TNF alpha antibodies on synovial cell interleukin-1 production in rheumatoid arthritis. Lancet 2:244–247

    Article  CAS  PubMed  Google Scholar 

  • Bruggemann M, Winter G, Waldmann H, Neuberger MS (1989) The immunogenicity of chimeric antibodies. J Exp Med 170:2153–2157

    Article  CAS  PubMed  Google Scholar 

  • Buchan G, Barrett K, Turner M, Chantry D, Maini RN, Feldmann M (1988) Interleukin-1 and tumour necrosis factor mRNA expression in rheumatoid arthritis: prolonged production of IL-1 alpha. Clin Exp Immunol 73:449–455

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burmeister WP, Huber AH, Bjorkman PJ (1994) Crystal structure of the complex of rat neonatal Fc receptor with Fc. Nature 372:379–383

    Article  CAS  PubMed  Google Scholar 

  • Cameron F, Whiteside G, Perry C (2011) Ipilimumab: first global approval. Drugs 71:1093–1104

    Article  PubMed  Google Scholar 

  • Capelan M et al (2013) Pertuzumab: new hope for patients with HER2-positive breast cancer. Ann Oncol 24:273–282

    Article  CAS  PubMed  Google Scholar 

  • Challa DK, Bussmeyer U, Khan T, Montoyo HP, Bansal P, Ober RJ, Ward ES (2013) Autoantibody depletion ameliorates disease in murine experimental autoimmune encephalomyelitis. MAbs 5:655–659

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang TW (2006) Developing antibodies for targeting immunoglobulin and membrane-bound immunoglobulin E. Allergy Asthma Proc 27(Suppl 1):S7–S14

    CAS  PubMed  Google Scholar 

  • Chaparro-Riggers J, Liang H, DeVay RM, Bai L, Sutton JE, Chen W, Geng T, Lindquist K, Casas MG, Boustany LM et al (2012) Increasing serum half-life and extending cholesterol lowering in vivo by engineering antibody with pH-sensitive binding to PCSK9. J Biol Chem 287:11090–11097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapman K, Pullen NI, Coney L, Dempster M et al (2009) Preclinical development of monoclonal antibodies. Considerations for the use of non-human primates. MAbs 1:505–516

    Article  PubMed  PubMed Central  Google Scholar 

  • Chatenoud L, Baudrihaye MF, Chkoff N, Kreis H, Goldstein G, Bach J-F (1986) Restriction of the human in vivo immune response against the mouse monoclonal antibody OKT3. J Immunol 137:830–838

    CAS  PubMed  Google Scholar 

  • Chatenoud L, Primo J, Bach J-F (1997) CD3 antibody-induced dominant self-tolerance in overtly diabetic NOD mice. J Immunol 158:2947–2954

    CAS  PubMed  Google Scholar 

  • Chen L, Flies DB (2013) Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol 13:227–242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen L, Han X (2015) Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future. J Clin Invest 125:3384–3391

    Article  PubMed  PubMed Central  Google Scholar 

  • Chung CH et al (2008) Cetuximab-induced anaphylaxis and IgE specific for galactose-alpha-1,3-galactose. New Engl J Med 358:1109–1117

    Article  CAS  PubMed  Google Scholar 

  • Clark M (2000) Antibody humanization: a case of the ‘Emperor’s new clothes’? Immunol Today 21:397–402

    Article  CAS  PubMed  Google Scholar 

  • Clarke J, Leach W, Pippig S, Joshi A, Wu B, House R, Beyer J (2004) Evaluation of a surrogate antibody for preclinical safety testing of an anti-CD11a monoclonal antibody. Regul Toxicol Pharmacol 40:219–226

    Article  CAS  PubMed  Google Scholar 

  • Coats S, Williams M, Kebbie B et al (2019) Antibody-drug conjugates: future directions in clinical and translational strategies to improve the therapeutic index. Clin Cancer Res. https://doi.org/10.1158/1078-0432.CCR-19-0272

    Article  PubMed  CAS  Google Scholar 

  • Cohen BA et al (2008) The implications of immunogenicity for protein-based multiple sclerosis therapies. J Neurol Sci 275:7–17

    Article  CAS  PubMed  Google Scholar 

  • Constantinidou A, Alifieris C, Trafalis DT (2019) Targeting programmed cell death-1 (PD-1) and ligand (PD-L1): a new era in cancer active immunotherapy. Pharmacol Ther 194:84–106

    Article  CAS  PubMed  Google Scholar 

  • Cope AP, Londei M, Chu R, Cohen SBA, Elliott MJ, Brennan FM, Maini RN, Feldmann M (1994) Chronic exposure to tumor necrosis factor (TNF) in vitro impairs the activation of T cells through the T cell receptor/CD3 complex; reversal in vivo by anti-TNF antibodies in patients with rheumatoid arthritis. J Clin Invest 94:749–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cortez-Jugo C, Qi A, Rajapaksa A, Friend JR, Yeo LY (2015) Pulmonary monoclonal antibody delivery via a portable micorfluidic nebulization platform. Biomicrofluidics 9:052603

