Skip to main content

Role of Distinct Fat Depots in Metabolic Regulation and Pathological Implications

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology

Abstract

People suffering from obesity and associated metabolic disorders including diabetes are increasing exponentially around the world. Adipose tissue (AT) distribution and alteration in their biochemical properties play a major role in the pathogenesis of these diseases. Emerging evidence suggests that AT heterogeneity and depot-specific physiological changes are vital in the development of insulin resistance in peripheral tissues like muscle and liver. Classically, AT depots are classified into white adipose tissue (WAT) and brown adipose tissue (BAT); WAT is the site of fatty acid storage, while BAT is a dedicated organ of metabolic heat production. The discovery of beige adipocyte clusters in WAT depots indicates AT heterogeneity has a more central role than hither to ascribed. Therefore, we have discussed in detail the current state of understanding on cellular and molecular origin of different AT depots and their relevance toward physiological metabolic homeostasis. A major focus is to highlight the correlation between altered WAT distribution in the body and metabolic pathogenesis in animal models and humans. We have also underscored the disparity in the molecular (including signaling) changes in various WAT tissues during diabetic pathogenesis. Exercise-mediated beneficial alteration in WAT physiology/distribution that protects against metabolic disorders is evolving. Here we have discussed the depot-specific biochemical adjustments induced by different forms of exercise. A detailed understanding of the molecular details of inter-organ crosstalk via substrate utilization/storage and signaling through chemokines provide strategies to target selected WAT depots to pharmacologically mimic the benefits of exercise countering metabolic diseases including diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AgRP:

Agouti-related peptide

AKT1:

A strain k thymoma/transforming protein kinase 1

ANF:

Atrial natriuretic factor

ANGPTL4:

Angiopoietin-like 4

ANP:

Atrial natriuretic peptide

ARC:

Arcuate nucleus

AT:

Adipose tissue

BAIBA:

β-aminoisobutyric acid

BAT:

Brown adipose tissue

BCAAs:

Branched-chain amino acids

BDNF:

Brain-derived neurotrophic factor

BMP:

Bone morphogenetic protein

BNP:

B-type natriuretic peptide

C/EBP:

CCAAT/enhancer binding proteins

CAR4:

Carbonic anhydrase

CD:

Cluster of differentiation

CIDEA:

Cell death-inducing DFFA-like effector A

CNS:

Central nervous system

Cox:

Cytochrome c oxidase

DAG:

Diacylglycerol

dsWAT:

Deep subcutaneous WAT

Ear2:

Eosinophil-associated ribonuclease A-2

EBF:

Empty body fat

EGR1:

Early growth response 1

EN1:

Engrailed-1

Epsti1:

Epithelial stromal interaction 1

Eva1:

Epithelial V-like antigen 1

eWAT:

Epididymal white adipose tissue

EWS:

Ewing sarcoma

FGF9:

Fibroblast growth factor 9

FNDC4:

Fibronectin type III domain-containing 4

FOXC2:

Forkhead box C2

FSP27:

Fat-specific protein 27

GDF15:

Growth differentiation factor 15

GLUT1:

Glucose transporter protein type 1

GPR:

G-protein coupled receptor

Grb10:

Growth factor receptor bound protein 10

GSK-3:

Glycogen synthase kinase 3

HIF1:

Hypoxia-inducible factor

HSL:

Hormone-sensitive lipase

Hspb1:

Small heat shock protein beta-1

hTBC1:

Human TBC1 isoform

IKK:

IκB kinase

IL6:

Interleukin 6

ILC2:

Innate lymphoid type 2 cells

InR:

Insulin resistance

IR:

Insulin receptor

IRE1α:

Inositol-requiring transmembrane kinase endoribonuclease-1α

IRF 4:

Interferon regulatory factor 4

IRS-2:

IR substrate 2

iWAT:

Inguinal WAT

JNK:

c-Jun N-terminal kinase

KLF11:

Kruppel-like factor 11

LHX8:

LIM Homeobox8

MCP-1:

Monocyte chemoattractant protein-1

MEK:

Mitogen-activated protein kinase

Met-Enk:

Methionine-enkephalin

METRNL:

Meteorin-like hormone

MSCs:

Mesenchymal stem cells

mTOR:

Mechanistic target of rapamycin

Myf5:

Myogenic factor 5

MyoD:

Myoblast determination protein

NE:

Norepinephrine

NRG-4:

Neuregulin 4

OGT:

O-GlcNAc transferase

P2RX5:

P2X purinoceptor5

PAI-1:

Plasminogen activator inhibitor 1

PAT:

Phosphate acetyl transferase

PAX7:

Paired box gene 7 protein

PDGFR:

Platelet-derived growth factor receptor

PEDF:

Pigment epithelium-derived factor

PEPCK:

Phosphoenol pyruvate carboxy kinase

PERK:

PKR-like ER protein kinase

PET:

Positron emission tomography

PGC1α:

Peroxisome proliferator-activated receptor gamma coactivator 1-alpha

PI3K:

Phosphoinositide 3-kinase

PKA:

Protein kinase A

PKC:

Protein kinase C

POMC:

Proopiomelanocortin

PRDM:

PR domain zinc finger protein

PTEN:

Phosphatase and tensin homolog

ROS:

Reactive oxygen species

RyR:

Ryanodine receptor

S6K:

S6 kinase beta-1

SERCA:

Sarco/endoplasmic reticulum Ca2+-ATPase

SFRP4:

Secreted frizzled-related protein 4

SFRP5:

Soluble frizzled-related protein 5

SHIP:

SH2 domain-containing inositol 5-phosphatases

SkM:

Skeletal muscle

SLC25A44:

Solute carrier family 25 member 44

SOCS:

Suppressor of cytokine signaling

SP100:

Sp100 nuclear antigen

TAF7L:

TATA-binding protein-associated factor 7L

Tcf7l:

T-cell-specific factor 7 like 1

Tfam:

Mitochondrial transcription factor A

TGF-β:

Transforming growth factor beta

TLR:

Toll like receptor

TMEM26:

Transmembrane protein 26

TNFSF14:

Tumor necrosis factor superfamily member14

TNFα:

Tumor necrosis factor α

UCP1:

Uncoupling protein 1

VEGF-A:

Vascular endothelial growth factor A

WAT:

White adipose tissue

WISP:

WNT1-inducible signaling pathway protein

WNT:

Wingless-related integration site

YBX1:

Y-box binding protein 1

ZFP:

Zinc finger protein

ZIC1:

Zinc finger protein of the cerebellum 1

References

  • Addison WN, Fu MM, Yang HX, Lin Z, Nagano K, Gori F et al (2014) Direct transcriptional repression of Zfp423 by Zfp521 mediates a bone morphogenic protein-dependent osteoblast versus adipocyte lineage commitment switch. Mol Cell Biol 34(16):3076–3085

    Article  Google Scholar 

  • Ahmadian M, Suh JM, Hah N, Liddle C, Atkins AR, Downes M et al (2013) PPARgamma signaling and metabolism: the good, the bad and the future. Nat Med 19(5):557–566

    Article  CAS  Google Scholar 

  • Akinci B, Sahinoz M, Oral E (2018) Lipodystrophy syndromes: presentation and treatment

    Google Scholar 

  • Allen DL, Cleary AS, Speaker KJ, Lindsay SF, Uyenishi J, Reed JM et al (2008) Myostatin, activin receptor IIb, and follistatin-like-3 gene expression are altered in adipose tissue and skeletal muscle of obese mice. Am J Physiol Endocrinol Metab 294(5):E918–EE27

    Article  CAS  Google Scholar 

  • Amano Y, Nonaka Y, Takeda R, Kano Y, Hoshino D (2020) Effects of electrical stimulation-induced resistance exercise training on white and brown adipose tissues and plasma meteorin-like concentration in rats. Physiol Rep 8(16):e14540

    Article  CAS  Google Scholar 

  • Ambele MA, Dhanraj P, Giles R, Pepper MS (2020) Adipogenesis: a complex interplay of multiple molecular determinants and pathways. Int J Mol Sci 21(12):4283

    Article  CAS  Google Scholar 

  • Arroyave F, Montaño D, Lizcano F (2020) Adipose tissue browning for the treatment of obesity and metabolic diseases. CellR4 8:2877

    Google Scholar 

  • Bae JY (2018) Aerobic exercise increases meteorin-like protein in muscle and adipose tissue of chronic high-fat diet-induced obese mice. Biomed Res Int 2018:6283932

    Article  Google Scholar 

  • Bal NC, Maurya SK, Pani S, Sethy C, Banerjee A, Das S et al (2017a) Mild cold induced thermogenesis: are BAT and skeletal muscle synergistic partners? Biosci Rep 37(5)

    Google Scholar 

  • Bal NC, Singh S, Reis FCG, Maurya SK, Pani S, Rowland LA et al (2017b) Both brown adipose tissue and skeletal muscle thermogenesis processes are activated during mild to severe cold adaptation in mice. J Biol Chem 292(40):16616–16625

    Article  CAS  Google Scholar 

  • Barbatelli G, Murano I, Madsen L, Hao Q, Jimenez M, Kristiansen K et al (2010) The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am J Physiol Endocrinol Metab 298(6):E1244–E1E53

    Article  CAS  Google Scholar 

  • Barletta G, Stefani L, Del Bene R, Fronzaroli C, Vecchiarino S, Lazzeri C et al (1998) Effects of exercise on natriuretic peptides and cardiac function in man. Int J Cardiol 65(3):217–225

    Article  CAS  Google Scholar 

  • Bartelt A, Bruns OT, Reimer R, Hohenberg H, Ittrich H, Peldschus K et al (2011) Brown adipose tissue activity controls triglyceride clearance. Nat Med 17(2):200–205

    Article  CAS  Google Scholar 

  • Berbée JF, Boon MR, Khedoe PPS, Bartelt A, Schlein C, Worthmann A et al (2015) Brown fat activation reduces hypercholesterolaemia and protects from atherosclerosis development. Nat Commun 6(1):1–11

