Skip to main content
Log in

Characterizing error propagation in quantum circuits: the Isotropic Index

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

This paper presents a novel index in order to characterize error propagation in quantum circuits by separating the resultant mixed error state in two components: an isotropic component that quantifies the lack of information, and a disalignment component that represents the shift between the current state and the original pure quantum state. The Isotropic Triangle, a graphical representation that fits naturally with the proposed index, is also introduced. Finally, some examples with the analysis of well-known quantum algorithms degradation are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Aharonov, D., Ben-Or, M.: Fault-tolerant quantum computation with constant error rate. SIAM J. Comput. 38(4), 1207–1282 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambainis, A., Backurs, A., Nahimovs, N., Rivosh, A.: Grover’s algorithm with errors. In: Henzinger, A.K.T.A., Vojnar, J.N.T., Antos, D. (eds.) Mathematical and engineering methods in computer science. Lecture Notes in Computer Science, vol. 7721, pp. 180–189. Springer, Berlin (2013)

    Chapter  Google Scholar 

  3. Azuma, H.: Decoherence in Grover’s quantum algorithm: perturbative approach. Phys. Rev. A 65, 042311 (2002)

    Article  ADS  Google Scholar 

  4. Bourdon, P.S., Williams, H.T.: Unital quantum operations on the Bloch ball and Bloch region. Phys. Rev. A 69, 022314 (2004)

    Article  ADS  Google Scholar 

  5. Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098–1105 (1996)

    Article  ADS  Google Scholar 

  6. Chen, J., Kaszlikowski, D., Kwek, L.C., Oh, C.H.: Searching a database under decoherence. Phys. Lett. A 306(56), 296–305 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Cohn, I., Fonseca De Oliveira, A.L., Buksman, E., Lopez De Lacalle, J.G.: Grover’s search with local and total depolarizing channel errors: complexity analysis. Int. J. Quantum Inf. 14(02), 1650009 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fonseca de Oliveira, A.L., Buksman, E., García-López, J.: Isotropic double index for quantum errors in one qubit. J. Chem. Chem. Eng. 5(11), 1053–1058 (2011)

    Google Scholar 

  9. Devitt, S.J., Munro, W.J., Nemoto, K.: Quantum error correction for beginners. Rep. Prog. Phys. 76(7), 076001 (2013)

    Article  ADS  Google Scholar 

  10. García-López, J., García-Mazarío, F., Martín, V.: Modelos de error en computación cuántica. Technical Report 20, Universidad Politécnica de Madrid (2003)

  11. García-López, J., García-Mazarío, F.: Modelos continuos de error en computación cuántica. In: Primer Congreso Internacional de Matemáticas en Ingeniería y Arquitectura, Madrid, Spain (2007). ISBN 978-84-7493-381-9

  12. Gawron, P., Klamka, J., Winiarczyk, R.: Noise effects in the quantum search algorithm from the viewpoint of computational complexity. Appl. Math. Comput. Sci. 22(2), 493–499 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Gottesman, D.: An introduction to quantum error correction and fault-tolerant quantum computation. In: Lomonaco Jr., S.J. (ed.) Quantum Information Science and Its Contributions to Mathematics, Proceedings of Symposia in Applied Mathematics, vol. 68, pp. 13–60. AMS, (2010)

  14. Gottesman, D.: Theory of fault-tolerant quantum computation. Phys. Rev. A 57, 127–137 (1998)

    Article  ADS  Google Scholar 

  15. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings, 28th Annual ACM Symposium on the Theory of Computing, p. 212 (1996)

  16. Grover, L.K.: Quantum mechanics helps in searching for a needle in haystack. Phys. Rev. Lett. 79(2), 325–328 (1997)

    Article  ADS  Google Scholar 

  17. Grover, L.K.: From Schrödinger’s equation to the quantum search algorithm. Am. J. Phys. 69(7), 769–777 (2001)

    Article  ADS  Google Scholar 

  18. Horodecki, M., Horodecki, P.: Reduction criterion of separability and limits for a class of distillation protocols. Phys. Rev. A 59, 4206–4216 (1999)

    Article  ADS  Google Scholar 

  19. Knill, E., Laflamme, R., Viola, L.: Theory of quantum error correction for general noise. Phys. Rev. Lett. 84, 2525–2528 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Knill, E., Laflamme, R., Zurek, W.H.: Resilient quantum computation: error models and thresholds. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 454(1969), 365–384 (1998)

    Article  ADS  MATH  Google Scholar 

  21. Ladd, T.D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., OB́rien, J.L.: Quantum computers. Nature 464, 45–53 (2010)

    Article  ADS  Google Scholar 

  22. Laflamme, R., Miquel, C., Paz, J.P., Zurek, W.H.: Perfect quantum error correcting code. Phys. Rev. Lett. 77, 198–201 (1996)

    Article  ADS  Google Scholar 

  23. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  24. Regev, O., Schiff, L.: Impossibility of a quantum speed-up with a faulty oracle. In: Aceto, L., Damgrd, I., Goldberg, L.A., Halldrsson, M.M., Inglfsdttir, A., Walukiewicz, I. (eds.) Automata, Languages and Programming. Lecture Notes in Computer Science, vol. 5125, pp. 773–781. Springer, Berlin (2008)

    Chapter  Google Scholar 

  25. Salas, P.J.: Noise effect on Grover algorithm. Eur. Phys. J. D 46(2), 365–373 (2008)

    Article  ADS  Google Scholar 

  26. Shapira, D., Mozes, S., Biham, O.: Effect of unitary noise on Grover’s quantum search algorithm. Phys. Rev. A 67, 042301 (2003)

    Article  ADS  Google Scholar 

  27. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493–R2496 (1995)

    Article  ADS  Google Scholar 

  28. Temme, K.: Runtime of unstructured search with a faulty Hamiltonian oracle. Phys. Rev. A 90, 022310 (2014)

    Article  ADS  Google Scholar 

  29. Vrana, P., Reeb, D., Reitzner, D., Wolf, M.M.: Fault-ignorant quantum search. New J. Phys. 16, 073033 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

A.L.F.O. and E.B. acknowledge financial support from SNI-Uruguay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André L. Fonseca de Oliveira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fonseca de Oliveira, A.L., Buksman, E., Cohn, I. et al. Characterizing error propagation in quantum circuits: the Isotropic Index. Quantum Inf Process 16, 48 (2017). https://doi.org/10.1007/s11128-016-1507-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-016-1507-5

Keywords

Navigation