Skip to main content

Advertisement

Log in

Eukaryotic microbial communities in hypersaline soils and sediments from the alkaline hypersaline Huama Lake as revealed by 454 pyrosequencing

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

In hypersaline ecosystems, microbial assemblages are structurally distinctive and play important roles in many microbiological and ecological processes. Here, eukaryotic microorganisms in hypersaline samples were investigated by 454 pyrosequencing of internal transcribed spacer (ITS) gene libraries. In total, 4,645, 1,677, and 5,912 reads were obtained from ITS libraries of waterlogged samples, salt crusts, and saline loess from the alkaline Huama Lake in Shaanxi, China. Analyses of pyrosequencing data revealed that the dominant genera were Dunaliella, Alternaria and Chlamydomonas, which dominated the microbial assemblages in the waterlogged sediments, the salt crusts and the saline loess from the lake banks, respectively. The various infrequent species were not commonly shared by the three types of samples, demonstrating that the eukaryotic microbial compositions of the different environments were distinct. However, the micro-eukaryotic assemblages associated with similar environmental conditions shared some components and were phylogenetically related. The eukaryotic microbial community composition was correlated with the pH value of the site (p = 0.001; r2 = 0.99), but not with the concentration of total nitrogen or the inorganic ions investigated in this study. The results of this study demonstrated that the hypersaline ecosystems hosted surprisingly diverse eukaryotic microbial community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alexander E, Stock A, Breiner HW, Behnke A, Bunge J, Yakimov MM, Stoeck T (2009) Microbial eukaryotes in the hypersaline anoxic L’Atalante deep-sea basin. Environ Microbiol 11:360–381

    Article  CAS  PubMed  Google Scholar 

  • Anderson IC, Cairney JW (2004) Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques. Environ Microbiol 6:769–779

    Article  CAS  PubMed  Google Scholar 

  • Bellemain E, Carlsen T, Brochmann C, Coissac E, Taberlet P, Kauserud H (2010) ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiol 10:189

    Article  PubMed Central  PubMed  Google Scholar 

  • Bolhuis H, Fillinger L, Stal LJ (2013) Coastal microbial mat diversity along a natural salinity gradient. PLoS One 8:e63166

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Borin S, Mapelli F, Rolli E, Song B, Tobias C, Schmid MC, De Lange GJ, Reichart GJ, Schouten S, Jetten M, Daffonchio D (2013) Anammox bacterial populations in deep marine hypersaline gradient systems. Extremophiles 17:289–299

    Article  CAS  PubMed  Google Scholar 

  • Buchheim MA, Kirkwood AE, Buchheim JA, Verghese B, Henley WJ (2010) Hypersaline soil supports a diverse community of Dunaliella (Chlorophyceae). J Phychol 46:1038–1047

    Article  Google Scholar 

  • Buée M, Reich M, Murat C, Morin E, Nilsson RH, Uroz S, Martin F (2009) 454 pyrosequencing analyses of forest soils reveal an unexpected high fungal diversity. New Phytol 184:449–456

    Article  PubMed  Google Scholar 

  • Butinar L, Santos S, Spencer-Martins I, Oren A, Gunde-Cimerman N (2005) Yeast diversity in hypersaline habitats. FEMS Microbiol Lett 244:229–234

    Article  CAS  PubMed  Google Scholar 

  • Butinar L, Frisvad JC, Gunde-Cimerman N (2011) Hypersaline waters—a potential source of foodborne toxigenic aspergilli and penicillia. FEMS Microbiol Ecol 77:186–199

    Article  CAS  PubMed  Google Scholar 

  • Cantrell SA, Báez-Félix C (2010) Fungal molecular diversity of a Puerto Rican subtropical hypersaline microbial mat. Fungal Ecol 3:402–405

    Article  Google Scholar 

  • Cantrell SA, Casillas-Martínez L, Molina M (2006) Characterization of fungi from hypersaline environments of solar salterns using morphological and molecular techniques. Mycol Res 110:962–970

    Article  CAS  PubMed  Google Scholar 

  • Das S, Lyla PS, Khan SA (2006) Marine microbial diversity and ecology: importance and future perspectives. Curr Sci 90:1325–1335

    CAS  Google Scholar 

  • Edgcomb VP, Bernhard JM, Summons RE, Orsi W, Beaudoin D, Visscher PT (2014) Active eukaryotes in microbialites from Highborne Cay, Bahamas, and Hamelin Pool (Shark Bay), Australia. ISME J 8:418–429