    Article  Google Scholar 

  • Béréziat V, Kasus-Jacobi A, Perdereau D, Cariou B, Girard J, Burnol A-F (2002) Inhibition of insulin receptor catalytic activity by the molecular adapter Grb14. J Biol Chem 277(7):4845–4852

    Article  Google Scholar 

  • Bernardis LL (1985) Ventromedial and dorsomedial hypothalamic syndromes in the weanling rat: is the “center” concept really outmoded? Brain Res Bull 14(6):537–549

    Article  CAS  Google Scholar 

  • Bertholet AM, Kazak L, Chouchani ET, Bogaczyńska MG, Paranjpe I, Wainwright GL et al (2017) Mitochondrial patch clamp of beige adipocytes reveals UCP1-positive and UCP1-negative cells both exhibiting futile creatine cycling. Cell Metab 25(4):811–22.e4

    Article  CAS  Google Scholar 

  • Bi S, Li L (2013) Browning of white adipose tissue: role of hypothalamic signaling. Ann N Y Acad Sci 1302(1):30–34

    Article  CAS  Google Scholar 

  • Billon N, Dani C (2012) Developmental origins of the adipocyte lineage: new insights from genetics and genomics studies. Stem Cell Rev Rep 8(1):55–66

    Article  CAS  Google Scholar 

  • Björnholm M, Al-Khalili L, Dicker A, Näslund E, Rössner S, Zierath J et al (2002) Insulin signal transduction and glucose transport in human adipocytes: effects of obesity and low calorie diet. Diabetologia 45(8):1128–1135

    Article  Google Scholar 

  • Bloomgarden Z (2018) Diabetes and branched-chain amino acids: what is the link? J Diabetes 10(5):350–352

    Article  CAS  Google Scholar 

  • Bloor ID, Symonds ME (2014) Sexual dimorphism in white and brown adipose tissue with obesity and inflammation. Horm Behav 66(1):95–103

    Article  Google Scholar 

  • Bodary PF, Pate RR, Wu QF, Mcmillan GS (1999) Effects of acute exercise on plasma erythropoietin levels in trained runners. Med Sci Sports Exerc 31(4):543–546

    Article  CAS  Google Scholar 

  • Bombardier E, Smith IC, Gamu D, Fajardo VA, Vigna C, Sayer RA et al (2013) Sarcolipin trumps beta-adrenergic receptor signaling as the favored mechanism for muscle-based diet-induced thermogenesis. FASEB J 27(9):3871–3878

    Article  CAS  Google Scholar 

  • Boon MR, Khedoe PPS, Hoeke G, Kooijman S, Dijk W, Kersten S et al (2014) Brown adipose tissue internalizes fatty acids by selective delipidation of lipoproteins rather than by uptake of lipoproteins, Turning up the heat: role of brown adipose tissue, p 53

    Google Scholar 

  • Bose M, Oliván B, Laferrère B (2009) Stress and obesity: the role of the hypothalamic-pituitary-adrenal axis in metabolic disease. Curr Opin Endocrinol Diabetes Obes 16(5):340–346

    Article  CAS  Google Scholar 

  • Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC et al (2012) A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481(7382):463–468

    Article  Google Scholar 

  • Boucher J, Softic S, El Ouaamari A, Krumpoch MT, Kleinridders A, Kulkarni RN et al (2016) Differential roles of insulin and IGF-1 receptors in adipose tissue development and function. Diabetes 65(8):2201–2213

    Article  CAS  Google Scholar 

  • Boura-Halfon S, Zick Y (2009) Phosphorylation of IRS proteins, insulin action, and insulin resistance. Am J Physiol Endocrinol Metab 296(4):E581–EE91

    Article  CAS  Google Scholar 

  • Braga M, Reddy ST, Vergnes L, Pervin S, Grijalva V, Stout D et al (2014) Follistatin promotes adipocyte differentiation, browning, and energy metabolism. J Lipid Res 55(3):375–384

    Article  CAS  Google Scholar 

  • Brestoff JR, Kim BS, Saenz SA, Stine RR, Monticelli LA, Sonnenberg GF et al (2015) Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature 519(7542):242–246

    Article  CAS  Google Scholar 

  • Brown AC (2020) Brown adipocytes from induced pluripotent stem cells-how far have we come? Ann N Y Acad Sci 1463(1):9–22

    Article  Google Scholar 

  • Cabrero À, Alegret M, Sánchez RM, Adzet T, Laguna JC, Vázquez M (2001) Bezafibrate reduces mRNA levels of adipocyte markers and increases fatty acid oxidation in primary culture of adipocytes. Diabetes 50(8):1883–1890

    Article  CAS  Google Scholar 

  • Cannavino J, Shao M, An YA, Bezprozvannaya S, Chen S, Kim J et al (2021) Regulation of cold-induced thermogenesis by the RNA binding protein FAM195A. Proc Natl Acad Sci 118(23):e2104650118

    Article  CAS  Google Scholar 

  • Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84(1):277–359

    Article  CAS  Google Scholar 

  • Caputo T, Tran V, Bararpour N, Winkler C, Aguileta G, Trang K et al (2021) Anti-adipogenic signals at the onset of obesity-related inflammation in white adipose tissue. Cell Mol Life Sci 78

    Google Scholar 

  • Carbó N, López-Soriano JN, Costelli P, Alvarez B, Busquets SL, Baccino FM et al (2001) Interleukin-15 mediates reciprocal regulation of adipose and muscle mass: a potential role in body weight control. Biochim Biophys Acta 1526(1):17–24

    Article  Google Scholar 

  • Carey AL, Steinberg GR, Macaulay SL, Thomas WG, Holmes AG, Ramm G et al (2006) Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes 55(10):2688–2697

    Article  CAS  Google Scholar 

  • Carpentier AC, Blondin DP, Virtanen KA, Richard D, Haman F, Turcotte ÉE (2018) Brown adipose tissue energy metabolism in humans. Front Endocrinol 9:447

    Article  Google Scholar 

  • Castillo-Armengol J, Fajas L, Lopez-Mejia IC (2019) Inter-organ communication: a gatekeeper for metabolic health. EMBO Rep 20(9):e47903

    Article  Google Scholar 

  • Cătoi AF, Suciu Ş, PÂrvu AE, Copăescu C, Galea RF, Buzoianu AD et al (2014) Increased chemerin and decreased omentin-1 levels in morbidly obese patients are correlated with insulin resistance, oxidative stress and chronic inflammation. Clujul Med 87(1):19

    Article  Google Scholar 

  • Cawthorn W, Heyd F, Hegyi K, Sethi J (2007) Tumour necrosis factor-α inhibits adipogenesis via a β-catenin/TCF4 (TCF7L2)-dependent pathway. Cell Death Differ 14(7):1361–1373

    Article  CAS  Google Scholar 

  • Cederberg A, Grønning LM, Ahrén B, Taskén K, Carlsson P, Enerbäck S (2001) FOXC2 is a winged helix gene that counteracts obesity, hypertriglyceridemia, and diet-induced insulin resistance. Cell 106(5):563–573. https://doi.org/10.1016/S0092-8674(01)00474-3

    Article  CAS  Google Scholar 

  • Chait A, den Hartigh LJ (2020) Adipose tissue distribution, inflammation and its metabolic consequences, including diabetes and cardiovascular disease. Front Cardiovasc Med 7(22)

    Google Scholar 

  • Chang JC, Durinck S, Chen MZ, Martinez-Martin N, Zhang JA, Lehoux I et al (2019) Adaptive adipose tissue stromal plasticity in response to cold stress and antibody-based metabolic therapy. Sci Rep 9(1):8833

    Article  Google Scholar 

  • Chen W, Balland E, Cowley MA (2017) Hypothalamic insulin resistance in obesity: effects on glucose homeostasis. Neuroendocrinology 104(4):364–381

    Article  CAS  Google Scholar 

  • Cheng R, Ma J-x (2015) Angiogenesis in diabetes and obesity. Rev Endocr Metab Disord 16(1):67–75

    Article  CAS  Google Scholar 

  • Chernogubova E, Cannon B, Bengtsson T (2004) Norepinephrine increases glucose transport in brown adipocytes via β3-adrenoceptors through a cAMP, PKA, and PI3-kinase-dependent pathway stimulating conventional and novel PKCs. Endocrinology 145(1):269–280

    Article  CAS  Google Scholar 

  • Cho C-H, Jun Koh Y, Han J, Sung H-K, Jong Lee H, Morisada T et al (2007) Angiogenic role of LYVE-1–positive macrophages in adipose tissue. Circ Res 100(4):e47–e57

    Article  CAS  Google Scholar 

  • Choe SS, Huh JY, Hwang IJ, Kim JI, Kim JB (2016) Adipose tissue remodeling: its role in energy metabolism and metabolic disorders. Front Endocrinol 7(30)

    Google Scholar 

  • Chooi YC, Ding C, Magkos F (2019) The epidemiology of obesity. Metabolism 92:6–10. https://doi.org/10.1016/j.metabol.2018.09.005

    Article  CAS  Google Scholar 

  • Christian M (2015) Transcriptional fingerprinting of “browning” white fat identifies NRG4 as a novel adipokine. Adipocytes 4(1):50–54

    Article  CAS  Google Scholar 

  • Chung LH, Qi Y (2019) Lipodystrophy – a rare condition with serious metabolic abnormalities, Rare diseases. IntechOpen

    Google Scholar 

  • Chusyd DE, Wang D, Huffman DM, Nagy TR (2016) Relationships between rodent white adipose fat pads and human white adipose fat depots. Front Nutr 3:10

    Article  Google Scholar 

  • Cleal L, Aldea T, Chau Y-Y (2017) Fifty shades of white: understanding heterogeneity in white adipose stem cells. Adipocyte 6(3):205–216. https://doi.org/10.1080/21623945.2017.1372871

    Article  Google Scholar 

  • Contreras GA, Lee Y-H, Mottillo EP, Granneman JG (2014) Inducible brown adipocytes in subcutaneous inguinal white fat: the role of continuous sympathetic stimulation. Am J Physiol Endocrinol Metab 307(9):E793–E7E9