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Datta-Mannan A (2019) Mechanisms influencing the disposition of monoclonal antibodies and peptides. Drug Metab Dispos. https://doi.org/10.1124/dmd.119.086488

    Article  PubMed  CAS  Google Scholar 

  • Datta-Mannan A, Croy JE, Schirtzinger L, Torgerson S, Breyer M, Wroblewski VJ (2016) Aberrant bispecific antibody pharmacokinetics linked to liver sinusoidal endothelium clearance mechanism in cynomolgus monkeys. MAbs 8:969–982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Datta-Mannan A, Choi H, Stokell D, Tang J, Murphy A, Wrobleski A, Feng Y (2018) The properties of cysteine-conjugated antibody-drug conjugates are impacted by the IgG subclass. AAPS J 20:103

    Article  PubMed  CAS  Google Scholar 

  • Descotes J (2009) Immunotoxicity of monoclonal antibodies. MAbs 1:104–111

    Article  PubMed  PubMed Central  Google Scholar 

  • Doessegger L, Banholzer ML (2015) Clinical development methodology for infusion-related reactions with monoclonal antibodies. Clin Transl Immunol 4:e39

    Article  Google Scholar 

  • Elliot MJ, Maini RN, Feldmann M, Kalden JR, Antoni C, Smolen JS, Leeb B, Breedveld FC, Macfarlane JD, Bijl JA, Woody JN (1994) Randomised double-blind comparison of chimeric monoclonal antibody to tumour necrosis factor α (cA2) versus placebo in rheumatoid arthritis. Lancet 344:1105–1110

    Article  Google Scholar 

  • Elliott MJ, Maini RN, Feldmann M et al (1993) Treatment of rheumatoid arthritis with chimeric monoclonal antibodies to tumor necrosis factor alpha. Arthritis Rheum 36:1681–1690

    Article  CAS  PubMed  Google Scholar 

  • Elliott MJ, Maini RN, Feldmann M et al (1994) Repeated therapy with monoclonal antibody to tumour necrosis factor alpha (cA2) in patients with rheumatoid arthritis. Lancet 344:1125

    Article  CAS  PubMed  Google Scholar 

  • Ettlinger DE, Mitterhauser M, Wadsak W, Ostermann E, Farkouh A, Schueller J, Czejka M (2006) In vivo disposition of irinotecan (CPT-11) and its metabolites in combination with the monoclonal antibody cetuximab. Anticancer Res 26:1337–1341

    CAS  PubMed  Google Scholar 

  • Feagan BG, Sandborn WJ, Gasink C et al (2016) Ustekinumab as Induction and maintenance therapy for Crohn’s disease. N Engl J Med 375:1946–1960

    Article  CAS  PubMed  Google Scholar 

  • Feldmann M, Brennan FM, Maini RN (1996) Role of cytokines in rheumatoid arthritis. Annu Rev Immunol 14:397–440

    Article  CAS  PubMed  Google Scholar 

  • Ferran C, Sheehan K, Dy M et al (1990) Cytokine-related syndrome following injection of anti-CD3 monoclonal antibody: further evidence for transient in vivo T cell activation. Eur J Immunol 20:509–515

    Article  CAS  PubMed  Google Scholar 

  • Ferri N, Bellosta S, Baldessin L, Boccia D, Racagni G, Cosini A (2016) Pharmacokinetic interactions of monoclonal antibodies. Pharmacol Res 111:592–599

    Article  CAS  PubMed  Google Scholar 

  • Freeman GJ et al (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192:1027–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garg A, Balthasar JP (2007) Physiologically-based pharmacokinetic (PBPK) model to predict IgG tissue kinetics in wild-type and FcRn-knockout mice. J Pharmacokinet Pharmacodyn 34:687–709

    Article  CAS  PubMed  Google Scholar 

  • Gatalica Z et al (2014) Programmed cell death 1 (PD-1) and its ligand (PD-L1) in common cancers and their correlation with molecular cancer type. Cancer Epidemiol Biomarkers Prev 23:2965–2970

    Article  CAS  PubMed  Google Scholar 

  • Gaudreault J, Shiu V, Bricarello A et al (2005) Concomitant administration of bevacizumab, irinotecan, 5-fluorouracil, and leucovorin: nonclinical safety and pharmacokinetics. Int J Toxicol 24:357–363

    Article  CAS  PubMed  Google Scholar 

  • Genovese MC, Becker J-C, Schiff M et al (2005) Abatacept for rheumatoid arthritis refractory to tumour necrosis factor α inhibition. New Engl J Med 353:1114–1123