    Article  CAS  PubMed  Google Scholar 

  • Elevi Bardavid R, Khristo P, Oren A (2008) Interrelationships between Dunaliella and halophilic prokaryotes in saltern crystallizer ponds. Extremophiles 12:5–14

    Article  PubMed  Google Scholar 

  • Fenchel T, Harrison P (1976) The significance of bacterial grazing and mineral cycling for the decomposition of particulate deritus. The role of terrestrial and aquatic organisms in decomposition processes. Blackwell Scientific Publications, Oxford, pp 285–299

    Google Scholar 

  • Gasol JM, Casamayor EO, Joint I, Garde K, Gustavson K, Benlloch S, Díez B, Schauer M, Massana R, Pedrós-Alió C (2004) Control of heteroptrophic prokaryotic abundance and growth rate in hypersaline planktonic environments. Aquat Microb Ecol 34:193–206

    Article  Google Scholar 

  • Gostincar C, Grube M, de Hoog S, Zalar P, Gunde-Cimerman N (2010) Extremotolerance in fungi: evolution on the edge. FEMS Microbiol Ecol 71:2–11

    Article  CAS  PubMed  Google Scholar 

  • GyurfÁn I, Nghia NH, Tóth G, TurtÓzky I, Stefanovits P (1986) Photosynthesis, nitrogen fixation and enzyme activities in Chlamydomonas–Azotobacter symbioses. Biochem Physiol Pfl 181:147–153

    Article  Google Scholar 

  • Herbst DB (1998) Potential salinity limitations on nitrogen fixation in sediments from Mono Lake, California. Int J Salt Lake Res 7:261–274

    Google Scholar 

  • Hollister EB, Engledow AS, Hammett AJ, Provin TL, Wilkinson HH, Gentry TJ (2010) Shifts in microbial community structure along an ecological gradient of hypersaline soils and sediments. ISME J 4:829–838

    Article  CAS  PubMed  Google Scholar 

  • Horikoshi K (1999) Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev 63:735–750

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huse SM, Huber JA, Morrison HG, Sogin ML, Welch DM (2007) Accuracy and quality of massively-parallel DNA pyrosequencing. Genome Biol 8:R143

    Article  PubMed Central  PubMed  Google Scholar 

  • Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75(15):5111–5120

    Google Scholar 

  • Lentendu G, Zinger L, Manel S, Coissac E, Choler P, Geremia RA, Melodelima C (2011) Assessment of soil fungal diversity in different alpine tundra habitats by means of pyrosequencing. Fungal Divers 49:113–123

    Article  Google Scholar 

  • Lim YW, Kim BK, Kim C, Jung HS, Kim BS, Lee JH, Chun J (2010) Assessment of soil fungal communities using pyrosequencing. J Microbiol 48:284–289

    Article  PubMed  Google Scholar 

  • McGeehan SL, Naylor DV (1988) Automated instrumental analysis of carbon and nitrogen in plant and soil samples. Commun Soil Sci Plant Anal 19:493–505

    Article  CAS  Google Scholar 

  • McGuire KL, Allison SD, Fierer N, Treseder KK (2013) Ectomycorrhizal-dominated boreal and tropical forests have distinct fungal communities, but analogous spatial patterns across soil horizons. PLoS ONE 8:e68278

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mehlich A (1978) New extractant for soil test evaluation of phosphorus, potassium, magnesium, calcium, sodium, manganese and zinc. Commun Soil Sci Plant Anal 9:477–492

    Article  CAS  Google Scholar 

  • Meng H, Li K, Nie M, Wan JR, Quan ZX, Fang CM, Chen JK, Gu JD, Li B (2013) Responses of bacterial and fungal communities to an elevation gradient in a subtropical montane forest of China. Appl Microbiol Biotechnol 97:2219–2230

    Article  CAS  PubMed  Google Scholar 

  • Oren A (1999) Microbiology and biogeochemistry of hypersaline environments. CRC Press, Boca Raton

    Google Scholar 

  • Orgiazzi A, Lumini E, Nilsson RH, Girlanda M, Vizzini A, Bonfante P, Bianciotto V (2012) Unravelling soil fungal communities from different Mediterranean land-use backgrounds. PLoS ONE 7:e34847