    Article  CAS  Google Scholar 

  • Corvera S, Gealekman O (2014) Adipose tissue angiogenesis: impact on obesity and type-2 diabetes. Biochim Biophys Acta 1842(3):463–472

    Article  CAS  Google Scholar 

  • Coskun T, Bina HA, Schneider MA, Dunbar JD, Hu CC, Chen Y et al (2008) Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 149(12):6018–6027

    Article  CAS  Google Scholar 

  • Crandall JP, Wahl RL (2021) Perspectives on Brown adipose tissue imaging: insights from preclinical and clinical observations from the last and current century. J Nucl Med 62(Suppl 2):34S–43S

    Article  CAS  Google Scholar 

  • Cristancho AG, Schupp M, Lefterova MI, Cao S, Cohen DM, Chen CS et al (2011) Repressor transcription factor 7-like 1 promotes adipogenic competency in precursor cells. Proc Natl Acad Sci 108(39):16271–16276

    Article  CAS  Google Scholar 

  • Crujeiras AB, Pardo M, Arturo RR, Santiago NC, Zulet MA, Martínez JA et al (2014) Longitudinal variation of circulating irisin after an energy restriction-induced weight loss and following weight regain in obese men and women. Am J Hum Biol 26(2):198–207

    Article  Google Scholar 

  • Davis R, Aguirre V, Uchida T, Yenush L, White MF (2000) The c-Jun NH2-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser307. J Biol Chem 275(12):9047–9054

    Article  Google Scholar 

  • Davis J, Gabler N, Walker-Daniels J, Spurlock M (2009) The c-Jun N-terminal kinase mediates the induction of oxidative stress and insulin resistance by palmitate and toll-like receptor 2 and 4 ligands in 3T3-L1 adipocytes. Horm Metab Res 41(07):523–530

    Article  CAS  Google Scholar 

  • De Jong J, Larsson O, Cannon B, Nedergaard J (2015) A stringent validation of mouse adipose tissue identity markers. Am J Physiol Endocrinol Metab 308. https://doi.org/10.1152/ajpendo.00023.2015

  • de Mutsert R, Gast K, Widya R, de Koning E, Jazet I, Lamb H et al (2018) Associations of abdominal subcutaneous and visceral fat with insulin resistance and secretion differ between men and women: the Netherlands epidemiology of obesity study. Metab Syndr Relat Disord 16(1):54–63

    Article  Google Scholar 

  • Demerath EW, Sun SS, Rogers N, Lee M, Reed D, Choh AC et al (2007) Anatomical patterning of visceral adipose tissue: race, sex, and age variation. Obesity 15(12):2984–2993

    Article  Google Scholar 

  • Denton NF, Eghleilib M, Al-Sharifi S, Todorčević M, Neville MJ, Loh N et al (2019) Bone morphogenetic protein 2 is a depot-specific regulator of human adipogenesis. Int J Obes (Lond) 43(12):2458–2468

    Article  CAS  Google Scholar 

  • Després J-P, Couillard C, Gagnon J, Bergeron J, Leon AS, Rao D et al (2000) Race, visceral adipose tissue, plasma lipids, and lipoprotein lipase activity in men and women: the health, risk factors, exercise training, and genetics (HERITAGE) family study. Arterioscler Thromb Vasc Biol 20(8):1932–1938

    Article  Google Scholar 

  • Dewal RS, Stanford KI (2019) Effects of exercise on brown and beige adipocytes. Biochim Biophys Acta 1864(1):71–78

    Article  CAS  Google Scholar 

  • Di Franco A, Guasti D, Mazzanti B, Ercolino T, Francalanci M, Nesi G et al (2014) Dissecting the origin of inducible brown fat in adult humans through a novel adipose stem cell model from adipose tissue surrounding pheochromocytoma. J Clin Endocrinol Metabol 99(10):E1903–E1E12

    Article  Google Scholar 

  • Ding X, Luo Y, Zhang X, Zheng H, Yang X, Yang X et al (2016) IL-33-driven ILC2/eosinophil axis in fat is induced by sympathetic tone and suppressed by obesity. J Endocrinol 231(1):35

    Article  CAS  Google Scholar 

  • Dodd GT, Decherf S, Loh K, Simonds Stephanie E, Wiede F, Balland E et al (2015) Leptin and insulin act on POMC neurons to promote the browning of white fat. Cell 160(1):88–104

    Article  CAS  Google Scholar 

  • Emamgholipour S, Ebrahimi R, Bahiraee A, Niazpour F, Meshkani R (2020) Acetylation and insulin resistance: a focus on metabolic and mitogenic cascades of insulin signaling. Crit Rev Clin Lab Sci 57(3):196–214

    Article  CAS  Google Scholar 

  • Errico J (2018) Insulin resistance, glucose metabolism, inflammation, and the role of neuromodulation as a therapy for type-2 diabetes. Neuromodulation:1565–1573

    Google Scholar 

  • Fan Z, Turiel G, Ardicoglu R, Ghobrial M, Masschelein E, Kocijan T et al (2021) Exercise-induced angiogenesis is dependent on metabolically primed ATF3/4+ endothelial cells. Cell Metab 33(9):1793–807.e9

    Article  CAS  Google Scholar 

  • Fang W, Deng Z, Benadjaoud F, Yang D, Yang C, Shi G-P (2020) Regulatory T cells promote adipocyte beiging in subcutaneous adipose tissue. FASEB J 34(7):9755–9770

    Article  CAS  Google Scholar 

  • Fedorenko A, Lishko PV, Kirichok Y (2012) Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell 151(2):400–413

    Article  CAS  Google Scholar 

  • Feijóo-Bandín S, Aragón-Herrera A, Moraña-Fernández S, Anido-Varela L, Tarazón E, Roselló-Lletí E et al (2020) Adipokines and inflammation: focus on cardiovascular diseases. Int J Mol Sci 21(20):7711

    Article  Google Scholar 

  • Fekete C, Lechan RM (2014) Central regulation of hypothalamic-pituitary-thyroid axis under physiological and pathophysiological conditions. Endocr Rev 35(2):159–194

    Article  CAS  Google Scholar 

  • Fernández-Verdejo R, Marlatt KL, Ravussin E, Galgani JE (2019) Contribution of brown adipose tissue to human energy metabolism. Mol Aspects Med 68:82–89

    Article  Google Scholar 

  • Fiorenza CG, Chou SH, Mantzoros CS (2011) Lipodystrophy: pathophysiology and advances in treatment. Nat Rev Endocrinol 7(3):137–150

    Article  CAS  Google Scholar 

  • Foretz M, Ancellin N, Andreelli F, Saintillan Y, Grondin P, Kahn A et al (2005) Short-term overexpression of a constitutively active form of AMP-activated protein kinase in the liver leads to mild hypoglycemia and fatty liver. Diabetes 54(5):1331–1339

    Article  CAS  Google Scholar 

  • Freidenberg G, Reichart D, Olefsky J, Henry R (1988) Reversibility of defective adipocyte insulin receptor kinase activity in non-insulin-dependent diabetes mellitus. Effect of weight loss. J Clin Invest 82(4):1398–1406

    Article  CAS  Google Scholar 

  • Frese L, Dijkman PE, Hoerstrup SP (2016) Adipose tissue-derived stem cells in regenerative medicine. Transfus Med Hemother 43(4):268–274

    Article  Google Scholar 

  • Fromme T, Kleigrewe K, Dunkel A, Retzler A, Li Y, Maurer S et al (2018) Degradation of brown adipocyte purine nucleotides regulates uncoupling protein 1 activity. Molecular Metabolism 8:77–85

    Article  CAS  Google Scholar 

  • Frühbeck G, Méndez-Giménez L, Fernández-Formoso J-A, Fernández S, Rodriguez A (2014) Regulation of adipocyte lipolysis. Nutr Res Rev 27(1):63–93

    Article  Google Scholar 

  • Fuster JJ, Ouchi N, Gokce N, Walsh K (2016) Obesity-induced changes in adipose tissue microenvironment and their impact on cardiovascular disease. Circ Res 118(11):1786–1807

    Article  CAS  Google Scholar 

  • Gao Z, Hwang D, Bataille F, Lefevre M, York D, Quon MJ et al (2002) Serine phosphorylation of insulin receptor substrate 1 by inhibitor κB kinase complex. J Biol Chem 277(50):48115–48121

    Article  CAS  Google Scholar 

  • Garcia RA, Roemmich JN, Claycombe KJ (2016) Evaluation of markers of beige adipocytes in white adipose tissue of the mouse. Nutr Metab 13(1):24

    Article  Google Scholar 

  • Gaspar JM, Velloso LA (2018) Hypoxia inducible factor as a central regulator of metabolism–implications for the development of obesity. Front Neurosci 12:813

    Article  Google Scholar 

  • Georgiadi A, Lopez-Salazar V, Merahbi RE, Karikari RA, Ma X, Mourão A et al (2021) Orphan GPR116 mediates the insulin sensitizing effects of the hepatokine FNDC4 in adipose tissue. Nat Commun 12(1):2999

    Article  CAS  Google Scholar 

  • Geraldes P, King GL (2010) Activation of protein kinase C isoforms and its impact on diabetic complications. Circ Res 106(8):1319–1331

    Article  CAS  Google Scholar 

  • Gerrits AJ, Gitz E, Koekman CA, Visseren FL, van Haeften TW, Akkerman JWN (2012) Induction of insulin resistance by the adipokines resistin, leptin, plasminogen activator inhibitor-1 and retinol binding protein 4 in human megakaryocytes. Haematologica 97(8):1149–1157

    Article  CAS  Google Scholar 

  • Giordano A, Frontini A, Cinti S (2016) Convertible visceral fat as a therapeutic target to curb obesity. Nat Rev Drug Discov 15(6):405–424