    Article  CAS  PubMed  Google Scholar 

  • Geoghegan JC, Diedrich G, Xiaojun L et al (2016) Inhibition of CD73 AMP hydrolysis by a therapeutic antibody with a dual, non-competitive mechanism of action. MAbs 8:454–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerratana L et al (2017) Pertuzumab and breast cancer: another piece in the anti-HER2 puzzle. Exp Opin Biol Ther 17:365–374

    Article  CAS  Google Scholar 

  • Grantab RH, Tannock IF (2012) Penetration of anticancer drugs through tumour tissue as a function of cellular packing density and interstitial fluid pressure and its modification by bortezomib. BMC Cancer 12:214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groom JR (2019) Regulators of T-cell fate: integration of cell migration, differentiation and function. Immunol Rev 289:101–114

    Article  CAS  PubMed  Google Scholar 

  • Haanen JBAG et al (2017) Management of toxicities from immunotherapy: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Dent 28(suppl 4):119–142

    Google Scholar 

  • Hansel TT et al (2010) The safety and side effects of monoclonal antibodies. Nat Rev Drug Discov 9:325–338

    Article  CAS  PubMed  Google Scholar 

  • Haworth C, Brennan FM, Chantry D, Turner M, Maini RN, Feldmann M (1991) Expression of granulocyte macrophage colony-stimulating factor (GM-CSF) in rheumatoid arthritis: regulation by tumor necrosis factor-alpha. Eur J Immunol 21:2575–2579

    Article  CAS  PubMed  Google Scholar 

  • Henne KR, Ason B, Howard M et al (2015) Anti-PCSK9 antibody pharmacokinetics and low density lipoprotein-cholesterol pharmacodynamics in non-human primates are antigen affinity-dependent and exhibit limited sensitivity to neonatal Fc receptor-binding enhancement. J Pharmacol Exp Ther 353:119–131

    Article  CAS  PubMed  Google Scholar 

  • Hifumi E, Morihara F, Hatiuchi K, Okuda T, Nishizono A, Uda T (2008) Catalytic features and eradication ability of antibody light chain UA15-L against H. pylori. J Biol Chem 283:899–907

    Article  CAS  PubMed  Google Scholar 

  • Hirsch FR et al (2017) PD-L1 Immunohistochemistry assays for lung cancer: results from phase 1 of the blueprint PD-L1 IHC assay comparison project. J Thorac Oncol 12:208–222

    Article  PubMed  Google Scholar 

  • Ho P-R et al (2017) Risk of natalizumab-associated progressive multifocal leukoencephalopathy in patients with multiple sclerosis: a retrospective analysis of data from four clinical studies. Lancet Neurol 16:925–933

    Article  CAS  PubMed  Google Scholar 

  • Hodi FS et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. New Engl J Med 363:711–723

    Article  CAS  PubMed  Google Scholar 

  • Hooks MA, Wade CS, Millikan WJ (1991) Muromonab CD-3: a review of its pharmacology, pharmacokinetics, and clinical use in transplantation. Pharmacotherapy 11:26–37

    CAS  PubMed  Google Scholar 

  • Hua F, Ribbing J, Reinisch W, Cataldi F, Martin S (2015) A pharmacokinetic comparison of anrukinzumab, an anti-IL-13 monoclonal antibody, among healthy volunteers, asthma and ulcerative colitis patients. Br J Clin Pharmacol 80:101–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudis CA (2007) Trastuzumab--mechanism of action and use in clinical practice. New Engl J Med 357:39–51

    Article  CAS  PubMed  Google Scholar 

  • Hünig T (2012) The storm has cleared: lessons from the CD28 superagonist TGN1412 trial. Nat Rev Immunol 12:317–318

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson M (2007) Natalizumab: A new treatment for relapsing remitting multiple sclerosis. Ther Clin Risk Manag 3:259–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishida Y et al (1992) Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 11:3887–3895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain T, Litzow MR (2018) No free rides: management of toxicities of novel immunotherapies in ALL, including financial. Blood Adv 2:3393–3403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jefferis R (2009) Glycosylation of antibody therapeutics: optimisation for purpose. Methods Mol Biol 483:223–238

    Article  PubMed  CAS  Google Scholar 

  • Jeon C, Sekhon S, Yan D, Ladan A, Nakamura M, Bhutani T (2017) Monoclonal antibodies inhibiting IL-12, -23, and -17 for the treatment of psoriasis. Human Vacc Immunother 13:2247–2259

    Article  Google Scholar 

  • Jones JL, Coles AJ (2014) Mode of action and clinical studies with alemtuzumab. Exp Neurol 262:37–43

    Article  CAS  PubMed  Google Scholar 

  • Jones RG, Martino A (2016) Targeted localized use of therapeutic antibodies: a review of non-systemic, topical and oral applications. Crit Rev Biotechnol 36:506–520

    CAS  PubMed  Google Scholar 

  • Jones PT, Dear PH, Foote J, Neuberger MS, Winter G (1986) Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321:522–525