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Park JS, Kim H, Choi DH, Cho BC (2003) Active flagellates grazing on prokaryotes in high salinity waters of a solar saltern. Aquat Microb Ecol 33:173–179

    Article  Google Scholar 

  • Park MG, Yih W, Coats DW (2004) Parasites and phytoplankton, with special emphasis on dinoflagellate infections. J Eukaryot Microbiol 51:145–155

    Article  PubMed  Google Scholar 

  • Patterson DJ, Simpson AGB (1996) Heterotrophic flagellates from coastal marine and hypersaline sediments in Western Australia. Eur J Protistol 32:423–448

    Article  Google Scholar 

  • Post FJ (1977) The microbial ecology of the Great Salt Lake. Microbial Ecol 3:143–165

    Article  CAS  Google Scholar 

  • Post FJ, Borowitzka LJ, Borowitzka MA, Mackay B, Moulton T (1983) The protozoa of a western Australian hypersaline lagoon. Hydrobiologia 105:95–113

    Article  Google Scholar 

  • Řeháková K, Zapomělová E, Prášil O, Veselá J, Medová H, Oren A (2009) Composition changes of phototrophic microbial communities along the salinity gradient in the solar saltern evaporation ponds of Eilat, Israel. Hydrobiologia 636:77–88

    Article  Google Scholar 

  • Rhoades JD, Clark M (1978) Sampling procedures and chemical methods in use at the US salinity laboratory for characterizing salt-affected soils and waters. United States Department of Agriculture, Riverside, pp 11–12

    Google Scholar 

  • Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340–1351

    Article  PubMed  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Micobiol 75:7537–7541

    Article  CAS  Google Scholar 

  • Schofield RK, Taylor AW (1955) The measurement of soil pH. Soil Sci Soc Am J 19:164–167

    Article  CAS  Google Scholar 

  • Schubert BA, Timofeeff MN, Polle JE, Lowenstein TK (2010) Dunaliella cells in fluid inclusions in halite: significance for long-term survival of prokaryotes. Geomicrobiol J 27:61–75

    Article  CAS  Google Scholar 

  • Severin I, Acinas SG, Stal LJ (2010) Diversity of nitrogen-fixing bacteria in cyanobacterial mats. FEMS Microbiol Ecol 73:514–525

    CAS  PubMed  Google Scholar 

  • Singh P, Raghukumar C, Verma P, Shouche Y (2011) Fungal community analysis in the deep-sea sediments of the Central Indian Basin by culture-independent approach. Microb Ecol 61:507–517

    Article  CAS  PubMed  Google Scholar 

  • Tedersoo L, Nilsson RH, Abarenkov K, Jairus T, Sadam A, Saar I, Bahram M, Bechem E, Chuyong G, Kõljalg U (2010) 454 Pyrosequencing and Sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases. New Phytol 188:291–301

    Article  CAS  PubMed  Google Scholar 

  • Triadó-Margarit X, Casamayor EO (2013) High genetic diversity and novelty in planktonic protists inhabiting inland and coastal high salinity water bodies. FEMS Microbiol Ecol 85:27–36

    Article  PubMed  Google Scholar 

  • Xiong J, Liu Y, Lin X, Zhang H, Zeng J, Hou J, Yang Y, Yao T, Knight R, Chu H (2012) Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau. Environ Microbiol 14:2457–2466

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng MP (2011) Resources and eco-environmental protection of salt lakes in China. Environ Earth Sci 64:1537–1546

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the handling editor and two anonymous reviewers for their helpful comments on the manuscript. This work was financed by the National Basic Research Program of China (No. 2010CB833801), the National Natural Science Foundation Program of China (No. 31100017), and the Young Science and Technology New Star Program of Shaanxi (No. 2013KJXX-76). WH and WJL would like to extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through the research group project (No. RGP-VPP-205). This research was also supported by the Hundred Talents Program of Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjun Li.

Additional information

Kaihui Liu and Xiaowei Ding contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2603 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, K., Ding, X., Wang, HF. et al. Eukaryotic microbial communities in hypersaline soils and sediments from the alkaline hypersaline Huama Lake as revealed by 454 pyrosequencing. Antonie van Leeuwenhoek 105, 871–880 (2014). https://doi.org/10.1007/s10482-014-0141-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-014-0141-4

Keywords

Navigation