    Article  CAS  Google Scholar 

  • Giorgino F, Laviola L, Eriksson JW (2005) Regional differences of insulin action in adipose tissue: insights from in vivo and in vitro studies. Acta Physiol Scand 183(1):13–30

    Article  CAS  Google Scholar 

  • Girousse A, Tavernier G, Valle C, Moro C, Mejhert N, Dinel A-L et al (2013) Partial inhibition of adipose tissue lipolysis improves glucose metabolism and insulin sensitivity without alteration of fat mass. PLoS Biol 11(2):e1001485

    Article  CAS  Google Scholar 

  • Goldstein BJ, Ahmad F, Ding W, Li P-M, Zhang W-R (1998) Regulation of the insulin signalling pathway by cellular protein-tyrosine phosphatases. Mol Cell Biochem 182(1):91–99

    Article  CAS  Google Scholar 

  • González N, Moreno-Villegas Z, González-Bris A, Egido J, Lorenzo Ó (2017) Regulation of visceral and epicardial adipose tissue for preventing cardiovascular injuries associated to obesity and diabetes. Cardiovasc Diabetol 16(1):44

    Article  Google Scholar 

  • Goodman HM (1988) The role of growth hormone in fat mobilization. Designing foods, animal product options in the marketplace. National Academy Press, Washington

    Google Scholar 

  • Guan H, Zhang Y, Gao S, Bai L, Zhao S, Cheng XW et al (2018) Differential patterns of secreted frizzled-related protein 4 (SFRP4) in adipocyte differentiation: adipose depot specificity. Cell Physiol Biochem 46(5):2149–2164

    Article  CAS  Google Scholar 

  • Guan H, Zheng H, Zhang J, Xiang A, Li Y, Zheng H et al (2021) Secreted frizzled-related protein 4 promotes brown adipocyte differentiation. Exp Ther Med 21(6):637

    Article  CAS  Google Scholar 

  • Guebre-Egziabher F, Alix PM, Koppe L, Pelletier CC, Kalbacher E, Fouque D et al (2013) Ectopic lipid accumulation: a potential cause for metabolic disturbances and a contributor to the alteration of kidney function. Biochimie 95(11):1971–1979

    Article  CAS  Google Scholar 

  • Guo W, Wong S, Xie W, Lei T, Luo Z (2007) Palmitate modulates intracellular signaling, induces endoplasmic reticulum stress, and causes apoptosis in mouse 3T3-L1 and rat primary preadipocytes. Am J Physiol Endocrinol Metab 293(2):E576–EE86

    Article  CAS  Google Scholar 

  • Gupta RK, Arany Z, Seale P, Mepani RJ, Ye L, Conroe HM et al (2010) Transcriptional control of preadipocyte determination by Zfp423. Nature 464(7288):619–623

    Article  CAS  Google Scholar 

  • Hammarstedt A, Hedjazifar S, Jenndahl L, Gogg S, Grünberg J, Gustafson B et al (2013) WISP2 regulates preadipocyte commitment and PPARγ activation by BMP4. Proc Natl Acad Sci 110(7):2563–2568

    Article  CAS  Google Scholar 

  • Han Y, Xia G, Srisai D, Meng F, He Y, Ran Y et al (2021) Deciphering an AgRP-serotoninergic neural circuit in distinct control of energy metabolism from feeding. Nat Commun 12(1):1–16

    Article  CAS  Google Scholar 

  • Hanssen MJ, van der Lans AA, Brans B, Hoeks J, Jardon KM, Schaart G et al (2016) Short-term cold acclimation recruits brown adipose tissue in obese humans. Diabetes 65(5):1179–1189

    Article  CAS  Google Scholar 

  • Harms M, Seale P (2013) Brown and beige fat: development, function and therapeutic potential. Nat Med 19(10):1252–1263

    Article  CAS  Google Scholar 

  • Hauton D, Coney AM, Egginton S (2009) Both substrate availability and utilisation contribute to the defence of core temperature in response to acute cold. Comp Biochem Physiol A Mol Integr Physiol 154(4):514–522

    Article  Google Scholar 

  • Heyde I, Begemann K, Oster H (2021) Contributions of white and brown adipose tissues to the circadian regulation of energy metabolism. Endocrinology 162(3):bqab009

    Article  Google Scholar 

  • Hilton D, Emanuelli B, Peraldi P, Filloux C, Sawka-Verhelle D, Van Obberghen E (2000) SOCS-3 is an insulin-induced negative regulator of insulin signaling. J Biol Chem 275(21):15985–15991

    Article  Google Scholar 

  • Hoeke G, Kooijman S, Boon MR, Rensen PC, Berbée JF (2016) Role of brown fat in lipoprotein metabolism and atherosclerosis. Circ Res 118(1):173–182

    Article  CAS  Google Scholar 

  • Holm C (2003) Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Biochem Soc Trans 31(6):1120–1124

    Article  CAS  Google Scholar 

  • Holt LJ, Siddle K (2005) Grb10 and Grb14: enigmatic regulators of insulin action – and more? Biochem J 388(2):393–406

    Article  CAS  Google Scholar 

  • Hsu PP, Kang SA, Rameseder J, Zhang Y, Ottina KA, Lim D et al (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332(6035):1317–1322

    Article  CAS  Google Scholar 

  • Ikeda K, Kang Q, Yoneshiro T, Camporez JP, Maki H, Homma M et al (2017) UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. Nat Med 23(12):1454–1465

    Article  CAS  Google Scholar 

  • Ikeda K, Maretich P, Kajimura S (2018) The common and distinct features of brown and beige adipocytes. Trends Endocrinol Metab 29(3):191–200. https://doi.org/10.1016/j.tem.2018.01.001

    Article  CAS  Google Scholar 

  • Inagaki T, Sakai J, Kajimura S (2016) Transcriptional and epigenetic control of brown and beige adipose cell fate and function. Nat Rev Mol Cell Biol 17(8):480–495

    Article  CAS  Google Scholar 

  • Iwen KA, Backhaus J, Cassens M, Waltl M, Hedesan OC, Merkel M et al (2017) Cold-induced brown adipose tissue activity alters plasma fatty acids and improves glucose metabolism in men. J Clin Endocrinol Metabol 102(11):4226–4234

    Article  Google Scholar 

  • Jensen MD (2008) Role of body fat distribution and the metabolic complications of obesity. J Clin Endocrinol Metab 93(11 Suppl 1):S57–S63

    Article  CAS  Google Scholar 

  • Jensen MD, Haymond MW, Rizza RA, Cryer PE, Miles J (1989) Influence of body fat distribution on free fatty acid metabolism in obesity. J Clin Invest 83(4):1168–1173

    Article  CAS  Google Scholar 

  • Jung SM, Doxsey WG, Le J, Haley JA, Mazuecos L, Luciano AK et al (2021) In vivo isotope tracing reveals the versatility of glucose as a brown adipose tissue substrate. Cell Rep 36(4):109459

    Article  CAS  Google Scholar 

  • Kajimura S, Spiegelman Bruce M, Seale P (2015) Brown and beige fat: physiological roles beyond heat generation. Cell Metab 22(4):546–559

    Article  CAS  Google Scholar 

  • Karastergiou K, Smith SR, Greenberg AS, Fried SK (2012) Sex differences in human adipose tissues – the biology of pear shape. Biol Sex Differ 3(1):13

    Article  Google Scholar 

  • Karunanithi S, Xiong T, Uhm M, Leto D, Sun J, Chen X-W et al (2014) A Rab10: RalA G protein cascade regulates insulin-stimulated glucose uptake in adipocytes. Mol Biol Cell 25(19):3059–3069

    Article  Google Scholar 

  • Kazak L, Chouchani ET, Jedrychowski MP, Erickson BK, Shinoda K, Cohen P et al (2015) A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell 163(3):643–655

    Article  CAS  Google Scholar 

  • Keinan O, Valentine JM, Xiao H, Mahata SK, Reilly SM, Abu-Odeh M et al (2021) Glycogen metabolism links glucose homeostasis to thermogenesis in adipocytes. Nature 599(7884):296–301

    Article  CAS  Google Scholar 

  • Keuper M, Jastroch M (2021) The good and the BAT of metabolic sex differences in thermogenic human adipose tissue. Mol Cell Endocrinol 533:111337

    Article  CAS  Google Scholar 

  • Kim H-J, Lee H-J, So B, Son JS, Yoon D, Song W (2016) Effect of aerobic training and resistance training on circulating irisin level and their association with change of body composition in overweight/obese adults: a pilot study. Physiol Res 65(2):271

    Article  CAS  Google Scholar 

  • Kim J, Park MS, Ha K, Park C, Lee J, Mynatt RL et al (2018) NT-PGC-1α deficiency decreases mitochondrial FA oxidation in brown adipose tissue and alters substrate utilization in vivo. J Lipid Res 59(9):1660–1670. https://doi.org/10.1194/jlr.M085647

    Article  CAS  Google Scholar 

  • Kleiner S, Douris N, Fox EC, Mepani RJ, Verdeguer F, Wu J et al (2012) FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis. Genes Dev 26(3):271–281

    Article  Google Scholar 

  • Kong X, Banks A, Liu T, Kazak L, Rao RR, Cohen P et al (2014) IRF4 is a key thermogenic transcriptional partner of PGC-1α. Cell 158(1):69–83

    Article  CAS  Google Scholar 

  • Kou Y, Liu Q, Liu W, Sun H, Liang M, Kong F et al (2019) LIGHT/TNFSF14 signaling attenuates beige fat biogenesis. FASEB J 33(2):1595–1604

    Article  CAS  Google Scholar 

  • Kuo T, McQueen A, Chen T-C, Wang J-C (2015) Regulation of glucose homeostasis by glucocorticoids. Adv Exp Med Biol 872:99–126

    Article  CAS  Google Scholar 

  • Kyrou I, Randeva HS, Tsigos C, Kaltsas G, Weickert MO (2018) Clinical problems caused by obesity. Endotext