    Article  CAS  PubMed  Google Scholar 

  • Josefowicz SZ, Lu L-F, Rudensky AY (2012) Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol 30:531–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaida-Yip F, Deshpande K, Saran T, Vyas D (2018) Biosimilars: review of current applications, obstacles, and their future in medicine. World J Clin Cases 16:161–166

    Article  Google Scholar 

  • Kauffman CL, Aria N, Toichi E, McCormick TS, Cooper KD, Gottlieb AB, Everitt DE, Frederick B, Zhu Y, Graham MA, Pendley CE, Mascelli MA (2004) A phase I study evaluating the safety, pharmacokinetics, and clinical response of a human IL-12 p40 antibody in subjects with plaque psoriasis. J Invest Dermatol 123:1037–1044

    Article  CAS  PubMed  Google Scholar 

  • Keane J (2005) TNF-blocking agents and tuberculosis: new drugs illuminate an old topic. Rheumatology 44:714–720

    Article  CAS  PubMed  Google Scholar 

  • Keating GM (2010) Panitumumab: a review of its use in metastatic colorectal cancer. Drugs 70:1059–1078

    Article  CAS  PubMed  Google Scholar 

  • Kennett RH (1981) Hybridomas: a new dimension in biological analyses. In Vitro 17:1036–1050

    Article  CAS  PubMed  Google Scholar 

  • Kim GW, Lee NR, Pi RH, Lim YS, Lee YM, Lee JM, Jeong HS, Chung SH (2015) IL-6 inhibitors for treatment of rheumatoid arthritis: past, present, and future. Arch Pharm Res 38:575–584

    Article  CAS  PubMed  Google Scholar 

  • Knodler M, Korfer J, Kuzumann V et al (2018) Randomised phase II trial to investigate catumaxomab (anti-EpCAM × anti-CD3) for treatment of peritoneal carcinomatosis in patients with gastric cancer. Br J Cancer 119:296–302

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497

    Article  CAS  PubMed  Google Scholar 

  • Krishnamurti U, Silverman JF (2014) HER2 in breast cancer: a review and update. Adv Anat Pathol 21:100–107

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Bhattacharya P, Prabhakar BS (2018) A comprehensive review on the role of co-signaling receptors and Treg homeostasis in autoimmunity and tumor immunity. J Autoimmun 95:77–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunert R, Reinhart D (2016) Advances in recombinant antibody manufacturing. Appl Microbiol Biotechnol 100:3451–3461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kung P, Goldstein G, Reinherz EL, Schlossman SF (1979) Monoclonal antibodies defining distinctive human T cell surface antigens. Science 206:347–349

    Article  CAS  PubMed  Google Scholar 

  • Labrijn AF, Janmaat ML, Reichert JM, Parren PWHI (2019) Bispecific antibodies: a mechanistic review of the pipeline. Nat Rev Drug Discov 18:585–608

    Article  CAS  PubMed  Google Scholar 

  • The Lancet (2018) End of the road for daclizumab in multiple sclerosis. Lancet 391:1000

    PubMed  Google Scholar 

  • Latchman Y, Wood CR, Chernova T et al (2001) PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2:261–268

    Article  CAS  PubMed  Google Scholar 

  • Leach MW, Halpern WG, Johnson CW et al (2010) Use of tissue cross-reactivity studies in the development of antibody-based biopharmaceuticals: history, experience, methodology, and future directions. Toxicol Pathol 38:1138–1166

    Article  PubMed  Google Scholar 

  • Lee SJ, Kavanaugh A (2005) Adverse reactions to biologic agents: focus on autoimmune disease therapies. J Allergy Clin Immunol 116:900–905

    Article  CAS  PubMed  Google Scholar 

  • Lee DM, Weinblatt ME (2001) Rheumatoid arthritis. Lancet 358:903–911

    Article  CAS  PubMed  Google Scholar 

  • Lenz H-J (2007) Cetuximab in the management of colorectal cancer. Biologics 1:77–91

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lipsky PE, van der Heijde DMFM, St Clair EW et al (2000) Infliximab and methotrexate in the treatment of RA. N Engl J Med 343:1594–1602

    Article  CAS  PubMed  Google Scholar 

  • Liu L (2015) Antibody glycosylation and its impact on the pharmacokinetics and pharmacodynamics of monoclonal antibodies and Fc-fusion proteins. J Pharm Sci 104:1866–1884

    Article  CAS  PubMed  Google Scholar 

  • Liu L (2018) Pharmacokinetics of monoclonal antibodies and Fc-fusion proteins. Protein Cell 9:15–32

    Article  CAS  PubMed  Google Scholar 

  • Lobo PI, Patel HC (1997) Murine monoclonal IgG antibodies: differences in their IgG isotypes can affect the antibody effector activity when using human cells. Immunol Cell Biol 75:267–274

    Article  CAS  PubMed  Google Scholar 

  • Loyau J, Malinge P, Daubeuf B et al (2014) Maximizing the potency of an anti-TLR4 monoclonal antibody by exploiting proximity to Fcγ receptors. MAbs 6:1621–1630

