Skip to main content
Log in

Responsiveness and Adaptation to Salt Stress of the REDOX-RESPONSIVE TRANSCRIPTION FACTOR 1 (RRTF1) Gene are Controlled by its Promoter

  • OriginalPaper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The REDOX-RESPONSIVE TRANSCRIPTION FACTOR 1 (RRTF1) gene encodes a member of the ERF/AP2 transcription factor family involved in redox homeostasis. The RRTF1 gene shows tissue-specific responsiveness to various abiotic stress treatments including a response to salt stress in roots. An interesting feature of this response is an adaptation phase that follows its activation, when promoter levels revert to a base line level, even if salt stress is maintained. It is unclear if adaption is controlled by a switch in promoter activity or by changes in transcript levels. Here we show that the RRTF1 promoter is sufficient for the control of both activation and adaptation to salt stress. As constitutive expression of RRTF1 turned out to be detrimental to the plant, we propose that promoter-regulated adaptation evolved as a protection mechanism to balance the beneficial effects of short-term gene activation and the detrimental effects of long-term gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shahmuradov, I. A., Gammerman, A. J., Hancock, J. M., Bramley, P. M., & Solovyev, V. V. (2003). PlantProm: A database of plant promoter sequences. Nucleic Acids Research, 31, 114–117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Isabelle, B. S., Stéphanie, P., Françoise, C., Juliette, L., & Christophe, B. (2017). 5′ to 3′ mRNA decay contributes to the regulation of arabidopsis seed germination by dormancy. Plant Physiology, 173(3), 1709–1723.

    Article  CAS  Google Scholar 

  3. Middleton, A. M., Úbeda-Tomás, S., Griffiths, J., Holman, T., Hedden, P., et al. (2012) Mathematical modeling elucidates the role of transcriptional feedback in gibberellin signaling. Proceedings of the National Academy of Sciences, 109, 7571–7576.

    Article  Google Scholar 

  4. Borsani, O., Zhu, J., Verslues, P. E., Sunkar, R., & Zhu, J.K. (2005). Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in arabidopsis. Cell, 123, 1279–1291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lämke, J., & Bäurle, I. (2017). Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biology, 18, 124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Khandelwal, A., Elvitigala, T., Ghosh, B., & Quatrano, R. S. (2008). Arabidopsis transcriptome reveals control circuits regulating redox homeostasis and the role of an AP2 transcription factor. Plant Physiology, 148, 2050–2058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jen, C.-H., Michalopoulos, I., Westhead, D., & Meyer, P. (2005). Natural antisense transcripts with coding capacity in Arabidopsis may have a regulatory role that is not linked to double-stranded RNA degradation. Genome Biology, 6, R51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zimmermann, P., Hirsch-Hoffmann, M., Hennig, L., & Gruissem, W. (2004). GENEVESTIGATOR. arabidopsis microarray database and analysis toolbox. Plant Physiology, 136, 2621–2632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kilian, J., Whitehead, D., Horak, J., Wanke, D., Weinl, S., Batistic, O., et al. (2007). The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. The Plant Journal, 50, 347–363.

    Article  CAS  PubMed  Google Scholar 

  10. Fang, Y.Y., Zhao, J.H., Liu, S.W., Wang, S., Duan, C.G., & Guo, H.S. (2016). CMV2b-AGO interaction is required for the suppression of RDR-dependent antiviral silencing in Arabidopsis. Frontiers in Microbiology, 7, 1329.

    PubMed  PubMed Central  Google Scholar 

  11. McHale, M., Eamens, A. L., Finnegan, E. J., & Waterhouse, P. M. (2013). A 22-nt artificial micro-RNAmediates widespread RNA silencing in Arabidopsis. The Plant Journal, 76(3), 519–529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Katiyar-Agarwal, S., Morgan, R., Dahlbeck, D., Borsani, O., Villegas, A., et al. (2006) A pathogen-inducible endogenous siRNA in plant immunity. Proceedings of the National Academy of Sciences, 103, 18002–18007.

    Article  CAS  Google Scholar 

  13. Hu, Y., Chen, L., Wang, H., Zhang, L., Wang, F., & Yu, D. (2013). Arabidopsis transcription factor WRKY8 functions antagonistically with its interacting partner VQ9 to modulate salinity stress tolerance. The Plant Journal, 74, 730–745.

    Article  CAS  PubMed  Google Scholar 

  14. Karan, R., DeLeon, T., Biradar, H., & Subudhi, P. K. (2012). Salt stress induced variation in DNA methylation pattern and its influence on gene expression in contrasting rice genotypes. PLoS ONE, 7, e40203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pandey, G., Sharma, N., Sahu, P. P., & Prasad, M. (2016). Chromatin-based epigenetic regulation of plant abiotic stress response. Current Genomics, 17(6), 490–498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zubko, E., Gentry, M., Kunova, A., & Meyer, P. (2012). De novo DNA methylation activity of METHYLTRANSFERASE 1 (MET1) partially restores body methylation in Arabidopsis thaliana. The Plant Journal, 71, 1029–1037.

    Article  CAS  PubMed  Google Scholar 

  17. Peragine, A., Yoshikawa, M., Wu, G., Albrecht, H. L., & Poethig, R. S. (2004). SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes & Development, 18, 2368–2379.

    Article  CAS  Google Scholar 

  18. Kankel, M. W., Ramsey, D. E., Stokes, T. L., Flowers, S. K., Haag, J. R., Jeddeloh, J. A., et al. (2003). Arabidopsis MET1 cytosine methyltransferase mutants. Genetics, 163, 1109–1122.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Adamo, A. (2008). Characterisation of unusual transcript classes. In Arabidopsis thaliana (196 p). Leeds: University of Leeds.

    Google Scholar 

  20. Gallois, J.-L., Woodward, C., Reddy, G. V., & Sablowski, R. (2002). Combined SHOOT MERISTEMLESS and WUSCHEL trigger ectopic organogenesis in Arabidopsis. Development, 129, 3207–3217.

    CAS  PubMed  Google Scholar 

  21. Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal, 16, 735–743.

    Article  CAS  Google Scholar 

  22. Kilian, J., Whitehead, D., Horak, J., Wanke, D., Weinl, S., et al. (2007). The At Gen Express global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant Journal, 50, 347–363.

    Article  CAS  PubMed  Google Scholar 

  23. Livak, K., & Schmittgen, T. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2 −∆∆CT method. Methods, 25, 402–408.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elham R. S. Soliman.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soliman, E.R.S., Meyer, P. Responsiveness and Adaptation to Salt Stress of the REDOX-RESPONSIVE TRANSCRIPTION FACTOR 1 (RRTF1) Gene are Controlled by its Promoter. Mol Biotechnol 61, 254–260 (2019). https://doi.org/10.1007/s12033-019-00155-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-019-00155-9

Keywords

Navigation