    Google Scholar 

  • Labbé SM, Caron A, Lanfray D, Monge-Rofarello B, Bartness TJ, Richard D (2015) Hypothalamic control of brown adipose tissue thermogenesis. Front Syst Neurosci 9:150

    Article  Google Scholar 

  • Laclaustra M, Corella D, Ordovas JM (2007) Metabolic syndrome pathophysiology: the role of adipose tissue. Nutr Metab Cardiovasc Dis 17(2):125–139

    Article  CAS  Google Scholar 

  • Lafontan M, Moro C, Sengenes C, Galitzky J, Crampes F, Berlan M (2005) An unsuspected metabolic role for atrial natriuretic peptides. Arterioscler Thromb Vasc Biol 25(10):2032–2042

    Article  CAS  Google Scholar 

  • Lanktree MB, Johansen CT, Joy TR, Hegele RA (2010) A translational view of the genetics of lipodystrophy and ectopic fat deposition. Prog Mol Biol Transl Sci 94:159–196

    Article  CAS  Google Scholar 

  • Laviola L, Perrini S, Cignarelli A, Natalicchio A, Leonardini A, De Stefano F et al (2006) Insulin signaling in human visceral and subcutaneous adipose tissue in vivo. Diabetes 55(4):952–961

    Article  CAS  Google Scholar 

  • Lee Y-H, Mottillo EP, Granneman JG (2014a) Adipose tissue plasticity from WAT to BAT and in between. Biochim Biophys Acta 1842(3):358–369

    Article  CAS  Google Scholar 

  • Lee Y-H, Jung Y-S, Choi D (2014b) Recent advance in brown adipose physiology and its therapeutic potential. Exp Mol Med 46(2):e78

    Article  CAS  Google Scholar 

  • Lee M-W, Odegaard JI, Mukundan L, Qiu Y, Molofsky AB, Nussbaum JC et al (2015) Activated type 2 innate lymphoid cells regulate beige fat biogenesis. Cell 160(1–2):74–87

    Article  CAS  Google Scholar 

  • Lee P, Bova R, Schofield L, Bryant W, Dieckmann W, Slattery A et al (2016) Brown adipose tissue exhibits a glucose-responsive thermogenic biorhythm in humans. Cell Metab 23(4):602–609

    Article  CAS  Google Scholar 

  • Lee JH, Park A, Oh K-J, Lee SC, Kim WK, Bae K-H (2019) The role of adipose tissue mitochondria: regulation of mitochondrial function for the treatment of metabolic diseases. Int J Mol Sci 20(19):4924

    Article  CAS  Google Scholar 

  • Leung OM, Li J, Li X, Chan VW, Yang KY, Ku M et al (2018) Regulatory T cells promote apelin-mediated sprouting angiogenesis in type 2 diabetes. Cell Rep 24(6):1610–1626

    Article  CAS  Google Scholar 

  • Li Q, Chen R, Moriya J, Yamakawa J, Sumino H, Kanda T et al (2008) A novel adipocytokine, visceral adipose tissue-derived serine protease inhibitor (vaspin), and obesity. J Int Med Res 36(4):625–629

    Article  CAS  Google Scholar 

  • Li S, Huang Q, Zhang L, Qiao X, Zhang Y, Tang F et al (2019) Effect of CAPE-pNO2 against type 2 diabetes mellitus via the AMPK/GLUT4/GSK3beta/PPARalpha pathway in HFD/STZ-induced diabetic mice. Eur J Pharmacol 15(853):1–10

    Google Scholar 

  • Liao Z-Z, Qi X-Y, Wang Y-D, Li J-Y, Gu Q-Q, Hu C et al (2020) Betatrophin knockdown induces beiging and mitochondria biogenesis of white adipocytes. J Endocrinol 245(1):93–100

    Article  CAS  Google Scholar 

  • Lim K, Haider A, Adams C, Sleigh A, Savage D (2020) Lipodystrophy: a paradigm for understanding the consequences of “overloading” adipose tissue. Physiol Rev

    Google Scholar 

  • Liu M, Bai J, He S, Villarreal R, Hu D, Zhang C et al (2014) Grb10 promotes lipolysis and thermogenesis by phosphorylation-dependent feedback inhibition of mTORC1. Cell Metab 19(6):967–980

    Article  CAS  Google Scholar 

  • Liu P, Huang S, Ling S, Xu S, Wang F, Zhang W et al (2019) Foxp1 controls brown/beige adipocyte differentiation and thermogenesis through regulating β3-AR desensitization. Nat Commun 10(1):5070

    Article  Google Scholar 

  • Liu J, Zhang C, Zhang B, Sheng Y, Xu W, Luo Y et al (2020) Comprehensive analysis of the characteristics and differences in adult and newborn brown adipose tissue (BAT): newborn BAT is a more active/dynamic BAT. Cell 9(1):201

    Article  CAS  Google Scholar 

  • Löffler D, Müller U, Scheuermann K, Friebe D, Gesing J, Bielitz J et al (2015) Serum irisin levels are regulated by acute strenuous exercise. J Clin Endocrinol Metabol 100(4):1289–1299

    Article  Google Scholar 

  • Loft A, Forss I, Siersbaek MS, Schmidt SF, Larsen AS, Madsen JG et al (2015) Browning of human adipocytes requires KLF11 and reprogramming of PPARgamma superenhancers. Genes Dev 29(1):7–22

    Article  Google Scholar 

  • Long JZ, Svensson KJ, Tsai L, Zeng X, Roh HC, Kong X et al (2014) A smooth muscle-like origin for beige adipocytes. Cell Metab 19(5):810–820

    Article  CAS  Google Scholar 

  • Luce M, Barba C, Yi D, Mey A, Roussel D, Bres E et al (2020) Accumulation of natriuretic peptides is associated with protein energy wasting and activation of browning in white adipose tissue in chronic kidney disease. Kidney Int 98(3):663–672

    Article  CAS  Google Scholar 

  • Luo Y, Qiao X, Ma Y, Deng H, Xu CC, Xu L (2020) Disordered metabolism in mice lacking irisin. Sci Rep 10(1):1–10

    Article  CAS  Google Scholar 

  • Luong Q, Huang J, Lee KY (2019) Deciphering white adipose tissue heterogeneity. Biology 8(2):23

    Article  CAS  Google Scholar 

  • Lv Y, Zhang S-Y, Liang X, Zhang H, Xu Z, Liu B et al (2016) Adrenomedullin 2 enhances beiging in white adipose tissue directly in an adipocyte-autonomous manner and indirectly through activation of M2 macrophages. J Biol Chem 291(45):23390–23402

    Article  CAS  Google Scholar 

  • Ma X, Lee P, Chisholm DJ, James DE (2015) Control of adipocyte differentiation in different fat depots; implications for pathophysiology or therapy. Front Endocrinol 6:1

    Article  Google Scholar 

  • Maalouf G-E, El Khoury D (2019) Exercise-induced irisin, the fat browning myokine, as a potential anticancer agent. J Obes 2019:6561726

    Article  Google Scholar 

  • Man K, Kutyavin VI, Chawla A (2017) Tissue immunometabolism: development, physiology, and pathobiology. Cell Metab 25(1):11–26

    Article  CAS  Google Scholar 

  • Markussen L, Isidor M, Breining P, Andersen E, Rasmussen N, Petersen L et al (2017) Characterization of immortalized human brown and white pre-adipocyte cell models from a single donor. PLoS One 12:e0185624

    Article  Google Scholar 

  • Mazur-Bialy AI, Pocheć E, Zarawski M (2017) Anti-inflammatory properties of irisin, mediator of physical activity, are connected with TLR4/MyD88 signaling pathway activation. Int J Mol Sci 18(4):701

    Article  Google Scholar 

  • McNamara J (1991) Regulation of adipose tissue metabolism in support of lactation. J Dairy Sci 74(2):706–719

    Article  CAS  Google Scholar 

  • McNeill BT, Morton NM, Stimson RH (2020) Substrate utilization by brown adipose tissue: what’s hot and what’s not? Front Endocrinol 11(785)

    Google Scholar 

  • Michurina SS, Stafeev IS, Menshikov MY, Parfyonova YV (2021) Mitochondrial dynamics keep balance of nutrient combustion in thermogenic adipocytes. Mitochondrion 59:157–168

    Article  CAS  Google Scholar 

  • Mitrou P, Boutati E, Lambadiari V, Maratou E, Papakonstantinou A, Komesidou V et al (2009) Rates of glucose uptake in adipose tissue and muscle in vivo after a mixed meal in women with morbid obesity. J Clin Endocrinol Metabol 94(8):2958–2961

    Article  CAS  Google Scholar 

  • Møller N, Jørgensen JOL (2009) Effects of growth hormone on glucose, lipid, and protein metabolism in human subjects. Endocr Rev 30(2):152–177

    Article  Google Scholar 

  • Moore H-PH, Silver RB, Mottillo EP, Bernlohr DA, Granneman JG (2005) Perilipin targets a novel pool of lipid droplets for lipolytic attack by hormone-sensitive lipase. J Biol Chem 280(52):43109–43120

    Article  CAS  Google Scholar 

  • Morigny P, Boucher J, Arner P, Langin D (2021) Lipid and glucose metabolism in white adipocytes: pathways, dysfunction and therapeutics. Nat Rev Endocrinol 17:1–20

    Article  Google Scholar 

  • Moseti D, Regassa A, Kim W-K (2016) Molecular regulation of adipogenesis and potential anti-adipogenic bioactive molecules. Int J Mol Sci 17(1):124

    Article  Google Scholar 

  • Mueller E (2016) Browning and graying: novel transcriptional regulators of brown and beige fat tissues and aging. Front Endocrinol 7:19

    Article  Google Scholar 

  • Mukaida S, Evans BA, Bengtsson T, Hutchinson DS, Sato M (2017) Adrenoceptors promote glucose uptake into adipocytes and muscle by an insulin-independent signaling pathway involving mechanistic target of rapamycin complex 2. Pharmacol Res 116:87–92