    Article  PubMed  PubMed Central  Google Scholar 

  • Lupo MG, Ferri N (2018) Angiopoietin-like 3 (ANGPTLS) and atherosclerosis: lipid and non-lipid related effects. J Caridiovasc Dev Dis 5:E39

    Google Scholar 

  • Maloney DG (2012) Anti-CD20 antibody therapy for B-cell lymphomas. New Engl J Med 366:2008–2016

    Article  CAS  PubMed  Google Scholar 

  • Maloney DG et al (1997) IDEC-C2B8 (rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin’s lymphoma. Blood 90:2188–2195

    Article  CAS  PubMed  Google Scholar 

  • Marschall ALJ, Dübel S (2016) Antibodies inside of a cell can change its outside: can intrabodies provide a new therapeutic paradigm? Comput Struct Biotechnol J 14:304–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCall B (2019) Alemtuzumab to be restricted pending review, says EMA. Lancet 393:1683

    Article  PubMed  Google Scholar 

  • McDermott J, Jimeno A (2015) Pembrolizumab: PD-1 inhibition as a therapeutic strategy in cancer. Drugs Today (Barc) 51:7–20

    Article  CAS  Google Scholar 

  • Melero I et al (2014) Therapeutic vaccines for cancer: an overview of clinical trials. Nat Rev Clin Oncol 11:509–524

    Article  CAS  PubMed  Google Scholar 

  • Messersmith WA, Ahnen DJ (2008) Targeting EGFR in colorectal cancer. New Engl J Med 359:1834–1836

    Article  CAS  PubMed  Google Scholar 

  • Migden MR et al (2018) PD-1 blockade with cemiplimab in advanced cutaneous squamous-cell carcinoma. New Engl J Med 379:341–351

    Article  CAS  PubMed  Google Scholar 

  • Monaco C, Nanchahal J, Taylor P, Feldmann M (2014) Anti-TNF therapy: past, present and future. Int Immunol 27:55–62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morrison SL, Johnson MJ, Herzenberg LA, Oi VT (1984) Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. Proc Natl Acad Sci U S A 81:6851–6855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muenst S, Läubli H, Soysal SD, Zippelius A, Tzankov A, Hoeller S (2016) The immune system and cancer evasion strategies: therapeutic concepts. J Intern Med 279:541–562

    Article  CAS  PubMed  Google Scholar 

  • Nami B, Maadi H, Wang Z (2018) Mechanisms underlying the action and synergism of trastuzumab and pertuzumab in targeting HER2-positive breast cancer. Cancer 10:342

    Article  CAS  Google Scholar 

  • Narazaki M, Tanaka T, Kishimoto T (2017) The role and therapeutic targeting of IL-6 in rheumatoid arthritis. Expert Rev Clin Immunol 13:535–551

    Article  CAS  PubMed  Google Scholar 

  • Nelson AL (2010) Antibody fragments: hope and hype. MAbs 2:77–83

    Article  PubMed  PubMed Central  Google Scholar 

  • Nemeth BT, Varga ZV, Wu WJ, Pacher P (2017) Trastuzumab cardiotoxicity: from clinical trials to experimental studies. Br J Pharmacol 174:3727–3748

    Article  CAS  PubMed  Google Scholar 

  • Nishijima TF, Shachar SS, Nyrop KA, Muss HB (2017) Safety and tolerability of PD-1/PD-L1 inhibitors compared with chemotherapy in patients with advanced cancer: a meta-analysis. Oncologist 22:470–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noman MZ et al (2014) PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med 211:781–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Donnell JS, Massi D, Teng MWL, Mandala M (2018) PI3K-AKT-mTOR inhibition in cancer immunotherapy, redux. Semin Cancer Biol 48:91–103

    Article  PubMed  CAS  Google Scholar 

  • Oroudjev E, Lopus M, Wilson L et al (2010) Maytansinoid-antibody conjugates induce mitotic arrest by suppressing microtubule dynamic instability. Mol Cancer Ther 9:2700–2713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel DA, Puig-Canto A, Challa DK, Perez Montoyo H, Ober RJ, Ward ES (2011) Neonatal Fc receptor blockade by Fc engineering ameliorates in a murine model. J Immunol 187:1015–1022

    Article  CAS  PubMed  Google Scholar 

  • Paulus HE, Egger MJ, Ward JR, Williams HJ (1990) Analysis of improvement in individual rheumatoid arthritis patients treated with disease-modifying antirheumatic drugs, based on the finding in patients treated with placebo. The Cooperative Systematic Studies of Rheumatic Diseases Group. Arthritis Rheum 33:477–484

    Article  CAS  PubMed  Google Scholar 

  • Peddi PF, Hurvitz SA (2013) Trastuzumab emtansine: the first targeted chemotherapy for treatment of breast cancer. Future Oncol 9:319–326

