Skip to main content
Log in

Analysis of the motion of vacuolar volutin granules in Saccharomyces cerevisiae

  • Original Article
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

The moving volutin (polyphosphate) granules known as “dancing bodies” can be observed in the vacuoles of the yeast cells. The aim of work was to study the effects of cultivation conditions and influences of physico-chemical factors on the motion of vacuolar volutin granules in Saccharomyces cerevisiae cells. The motion of granules is a non-Markovian process. It does not depend on the cell cycle phase, but depends on the growth stage. The maximal number of cells with “dancing bodies” was observed under cultivation of yeast at 25–28 °C and pH 5.4–5.8. Irradiation by non-ionizing electromagnetic radiation (EMR) of extremely high frequency (61.22 GHz, 100 μW, 30 min) had no effect on granule motion. After irradiation by non-ionizing EMR of very high frequency (40.68 MHz, 30 W, 30 min) the number of cells with “dancing bodies” decreased significantly and in 2 h restored almost to the control value. The possible nature of the moving volutin granules phenomenon due to metabolic processes is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allan RA, Miller JJ (1980) Influence of S-adenosylmethionine on DAPI-induced fluorescence of polyphosphate in the yeast vacuole. Can J Microbiol 26(8):912–920

    Article  CAS  PubMed  Google Scholar 

  • Allen NS, Allen RD (1978) Cytoplasmic streaming in green plants. Ann Rev Biophys Bioeng 7:497–526

    Article  CAS  Google Scholar 

  • Barnett JA, Robinow CF (2002) A history of research on yeasts 4: cytology part I, 1890-1950. Yeast 19(2):151–182

    Article  CAS  PubMed  Google Scholar 

  • Brangwynne CP, Koenderink GH, MacKintosh FC, Weitz DA (2009) Intracellular transport by active diffusion. Trends Cell Bioll 19(9):423–427

    Article  CAS  Google Scholar 

  • da Costa JG, de Moura MA, Consoli L, Nogueira RA (2002) Can electromagnetic radiations induce changes in the kinetics of voltage-dependent ion channels? Cell Mol Biol (Noisy-le-grand) 48(5):577–583

    Google Scholar 

  • Egorov AM, Lonin AY, Lonin YF, Chumakov VI, Shepelev AG, Nemoshkalo OV (2009) Unionizing electromagnetic radiation and ecology. Radiofiz Electron 14(2):229–238 (in Russian)

    Google Scholar 

  • Evstratova KI, Kupina NA, Malakhova EE (1990) Physical and colloidal chemistry. Vysshaya Shkola, Moscow (in Russian)

    Google Scholar 

  • Findl E (1987) Membrane transduction of low energy level fields and the Ca++ hypothesis. In: Blank M, Findl E (eds) Mechanistic approaches to interactions of electric and electromagnetic fields with living systems. Plenum Press, New York, pp 15–38

    Chapter  Google Scholar 

  • Friedberg I, Avigad G (1968) Structures containing polyphosphate in Micrococcus lysodeikticus. J Bacteriol 96(2):544–553

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galston AW, Davies PJ, Satter RL (1980) The life of the green plant, 3rd edn. Prentice-Hall, New Jersey

    Google Scholar 

  • Gordon LK, Valitova YN, Ogorodnicova TI, Rakhmatullina DF, Alyabyev AY, Loseva NL, Tsentsevitsky AN, Ruban NF (2005) Energy metabolism in wheat root cells under modification of plasma membrane permeability by antibiotic nystatin. Tsitologiya 47(12):1088–1094 (in Russian)

    CAS  Google Scholar 

  • Gromozova EN (1998) Role of the lag phase in the development of various mycelium forms of some fungi during deep cultivation. Ontogenez (Russian Journal of Developmental Biology) 29(5):362–365 (in Russian)

    Google Scholar 

  • Hartwell LH, Cultti J, Pringle JR, Reid BJ (1974) Genetic control of the cell division cycle in yeast. Science 183(4120):46–51

    Article  CAS  PubMed  Google Scholar 

  • Imamura H, Kato M (2009) Effect of pressure on helix-coil transition of an alanine-based peptide: an FTIR study. Proteins 75(4):911–918

    Article  CAS  PubMed  Google Scholar 

  • Ketabi N, Mobasheri H, Faraji-Dana R (2015) Electromagnetic fields (UHF) increase voltage sensitivity of membrane ion channels; possible indication of cell phone effect on living cells. Electromagn Biol Med 34(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Lebedev SI (1988) Plant physiology, 3rd edn. Agropromizdat, Moscow (in Russian)

    Google Scholar 

  • Lehninger AL (1974) Biochemistry. The molecular basis of cell structure and function. Worth Publisher, New York

    Google Scholar 

  • Morozov AN, Skripkin AV (2011) Spherical particle Brownian motion in viscous medium as non-Markovian random process. Phys Lett A 375(46):4113–4115

    Article  CAS  Google Scholar 

  • Naito Y, Toh-e A, Hamaguchi H (2005) In vivo time-resolved Raman imaging of a spontaneous death process of a single budding yeast cell. J Roman Spectrosc 36(9):837–839

    Article  CAS  Google Scholar 

  • Pall ML (2015) Scientific evidence contradicts findings and assumptions of Canadian safety panel 6: microwaves act through voltage-gated calcium channel activation to induce biological impacts at non-thermal levels, supporting a paradigm shift for microwave/lower frequency electromagnetic field action. Rev Environ Health 30(2):99–116

    Article  CAS  PubMed  Google Scholar 

  • Pick U, Weiss M (1991) Polyphosphate hydrolysis within acidic vacuoles in response to amine-induced alkaline stress in the halotolerant alga Dunaliella salina. Plant Physiol 97(3):1234–1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puchkov EO (2010) Brownian motion of polyphosphate complexes in yeast vacuoles: characterization by fluorescence microscopy with image analysis. Yeast 27(6):309–315

    CAS  PubMed  Google Scholar 

  • Richardson JM, Makhatadze GI (2004) Temperature dependence of the thermodynamics of helix-coil transition. J Mol Biol 335(4):1029–1037

    Article  CAS  PubMed  Google Scholar 

  • Rolfe MD, Rice CJ, Lucchini S, Pin C, Thompson A, Cameron ADS, Alston M, Stringer MF, Betts RP, Baranyi J, Peck MW, Hinton JCD (2012) Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation. J Bacteriol 194(3):686–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rotmistrov MN, Gvozdjak PI, Stavskaya SS (1978) Microbiology of sewage water treatment. Naukova Dumka Kiev. (in Russian)

  • Voyutskiy SS (1975) A course of colloid chemistry, 2nd edn. Khimiya, Moscow (in Russian)

    Google Scholar 

  • Walczak CE, Head R (2008) Mechanisms of mitotic spindle assembly and function. Int Rev Cytol 265:111–158

  • Walker GM (1998) Yeast physiology and biotechnology. John Wiley & Sons, Chichester

    Google Scholar 

  • Woodhouse FG, Goldstein RE (2013) Cytoplasmic streaming in plant cells emerges naturally by microfilament self-organization. PNAS 110(35):141320–114137

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxim S. Kharchuk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharchuk, M.S., Glushenkov, A.N. & Gromozova, E.N. Analysis of the motion of vacuolar volutin granules in Saccharomyces cerevisiae. Folia Microbiol 64, 207–213 (2019). https://doi.org/10.1007/s12223-018-0646-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-018-0646-8

Navigation