    Article  CAS  Google Scholar 

  • Murphy RM, Watt MJ, Febbraio MA (2020) Metabolic communication during exercise. Nat Metab 2(9):805–816

    Article  Google Scholar 

  • Nanduri R (2021) Epigenetic regulators of white adipocyte browning. Epigenomes 5

    Google Scholar 

  • Nedergaard J, Bengtsson T, Cannon B (2007) Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol

    Google Scholar 

  • Ogawa Y, Abe K, Sakoda A, Onizuka H, Sakai S (2018) FDG-PET and CT findings of activated brown adipose tissue in a patient with paraganglioma. Eur J Radiol Open 5:126–130

    Article  Google Scholar 

  • Olesen J, Gliemann L, Biensø R, Schmidt J, Hellsten Y, Pilegaard H (2014) Exercise training, but not resveratrol, improves metabolic and inflammatory status in skeletal muscle of aged men. J Physiol 592(8):1873–1886

    Article  CAS  Google Scholar 

  • Olsen JM, Sato M, Dallner OS, Sandström AL, Pisani DF, Chambard J-C et al (2014) Glucose uptake in brown fat cells is dependent on mTOR complex 2–promoted GLUT1 translocation. J Cell Biol 207(3):365–374

    Article  CAS  Google Scholar 

  • Onogi Y, Khalil AEMM, Ussar S (2020) Identification and characterization of adipose surface epitopes. Biochem J 477(13):2509–2541

    Article  CAS  Google Scholar 

  • Opp M, Smith E, Hughes T Jr (1995) Interleukin-10 (cytokine synthesis inhibitory factor) acts in the central nervous system of rats to reduce sleep. J Neuroimmunol 60(1-2):165–168

    Article  CAS  Google Scholar 

  • Oral EA, Simha V, Ruiz E, Andewelt A, Premkumar A, Snell P et al (2002) Leptin-replacement therapy for lipodystrophy. N Engl J Med 346(8):570–578

    Article  CAS  Google Scholar 

  • Ormazabal V, Nair S, Elfeky O, Aguayo C, Salomon C, Zuñiga FA (2018) Association between insulin resistance and the development of cardiovascular disease. Cardiovasc Diabetol 17(1):122

    Article  CAS  Google Scholar 

  • Ostrowski K, Hermann C, Bangash A, Schjerling P, Nielsen JN, Pedersen BK (1998) A trauma-like elevation of plasma cytokines in humans in response to treadmill running. J Physiol 513(3):889–894

    Article  CAS  Google Scholar 

  • Pajed L, Taschler U, Tilp A, Hofer P, Kotzbeck P, Kolleritsch S et al (2021) Advanced lipodystrophy reverses fatty liver in mice lacking adipocyte hormone-sensitive lipase. Commun Biol 4(1):323

    Article  CAS  Google Scholar 

  • Palanivel R, Fullerton MD, Galic S, Honeyman J, Hewitt KA, Jorgensen SB et al (2012) Reduced Socs3 expression in adipose tissue protects female mice against obesity-induced insulin resistance. Diabetologia 55(11):3083–3093

    Article  CAS  Google Scholar 

  • Panee J (2012) Monocyte chemoattractant protein 1 (MCP-1) in obesity and diabetes. Cytokine 60(1):1–12

    Article  CAS  Google Scholar 

  • Pararasa C, Bailey CJ, Griffiths HR (2015) Ageing, adipose tissue, fatty acids and inflammation. Biogerontology 16(2):235–248

    Article  CAS  Google Scholar 

  • Park JH, Kang HJ, Kang SI, Lee JE, Hur J, Ge K et al (2013) A multifunctional protein, EWS, is essential for early brown fat lineage determination. Dev Cell 26(4):393–404

    Article  CAS  Google Scholar 

  • Park J, Kim M, Sun K, An YA, Gu X, Scherer PE (2017) VEGF-A–expressing adipose tissue shows rapid beiging and enhanced survival after transplantation and confers IL-4–independent metabolic improvements. Diabetes 66(6):1479–1490

    Article  CAS  Google Scholar 

  • Pedersen BK (2017a) Anti-inflammatory effects of exercise: role in diabetes and cardiovascular disease. Eur J Clin Invest 47(8):600–611

    Article  CAS  Google Scholar 

  • Pedersen BK (2017b) Anti-inflammatory effects of exercise: role in diabetes and cardiovascular disease. Eur J Clin Invest 47(8):600–611

    Article  CAS  Google Scholar 

  • Perrini S, Laviola L, Belsanti G, Cignarelli A, Cuscito M, Neri V, et al. Differences of insulin signalling in human adipose tissue depots in vivo. 2003

    Google Scholar 

  • Perrini S, Laviola L, Cignarelli A, Melchiorre M, De Stefano F, Caccioppoli C et al (2008) Fat depot-related differences in gene expression, adiponectin secretion, and insulin action and signalling in human adipocytes differentiated in vitro from precursor stromal cells. Diabetologia 51(1):155–164

    Article  CAS  Google Scholar 

  • Petruzzelli M, Schweiger M, Schreiber R, Campos-Olivas R, Tsoli M, Allen J et al (2014) A switch from white to brown fat increases energy expenditure in cancer-associated cachexia. Cell Metab 20(3):433–447

    Article  CAS  Google Scholar 

  • Phillips KJ (2019) Beige fat, adaptive thermogenesis, and its regulation by exercise and thyroid hormone. Biology 8(3):57

    Article  CAS  Google Scholar 

  • Piccirillo R (2019) Exercise-induced myokines with therapeutic potential for muscle wasting. Front Physiol 10(287)

    Google Scholar 

  • Pinhel MAS, Noronha NY, Nicoletti CF, Quinhoneiro DCG, Oliveira BAP, Cortes-Oliveira C et al (2017) Comparison of gene expression profile between blood cells and white adipose tissue of patients with obesity. Nutr Hosp 34(3):603–607

    Article  CAS  Google Scholar 

  • Pinnick KE, Collins SC, Londos C, Gauguier D, Clark A, Fielding BA (2008) Pancreatic ectopic fat is characterized by adipocyte infiltration and altered lipid composition. Obesity 16(3):522–530

    Article  CAS  Google Scholar 

  • Poher A-L, Veyrat-Durebex C, Altirriba J, Montet X, Colin DJ, Caillon A et al (2015) Ectopic UCP1 overexpression in white adipose tissue improves insulin sensitivity in Lou/C rats, a model of obesity resistance. Diabetes 64(11):3700–3712

    Article  CAS  Google Scholar 

  • Purcell C, Taylor SM (2019) Idiopathic facial lipoatrophy in a healthy middle-aged woman: a case report. J Otolaryngol 48(1):63

    Google Scholar 

  • Qian S-W, Tang Y, Li X, Liu Y, Zhang Y-Y, Huang H-Y et al (2013) BMP4-mediated brown fat-like changes in white adipose tissue alter glucose and energy homeostasis. Proc Natl Acad Sci 110(9):E798–E807

    Article  CAS  Google Scholar 

  • Rabiee A (2020) Beige fat maintenance; toward a sustained metabolic health. Front Endocrinol 11(634)

    Google Scholar 

  • Rao RR, Long JZ, White JP, Svensson KJ, Lou J, Lokurkar I et al (2014) Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis. Cell 157(6):1279–1291

    Article  CAS  Google Scholar 

  • Reinehr T (2010) Obesity and thyroid function. Mol Cell Endocrinol 316(2):165–171

    Article  CAS  Google Scholar 

  • Remie CME, Moonen MPB, Roumans KHM, Nascimento EBM, Gemmink A, Havekes B et al (2021) Metabolic responses to mild cold acclimation in type 2 diabetes patients. Nat Commun 12(1):1516

    Article  CAS  Google Scholar 

  • Riechman SE, Balasekaran G, Roth SM, Ferrell RE (2004) Association of interleukin-15 protein and interleukin-15 receptor genetic variation with resistance exercise training responses. J Appl Physiol 97(6):2214–2219

    Article  CAS  Google Scholar 

  • Rinnov A, Yfanti C, Nielsen S, Åkerström TC, Peijs L, Zankari A et al (2014) Endurance training enhances skeletal muscle interleukin-15 in human male subjects. Endocrine 45(2):271–278

    Article  CAS  Google Scholar 

  • Roberts LD, Boström P, O’Sullivan JF, Schinzel RT, Lewis GD, Dejam A et al (2014) β-Aminoisobutyric acid induces browning of white fat and hepatic β-oxidation and is inversely correlated with cardiometabolic risk factors. Cell Metab 19(1):96–108

    Article  CAS  Google Scholar 

  • Rockstroh D, Landgraf K, Wagner IV, Gesing J, Tauscher R, Lakowa N et al (2015) Direct evidence of brown adipocytes in different fat depots in children. PLoS One 10(2):e0117841

    Article  Google Scholar 

  • Rodgers A, Sferruzzi-Perri AN (2021) Developmental programming of offspring adipose tissue biology and obesity risk. Int J Obes (Lond) 45(6):1170–1192

    Article  Google Scholar 

  • Rodríguez A, Becerril S, Méndez-Giménez L, Ramírez B, Sáinz N, Catalán V et al (2015) Leptin administration activates irisin-induced myogenesis via nitric oxide-dependent mechanisms, but reduces its effect on subcutaneous fat browning in mice. Int J Obes (Lond) 39(3):397–407

    Article  Google Scholar 

  • Rodríguez A, Becerril S, Ezquerro S, Méndez-Giménez L, Frühbeck G (2017) Crosstalk between adipokines and myokines in fat browning. Acta Physiol 219(2):362–381

    Article  Google Scholar 

  • Romieu I, Dossus L, Barquera S, Blottière HM, Franks PW, Gunter M et al (2017) Energy balance and obesity: what are the main drivers? Cancer Causes Control 28(3):247–258

    Article  Google Scholar 

  • Rondinone CM (2006) Adipocyte-derived hormones, cytokines, and mediators. Endocrine 29(1):81–90