    Article  CAS  PubMed  Google Scholar 

  • Pichler WJ (2006) Adverse side-effects to biological agents. Allergy 61:912–920

    Article  CAS  PubMed  Google Scholar 

  • Present DH, Rutgeerts P, Targan S, Hanauer SB, Mayer L, van Hogezand RA, Podolsky DK, Sands BE, Braakman T, DeWoody KL, Schaible TF, van Deventer SJ (1999) Infliximab for the treatment of fistulas in patients with Crohn’s disease. N Engl J Med 340:1398–1405

    Article  CAS  PubMed  Google Scholar 

  • Price TJ, Peeters M, Kim TW et al (2014) Panitumumab versus cetuximab in patients with chemotherapy-refractory wild-type KRAS exon 2 metastatic colorectal cancer (ASPECCT): a randomised, multicentre, open-label, non-inferiority phase 3 study. Lancet Oncol 15:569–579

    Article  CAS  PubMed  Google Scholar 

  • Ribas A, Wolchok JD (2018) Cancer immunotherapy using checkpoint blockade. Science 359:1350–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richards DM, Delacher M, Goldfarb Y et al (2015) Treg cell differentiation: from thymus to peripheral tissue. Prog Mol Biol Transl Sci 136:175–205

    Article  CAS  PubMed  Google Scholar 

  • Riegert-Johnson DL, Godfrey JA, Myers JL et al (2002) Delayed hypersensitivity reaction and acute respiratory distress syndrome following infliximab infusion. Inflamm Bowel Dis 8:186–191

    Article  PubMed  Google Scholar 

  • Robbie GJ, Criste R, Dall’acqua WF et al (2013) A novel investigational Fc-modified humanized monoclonal antibody, motavizumab-YTE, has an extended half-life in healthy adults. Antimicrob Agents Chemother 85:621–631

    Google Scholar 

  • Robbins PF, Kassim SH, Tran TL et al (2015) A pilot trial using lymphocytes genetically engineered with an NY-ESO-1-reactive T-cell receptor: long-term follow-up and correlates with response. Clin Cancer Res 21:1019–1027

    Article  CAS  PubMed  Google Scholar 

  • Roopenian DC, Akilesh S (2007) FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol 7:715–725

    Article  CAS  PubMed  Google Scholar 

  • Roselló S, Biasco I, Garcia Fabregat L, Cervantes A, Jordan K, ESMO Clinical Practice Guidelines (2017) Management of infusion reactions to systemic anticancer therapy: ESMO clinical practice guidelines. Ann Oncol 28(suppl 4):iv100–iv118

    Article  PubMed  Google Scholar 

  • Rosenberg SA, Sherry RM, Morton KE et al (2005) Tumor progression can occur despite the induction of very high levels of self/tumor antigen-specific CD8+ T cells in patients with melanoma. J Immunol 175:6169–6176

    Article  CAS  PubMed  Google Scholar 

  • Roskoski R (2014) The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacol Res 79:34–74

    Article  CAS  PubMed  Google Scholar 

  • Ross JS, Slodkowska EA, Symmans WF et al (2009) The HER-2 receptor and breast cancer: ten years of targeted anti-HER-2 therapy and personalized medicine. Oncologist 14:320–368

    Article  CAS  PubMed  Google Scholar 

  • Ryman JT, Meibohm B (2017) Pharmacokinetics of monoclonal antibodies. CPT Pharmacometrics Syst Pharmacol 6:576–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salles G, Barrett M, Foà R et al (2017) Rituximab in B-cell hematologic malignancies: a review of 20 years of clinical experience. Adv Ther 34:2232–2273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samineni D, Girish S, Li C (2016) Impact of Shed/Soluble targets on the PK/PD of approved therapeutic monoclonal antibodies. Expert Rev Clin Pharmacol 9:1557–1569

    Article  CAS  PubMed  Google Scholar 

  • Sandborn WJ, Hanauer SB (2002) Infliximab in the treatment of Crohn’s disease: a user’s guide for clinicians. Am J Gastroenterol 97:2962–2972

    Article  CAS  PubMed  Google Scholar 

  • Sanmamed MF, Chen L (2014) Inducible expression of B7-H1 (PD-L1) and its selective role in tumor site immune modulation. Cancer J 20:256–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanmamed MF, Chen L (2018) A paradigm shift in cancer immunotherapy: from enhancement to normalization. Cell 175:313–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saribas AS, Ozdemir A, Lam C, Safak M (2010) JC virus-induced progressive multifocal leukoencephalopathy. Futur Virol 5:313–323

    Article  CAS  Google Scholar 

  • Sathish JG, Sethu S, Bielsky MC et al (2013) Challenges and approaches for the development of safer immunomodulatory biologics. Nat Rev Drug Discov 12:306–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuurman J, van Ree R, Perdok GJ, van Doorn HR, Tan KY, Aalberse RC (1999) Normal human immunoglobulin G4 is bispecific: it has two different antigen-combining sites. Immunology 97:693–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuurman J, Perdok GJ, Gorter AD, Aalberse RC (2001) The inter-heavy chain disulfide bonds of IgG4 are in equilibrium with intra-chain disulfide bonds. Mol Immunol 38:1–8