    Article  CAS  Google Scholar 

  • Rosen ED, Sarraf P, Troy AE, Bradwin G, Moore K, Milstone DS et al (1999) PPARγ is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell 4(4):611–617. https://doi.org/10.1016/S1097-2765(00)80211-7

    Article  CAS  Google Scholar 

  • Rowland LA, Bal NC, Kozak LP, Periasamy M (2015) Uncoupling protein 1 and sarcolipin are required to maintain optimal thermogenesis, and loss of both systems compromises survival of mice under cold stress. J Biol Chem 290(19):12282–12289

    Article  CAS  Google Scholar 

  • Ruan H-B, Dietrich MO, Liu Z-W, Zimmer MR, Li M-D, Singh JP et al (2014) O-GlcNAc transferase enables AgRP neurons to suppress browning of white fat. Cell 159(2):306–317

    Article  CAS  Google Scholar 

  • Ruge T, Hodson L, Cheeseman J, Dennis AL, Fielding BA, Humphreys SM et al (2009) Fasted to fed trafficking of fatty acids in human adipose tissue reveals a novel regulatory step for enhanced fat storage. J Clin Endocrinol Metabol 94(5):1781–1788

    Article  CAS  Google Scholar 

  • Rui L, Yuan M, Frantz D, Shoelson S, White MF (2002) SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. J Biol Chem 277(44):42394–42398

    Article  CAS  Google Scholar 

  • Ruigrok SR, Stöberl N, Yam K-Y, de Lucia C, Lucassen PJ, Thuret S et al (2021) Modulation of the hypothalamic nutrient sensing pathways by sex and early-life stress. Front Neurosci 15(914)

    Google Scholar 

  • Sahu B, Pani S, Swalsingh G, Bal NC (2019) Non and epigenetic mechanisms in regulation of adaptive thermogenesis in skeletal muscle. Front Endocrinol (Lausanne) 10:517

    Article  Google Scholar 

  • Sanchez-Gurmaches J, Tang Y, Jespersen NZ, Wallace M, Calejman CM, Gujja S et al (2018) Brown fat AKT2 is a cold-induced kinase that stimulates ChREBP-mediated de novo lipogenesis to optimize fuel storage and thermogenesis. Cell Metab 27(1):195–209.e6

    Article  CAS  Google Scholar 

  • Sánchez-Jiménez R, Alvarado-Vásquez N (2013) IL-15 that a regulator of TNF-α in patients with diabetes mellitus type 2. Med Hypotheses 80(6):776–777

    Article  Google Scholar 

  • Sandoval DA, D'Alessio DA (2015) Physiology of proglucagon peptides: role of glucagon and GLP-1 in health and disease. Physiol Rev 95(2):513–548

    Article  CAS  Google Scholar 

  • Sarruf DA, Thaler JP, Morton GJ, German J, Fischer JD, Ogimoto K et al (2010) Fibroblast growth factor 21 action in the brain increases energy expenditure and insulin sensitivity in obese rats. Diabetes 59(7):1817–1824

    Article  CAS  Google Scholar 

  • Schlein C, Fischer AW, Sass F, Worthmann A, Tödter K, Jaeckstein MY et al (2021) Endogenous fatty acid synthesis drives brown adipose tissue involution. Cell Rep 34(2):108624

    Article  CAS  Google Scholar 

  • Schreiber R, Diwoky C, Schoiswohl G, Feiler U, Wongsiriroj N, Abdellatif M et al (2017) Cold-induced thermogenesis depends on ATGL-mediated lipolysis in cardiac muscle, but not Brown adipose tissue. Cell Metab 26(5):753–63.e7

    Article  CAS  Google Scholar 

  • Schwandt HJ, Heyduck B, Gunga HC, Röcker L (1991) Influence of prolonged physical exercise on the erythropoietin concentration in blood. Eur J Appl Physiol Occup Physiol 63(6):463–466

    Article  CAS  Google Scholar 

  • Shamsi F, Xue R, Huang TL, Lundh M, Liu Y, Leiria LO et al (2020) FGF6 and FGF9 regulate UCP1 expression independent of brown adipogenesis. Nat Commun 11(1):1–16

    Article  Google Scholar 

  • Shao M, Ishibashi J, Kusminski CM, Wang QA, Hepler C, Vishvanath L et al (2016a) Zfp423 maintains white adipocyte identity through suppression of the beige cell thermogenic gene program. Cell Metab 23(6):1167–1184. https://doi.org/10.1016/j.cmet.2016.04.023

    Article  CAS  Google Scholar 

  • Shao X, Yang W, Shao X, Qiu C, Wang X, Wang Y (2016b) The role of active brown adipose tissue (aBAT) in lipid metabolism in healthy Chinese adults. Lipids Health Dis 15(1):138

    Article  Google Scholar 

  • Sharp LZ, Shinoda K, Ohno H, Scheel DW, Tomoda E, Ruiz L et al (2012) Human BAT possesses molecular signatures that resemble beige/brite cells. PLoS One 7(11):e49452

    Article  CAS  Google Scholar 

  • Shi H, Cave B, Inouye K, Bjørbæk C, Flier JS (2006) Overexpression of suppressor of cytokine signaling 3 in adipose tissue causes local but not systemic insulin resistance. Diabetes 55(3):699–707

    Article  CAS  Google Scholar 

  • Shijun L, Khan R, Raza SHA, Jieyun H, Chugang M, Kaster N et al (2020) Function and characterization of the promoter region of perilipin 1 (PLIN1): roles of E2F1, PLAG1, C/EBPβ, and SMAD3 in bovine adipocytes. Genomics 112(3):2400–2409

    Article  Google Scholar 

  • Sidossis LS, Porter C, Saraf MK, Børsheim E, Radhakrishnan RS, Chao T et al (2015) Browning of subcutaneous white adipose tissue in humans after severe adrenergic stress. Cell Metab 22(2):219–227

    Article  CAS  Google Scholar 

  • Singh RG, Yoon HD, Wu LM, Lu J, Plank LD, Petrov MS (2017) Ectopic fat accumulation in the pancreas and its clinical relevance: a systematic review, meta-analysis, and meta-regression. Metabolism 69:1–13

    Article  CAS  Google Scholar 

  • Singh AK, Aryal B, Chaube B, Rotllan N, Varela L, Horvath TL et al (2018) Brown adipose tissue derived ANGPTL4 controls glucose and lipid metabolism and regulates thermogenesis. Molecular Metabolism 11:59–69

    Article  CAS  Google Scholar 

  • Sleeman MW, Wortley KE, Lai K-MV, Gowen LC, Kintner J, Kline WO et al (2005) Absence of the lipid phosphatase SHIP2 confers resistance to dietary obesity. Nat Med 11(2):199–205

    Article  CAS  Google Scholar 

  • Smith FM, Holt LJ, Garfield AS, Charalambous M, Koumanov F, Perry M et al (2007) Mice with a disruption of the imprinted Grb10 gene exhibit altered body composition, glucose homeostasis, and insulin signaling during postnatal life. Mol Cell Biol 27(16):5871–5886

    Article  CAS  Google Scholar 

  • Smith RL, Soeters MR, Wüst RCI, Houtkooper RH (2018) Metabolic flexibility as an adaptation to energy resources and requirements in health and disease. Endocr Rev 39(4):489–517

    Article  Google Scholar 

  • Solinas G, Borén J, Dulloo AG (2015) De novo lipogenesis in metabolic homeostasis: more friend than foe? Mol Metab 4(5):367–377

    Article  CAS  Google Scholar 

  • Stautemas J, Van Kuilenburg A, Stroomer L, Vaz F, Lefevere F, Blancquaert L et al (2018) The acute exercise metabolism of the so-called myokine BAIBA. 23rd annual congress of the European College of Sport Science (ECSS 2018): sport science at the cutting edge, European College of Sport Science

    Google Scholar 

  • Stautemas J, Van Kuilenburg AB, Stroomer L, Vaz F, Blancquaert L, Lefevere FB et al (2019) Acute aerobic exercise leads to increased plasma levels of R-and S-β-aminoisobutyric acid in humans. Front Physiol 10:1240

    Article  Google Scholar 

  • Steensberg A, Fischer CP, Keller C, Møller K, Pedersen BK (2003) IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. Am J Physiol Endocrinol Metab 285(2):E433–E4E7

    Article  CAS  Google Scholar 

  • Stengel A, Hofmann T, Goebel-Stengel M, Elbelt U, Kobelt P, Klapp BF (2013) Circulating levels of irisin in patients with anorexia nervosa and different stages of obesity–correlation with body mass index. Peptides 39:125–130

    Article  CAS  Google Scholar 

  • Stephens MAC, Wand G (2012) Stress and the HPA axis: role of glucocorticoids in alcohol dependence. Alcohol Res 34(4):468–483

    Google Scholar 

  • Sun K, Asterholm IW, Kusminski CM, Bueno AC, Wang ZV, Pollard JW et al (2012) Dichotomous effects of VEGF-A on adipose tissue dysfunction. Proc Natl Acad Sci 109(15):5874–5879

    Article  CAS  Google Scholar 

  • Tan HYA, Sim MFM, Tan S-X, Ng Y, Gan SY, Li H et al (2021) HOXC10 suppresses browning to maintain white adipocyte identity. Diabetes 70(8):1654–1663

    Article  CAS  Google Scholar 

  • Tang X, Powelka AM, Soriano NA, Czech MP, Guilherme A (2005) PTEN, but not SHIP2, suppresses insulin signaling through the phosphatidylinositol 3-kinase/Akt pathway in 3T3-L1 adipocytes. J Biol Chem 280(23):22523–22529. https://doi.org/10.1074/jbc.M501949200

    Article  CAS  Google Scholar 

  • Tapia P, Fernández-Galilea M, Robledo F, Mardones P, Galgani JE, Cortés VA (2018) Biology and pathological implications of brown adipose tissue: promises and caveats for the control of obesity and its associated complications. Biol Rev 93(2):1145–1164

    Article  Google Scholar 

  • Thyagarajan B, Foster MT (2017) Beiging of white adipose tissue as a therapeutic strategy for weight loss in humans. Horm Mol Biol Clin Invest 31(2)

    Google Scholar 

  • Timper K, Brüning JC (2017) Hypothalamic circuits regulating appetite and energy homeostasis: pathways to obesity. Dis Model Mech 10(6):679–689

    Article  CAS  Google Scholar 

  • Townsend KL, Tseng Y-H (2014) Brown fat fuel utilization and thermogenesis. Trends Endocrinol Metab 25(4):168–177

    Article  CAS  Google Scholar 

  • Tran K-V, Gealekman O, Frontini A, Zingaretti MC, Morroni M, Giordano A et al (2012) The vascular endothelium of the adipose tissue gives rise to both white and brown fat cells. Cell Metab 15(2):222–229

    Article  CAS  Google Scholar 

  • Tsuchiya Y, Ando D, Goto K, Kiuchi M, Yamakita M, Koyama K (2014) High-intensity exercise causes greater irisin response compared with low-intensity exercise under similar energy consumption. Tohoku J Exp Med 233(2):135–140

    Article  Google Scholar 

  • Ussar S, Lee KY, Dankel SN, Boucher J, Haering M-F, Kleinridders A et al (2014) ASC-1, PAT2, and P2RX5 are cell surface markers for white, beige, and brown adipocytes. Sci Transl Med 6(247):247ra103

    Article  Google Scholar 

  • Valgas P, da Silva C, Hernández-Saavedra D, White JD, Stanford KI (2019) Cold and exercise: therapeutic tools to activate brown adipose tissue and combat obesity. Biology 8(1):9

    Article  Google Scholar 

  • van der Zijl NJ, Goossens GH, Moors CC, van Raalte DH, Muskiet MH, Pouwels PJ et al (2011) Ectopic fat storage in the pancreas, liver, and abdominal fat depots: impact on β-cell function in individuals with impaired glucose metabolism. J Clin Endocrinol Metabol 96(2):459–467

    Article  Google Scholar 

  • VandeKopple MJ, Wu J, Baer LA, Bal NC, Maurya SK, Kalyanasundaram A et al (2017) Stress-responsive HILPDA is necessary for thermoregulation during fasting. J Endocrinol 235(1):27–38

    Article  CAS  Google Scholar 

  • Villarroya F, Cereijo R, Villarroya J, Gavaldà-Navarro A, Giralt M (2018) Toward an understanding of how immune cells control brown and beige adipobiology. Cell Metab 27(5):954–961

    Article  CAS  Google Scholar 

  • Virtanen KA, Iozzo P, Hällsten K, Huupponen R, Parkkola R, Janatuinen T et al (2005) Increased fat mass compensates for insulin resistance in abdominal obesity and type 2 diabetes, a positron–emitting tomography study. Diabetes 54(9):2720–2726

    Article  CAS  Google Scholar 

  • Waldén TB, Hansen IR, Timmons JA, Cannon B, Nedergaard J (2012) Recruited vs. nonrecruited molecular signatures of brown, “brite,” and white adipose tissues. Am J Physiol 302(1):E19–E31

    Google Scholar 

  • Wang W, Seale P (2016) Control of brown and beige fat development. Nat Rev Mol Cell Biol 17(11):691–702

    Article  CAS  Google Scholar 

  • Wang S, Yang X (2017) Inter-organ regulation of adipose tissue browning. Cell Mol Life Sci 74(10):1765–1776

    Article  CAS  Google Scholar 

  • Wang W, Kissig M, Rajakumari S, Huang L, Lim H-W, Won K-J et al (2014) Ebf2 is a selective marker of brown and beige adipogenic precursor cells. Proc Natl Acad Sci 111(40):14466–14471

    Article  CAS  Google Scholar 

  • Wang Y-L, Lin S-P, Hsieh P, Hung S-C (2016) Concomitant beige adipocyte differentiation upon induction of mesenchymal stem cells into brown adipocytes. Biochem Biophys Res Commun 478

    Google Scholar 

  • Wang B, Li A, Li X, Ho PWL, Wu D, Wang X et al (2018) Activation of hypothalamic RIP-Cre neurons promotes beiging of WAT via sympathetic nervous system. EMBO Rep 19(4):e44977. https://doi.org/10.15252/embr.201744977

    Article  CAS  Google Scholar 

  • White PJ, McGarrah RW, Herman MA, Bain JR, Shah SH, Newgard CB (2021) Insulin action, type 2 diabetes, and branched-chain amino acids: a two-way street. Mol Metab:101261

    Google Scholar 

  • Whittle Andrew J, Carobbio S, Martins L, Slawik M, Hondares E, Vázquez María J et al (2012) BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell 149(4):871–885. https://doi.org/10.1016/j.cell.2012.02.066

    Article  CAS  Google Scholar 

  • Worsch S, Heikenwalder M, Hauner H, Bader BL (2018) Dietary n-3 long-chain polyunsaturated fatty acids upregulate energy dissipating metabolic pathways conveying anti-obesogenic effects in mice. Nutr Metab 15(1):65

    Article  Google Scholar 

  • Wu J, Boström P, Sparks Lauren M, Ye L, Choi Jang H, Giang A-H et al (2012) Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150(2):366–376

    Article  CAS  Google Scholar 

  • Xue Y, Cao R, Nilsson D, Chen S, Westergren R, Hedlund E-M et al (2008) FOXC2 controls Ang-2 expression and modulates angiogenesis, vascular patterning, remodeling, and functions in adipose tissue. Proc Natl Acad Sci 105(29):10167–10172

    Article  CAS  Google Scholar 

  • Yang Y, Fu M, Li M-D, Zhang K, Zhang B, Wang S et al (2020) O-GlcNAc transferase inhibits visceral fat lipolysis and promotes diet-induced obesity. Nat Commun 11(1):181

    Article  CAS  Google Scholar 

  • Yasmeen R, Shen Q, Lee A, Leung JH, Kowdley D, DiSilvestro DJ et al (2018) Epiregulin induces leptin secretion and energy expenditure in high-fat diet-fed mice. J Endocrinol 239(3):377–388

    Article  CAS  Google Scholar 

  • Ye J (2013) Mechanisms of insulin resistance in obesity. Front Med 7(1):14–24

    Article  Google Scholar 

  • Yki-Järvinen H (2002) Ectopic fat accumulation: an important cause of insulin resistance in humans. J R Soc Med 95(Suppl 42):39–45

    Google Scholar 

  • Yoneshiro T, Wang Q, Tajima K, Matsushita M, Maki H, Igarashi K et al (2019) BCAA catabolism in brown fat controls energy homeostasis through SLC25A44. Nature 572(7771):614–619

    Article  CAS  Google Scholar 

  • Yoneshiro T, Kataoka N, Walejko JM, Ikeda K, Brown Z, Yoneshiro M et al (2021) Metabolic flexibility via mitochondrial BCAA carrier SLC25A44 is required for optimal fever. Elife 10:e66865

    Article  CAS  Google Scholar 

  • Youngren JF (2007) Regulation of insulin receptor function. Cell Mol Life Sci 64(7):873

    Article  CAS  Google Scholar 

  • Yu Y, Yoon S-O, Poulogiannis G, Yang Q, Ma XM, Villén J et al (2011) Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332(6035):1322–1326

    Article  CAS  Google Scholar 

  • Yu F, Wang Z, Zhang T, Chen X, Xu H, Wang F et al (2021) Deficiency of intestinal Bmal1 prevents obesity induced by high-fat feeding. Nat Commun 12(1):5323

    Article  CAS  Google Scholar 

  • Zhang J, Gao Z, Yin J, Quon MJ, Ye J (2008) S6K directly phosphorylates IRS-1 on Ser-270 to promote insulin resistance in response to TNF-α signaling through IKK2. J Biol Chem 283(51):35375–35382

    Article  CAS  Google Scholar 

  • Zhou H, Kaplan T, Li Y, Grubisic I, Zhang Z, Wang PJ et al (2013) Dual functions of TAF7L in adipocyte differentiation. Elife 2:e00170

    Article  Google Scholar 

  • Zhou H, Wan B, Grubisic I, Kaplan T, Tjian R (2014) TAF7L modulates brown adipose tissue formation. Elife 3:e02811

    Article  Google Scholar 

  • Zhu Y, Gao Y, Tao C, Shao M, Zhao S, Huang W et al (2016) Connexin 43 mediates White adipose tissue beiging by facilitating the propagation of sympathetic neuronal signals. Cell Metab 24(3):420–433

    Article  CAS  Google Scholar 

  • Zwick RK, Guerrero-Juarez CF, Horsley V, Plikus MV (2018) Anatomical, physiological, and functional diversity of adipose tissue. Cell Metab 27(1):68–83

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Punyadhara Pani, Gourabmani Swalsingh, and Sunil Pani for constructive critical suggestions and discussions that helped us to shape this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naresh C. Bal .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be constructed as a potential conflict of interest.

Author Contributions

BS and NCB conceived the idea. BS, OT, and the US prepared the first draft and figures. All authors critically discussed and edited the manuscript.

Data Availability Statement

Data sharing does not apply to this article as no new data were created or analyzed in this study.

Funding

This work was supported by the Council of Scientific and Industrial Research (CSIR), India (file no.09/1035 (0011)/2017-EMR-I to BS for Junior Research Fellowship), the Science and Engineering Research Board (SERB), DST, India (Grant number ECR/2016/001247 to NCB), and DBT, India (Grant number BT/RLF/Re-entry/41/2014 and BT/PR28935/MED/30/2035/2018).

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sahu, B., Tikoo, O., Pati, B., Senapati, U., Bal, N.C. (2022). Role of Distinct Fat Depots in Metabolic Regulation and Pathological Implications. In: Pedersen, S.H.F. (eds) Reviews of Physiology, Biochemistry and Pharmacology. Reviews of Physiology, Biochemistry and Pharmacology, vol 186. Springer, Cham. https://doi.org/10.1007/112_2022_73

Download citation

Publish with us

Policies and ethics