    Article  CAS  PubMed  Google Scholar 

  • Schwartzentruber DJ, Hom SS, Dadmarz R et al (1994) In vitro predictors of therapeutic response in melanoma patients receiving tumor-infiltrating lymphocytes and interleukin-2. J Clin Oncol 12:1475–1483

    Article  CAS  PubMed  Google Scholar 

  • Sedykh SE, Prinz VV, Buneva VN, Nevinsky GA (2018) Bispecific antibodies: design, therapy, perspectives. Drug Des Dev Ther 12:195–208

    Article  CAS  Google Scholar 

  • Sgro C (1995) Side-effects of a monoclonal antibody, muromonab CD3/orthoclone OKT3: bibliographic review. Toxicology 105:23–29

    Article  CAS  PubMed  Google Scholar 

  • Singer BA (2017) The role of natalizumab in the treatment of multiple sclerosis: benefits and risks. Ther Adv Neurol Disord 10:327–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smolen JS, Aletaha D, McInnes IB (2016) Rheumatoid arthritis. Lancet 388:2023–2038

    Article  CAS  PubMed  Google Scholar 

  • Sondak VK, Smalley KS, Kudchadkar R, Grippon S, Kirkpatrick P (2011) Ipilimumab. Nat Rev Drug Discov 10:411–412

    Article  CAS  PubMed  Google Scholar 

  • Stubenrauch K, Wessels U, Regula JT, Kettenberger H, Schleypen J, Kohnert U (2010) Impact of molecular processing in the hinge region of therapeutic IgG4 antibodies on disposition profiles in cynomolgus monkeys. Drug Metab Dispos 38:84–91

    Article  CAS  PubMed  Google Scholar 

  • Swain SM, Kim SB, Cortes J, Ro J, Siglazov V, Campone M, Ciruelos E, Ferrero JM, Schneeweiss A, Knott A, Clark E, Ross G, Benyunes MC, Baselga J (2013) Pertuzumab, trastuzumab, and docetaxel for HER2-positive breast cancer (CLEOPATRA study): overall survival results from a randomised, double-blind, placebo-controlled phase 3 study. Lancet Oncol 14:461–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabernero J, Hoff PM, Shen L, Ohtsu A, Shah MA, Cheng K, Song C, Wu H, Eng-Wong J, Kim K, KangYK (2018) Pertuzumab plus trastuzumab and chemotherapy for HER2-positive metastatic gastric or gastro-oesophageal junction cancer (JACOB): final analysis of a double-blind, randomised, placebo-controlled phase 3 study. Lancet Oncol 19:1372–1384

    Article  CAS  PubMed  Google Scholar 

  • Talbot JJ, Calamba D, Pai M, Ma M, Thway TM (2015) Measurement of free versus total therapeutic monoclonal antibody in pharmacokinetic assessment is modulated by affinity, incubation time, and bioanalytical platform. AAPSJ 17:1446–1454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Targan SR, Hanauer SB, van Deventer SJ, Mayer L, Present DH, Braakman T, DeWoody KL, Schaible TF, Rutgeerts PJ (1997) A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor α for Crohn’s disease. N Engl J Med 337:1029–1035

    Article  CAS  PubMed  Google Scholar 

  • Taube JM, Anders RA, Young GD et al (2012) Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Trans Med 4:127ra37

    Article  CAS  Google Scholar 

  • Tsumoto K, Isozaki Y, Yagami H, Tomita M (2018) Future perspectives of therapeutic monoclonal antibodies. Immunotherapy 11:119–127

    Article  CAS  Google Scholar 

  • Vahle JL, Finch GL, Heidel SM et al (2010) Carcinogenicity assessments of biotechnology-derived pharmaceuticals: a review of approved molecules and best practice recommendations. Toxicol Pathol 38:522–553

    Article  CAS  PubMed  Google Scholar 

  • van der Bruggen P, Traversari C, Chomez P et al (1991) A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254:1643–1647

    Article  PubMed  Google Scholar 

  • van der Kolk LE, Grillo-Lopez AJ, Baars JW, Hack CE, van Oers MH (2001) Complement activation plays a key role in the side-effects of rituximab treatment. Br J Haematol 115:807–811

    Article  PubMed  Google Scholar 

  • Vidarsson G, Dekkers G, Rispens T (2014) IgG subclasses and allotypes: from structure to effector functions. Front Immunol 5:1–17

    Article  CAS  Google Scholar 

  • Vinay DS, Ryan EP, Pawelec G et al (2015) Immune evasion in cancer: mechanistic basis and therapeutic strategies. Semin Cancer Biol 35:S185–S198

    Article  PubMed  CAS  Google Scholar 

  • von Minckwitz G, Huang CS, Mano MS et al (2019) Trastuzumab emtansine for residual invasive HER2-positive breast cancer. New Engl J Med 380:617–628

    Article  Google Scholar 

  • Wakefield I, Stephens S, Foulkes R, Nesbitt A, Bourne T (2011) The use of surrogate antibodies to evaluate the development and reproductive toxicity potential of an anti-TNFα PEGylated Fab’ monoclonal antibody. Toxicol Sci 122:170–176

    Article  CAS  PubMed  Google Scholar 

  • Wang DD, Zhang S, Zhao H, Men AY, Parivar K (2009) Fixed dosing versus body size-based dosing of monoclonal antibodies in adult clinical trials. J Clin Pharmacol 49:1012–1024

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wang YM, Ahn HY (2014) Biological products for the treatment of psoriasis: therapeutic targets, pharmacodynamics and disease-drug-drug interaction implications. AAPS J 16:938–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward ES, Zhou J, Ghetie V, Ober RJ (2003) Evidence to support the cellular mechanism involved in serum IgG homeostasis in humans. Int Immunol 15:187–195

    Article  CAS  PubMed  Google Scholar 

  • Ward ES, Martinez C, Vaccaro C, Zhou J, Tang Q, Ober RJ (2005) From sorting endosomes to exocytosis: association of Rab4 and Rab11 GTPases with the Fc receptor, FcRn, during recycling. Mol Biol Cell 16:2028–2038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber J, Mandala M, Del Vecchio M et al (2017) Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. N Engl J Med 377:1824–1835

    Article  CAS  PubMed  Google Scholar 

  • Weisman MH, Durez P, Hallegua D et al (2006) Reduction of inflammatory biomarker response by abatacept in treatment of rheumatoid arthritis. J Rheumatol 33:2162–2166

    CAS  PubMed  Google Scholar 

  • Wiley HS, Shvartsman SY, Lauffenburger DA (2003) Computational modeling of the EGF-receptor system: a paradigm for systems biology. Trends Cell Biol 13:43–50

    Article  CAS  PubMed  Google Scholar 

  • Williams RO, Feldmann M, Maini RN (1992) Anti-tumor necrosis factor ameliorates joint disease in murine collagen induced arthritis. Proc Natl Acad Sci U S A 89:9784–9788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wirth TC, Kühnel F (2017) Neoantigen targeting – dawn of a new era in cancer immunotherapy? Front Immunol 8:1031–1016

    Article  CAS  Google Scholar 

  • Xu L, Zuch CL, Lin YS, Modi NB, Lum BL (2008) Pharmacokinetics and safety of bevacizumab administered in combination with cisplatin and paclitaxel in cynomolgus monkeys. Cancer Chemother Pharmacol 61:607–614

    Article  CAS  PubMed  Google Scholar 

  • Yamane-Ohnuki N, Satoh M (2009) Production of therapeutic antibodies with controlled fucosylation. MAbs 1:230–236

    Article  PubMed  PubMed Central  Google Scholar 

  • Yap TA, Papadopoulos KP, LoRusso P, Wong DJL, Hu-Lieskovan S, Holz J-B (2019) A first-in-human phase I study of FS118, an anti-LAG-3/PD-L1 bispecific antibody in patients with solid tumors that have progressed on prior PD-1/PD-L1 therapy. J Clin Oncol 37:TPS2652

    Article  Google Scholar 

  • Yu XQ, Robbie GJ, Wu Y et al (2016) Safety, tolerability, and pharmacokinetics of MEDI4893, an Investigational, extended-half-life, anti-staphylococcus aureus alpha-toxin human monoclonal antibody, in healthy adults. Antimicrob Agents Chemother 27:61. pii: e01020-16

    Google Scholar 

  • Zhang X et al (2004) Structural and functional analysis of the costimulatory receptor programmed death-1. Immunity 20(3):337–347

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Jang H, Fleischmann RM et al (2007) Pharmacokinetics and safety of golimumab, a fully human anti-TNF-alpha monoclonal antibody in subjects with rheumatoid arthritis. J Clin Pharmacol 47:383–396

    Article  CAS  PubMed  Google Scholar 

  • Zinner RG, Glisson BS, Fossella FV et al (2004) Trastuzumab in combination with cisplatin and gemcitabine in patients with Her2 overexpressing, untreated, advanced non-small cell lung cancer: report of a phase II trial and findings regarding optimal identification of patients with Her2-overexpressing disease. Lung Cancer 44:99–110

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Posner, J., Barrington, P., Brier, T., Datta-Mannan, A. (2019). Monoclonal Antibodies: Past, Present and Future. In: Barrett, J., Page, C., Michel, M. (eds) Concepts and Principles of Pharmacology. Handbook of Experimental Pharmacology, vol 260. Springer, Cham. https://doi.org/10.1007/164_2019_323

Download citation

Publish with us

Policies and ethics