Skip to main content
Log in

Effects and parameters of the photobiomodulation in experimental models of third-degree burn: systematic review

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

This systematic review was performed to identify the role of photobiomodulation therapy in experimental models of third-degree burns used to induce oxidative stress. EMBASE, PubMed, and CINAHL databases were searched for studies published between January 2003 and January 2018 on the topics of photobiomodulation therapy and third-degree burns. Any study that assessed the effects of photobiomodulation therapy in animal models of third-degree burns was included in the analysis. A total of 17 studies were selected from 1182 original articles targeted on photobiomodulation therapy and third-degree burns. Two independent raters with a structured tool for rating the research quality critically assessed the articles. Although the small number of studies limits the conclusions, the current literature research indicates that photobiomodulation therapy can be an effective short-term approach to accelerate the healing process of third-degree burns, to increase and modulate the inflammatory process, to accelerate the proliferation of fibroblasts, and to enhance the quality of the collagen network. However, differences still exist in the terminology used to describe the parameters and the dose of photobiomodulation therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang Y, Beekman J, Hew J, Jackson S, Issler-Fisher AC, Parungao R, Lajevardi SS, Li Z, Maitz PKM (2017) Burn injury: challenges and advances in burn wound healing, infection, pain and scarring. Adv Drug Deliv Rev. https://doi.org/10.1016/j.addr.2017.09.018

  2. Ye H, De S (2017) Thermal injury of skin and subcutaneous tissues: a review of experimental approaches and numerical models. Burns 43(5):909–932. https://doi.org/10.1016/j.burns.2016.11.014

    Article  PubMed  Google Scholar 

  3. Porumb V, Trandabăț AF, Terinte C, Căruntu ID, Porumb-Andrese E, Dimofte MG, Pieptu D (2017) Design and testing of an experimental steam-induced burn model in rats. Biomed Res Int 2017:9878109. https://doi.org/10.1155/2017/9878109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gomes MT, Campos GRS, Piccolo N, França CM, Guedes GH, Lopes F, Belotto RA, Pavani C, de Lima R d N, da Silva D d FT (2017) Experimental burns: comparison between silver sulfadiazine and photobiomodulation. Rev Assoc Méd Bras 63(1):29–34. https://doi.org/10.1590/1806-9282.63.01.29

    Article  PubMed  Google Scholar 

  5. Fiório FB, Dos Santos SA, de Melo Rambo CS, Dalbosco CG, Serra AJ, de Melo BL, Leal-Junior ECP, de Carvalho PTC (2017) Photobiomodulation therapy action in wound repair skin induced in aged rats old: time course of biomarkers inflammatory and repair. Lasers Med Sci 32:1769–1782. https://doi.org/10.1007/s10103-017-2254-2

    Article  PubMed  Google Scholar 

  6. Avci P, Gupta A, Sadasivam M, Vecchio D, Pam Z, Pam N, Hamblin MR (2013) Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. Semin Cutan Med Surg 32:41–52

    PubMed  PubMed Central  Google Scholar 

  7. Bayat M, Vasheghani MM, Razavi N, Taheri S, Rakhshan M (2005) Effect of low-level laser therapy on the healing of second-degree burns in rats: a histological and microbiological study. J Photochem Photobiol B 78:171–177. https://doi.org/10.1016/j.jphotobiol.2004.08.012

    Article  CAS  PubMed  Google Scholar 

  8. Vasheghani MM, Bayat M, Rezaei F, Bayat A, Karimipour M (2008) Effect of low-level laser therapy on mast cells in second-degree burns in rats

  9. Hooijmans CR, Rovers MM, de Vries RB, Leenaars M, Ritskes-Hoitinga M, Langendam MW (2014) SYRCLE's risk of bias tool for animal studies. BMC Med Res Methodol 14:43. https://doi.org/10.1186/1471-2288-14-43

    Article  PubMed  PubMed Central  Google Scholar 

  10. Brassolatti P, Bossini PS, Oliveira MC, Kido HW, Tim CR, Almeida-Lopes L, De Avó LR, Araújo-Moreira FM, Parizotto NA (2016) Comparative effects of two different doses of low-level laser therapy on wound healing third-degree burns in rats. Microsc Res Tech 79:313–320. https://doi.org/10.1002/jemt.22632

    Article  PubMed  Google Scholar 

  11. Trajano ET, Mencalha AL, Monte-Alto-Costa A, Pôrto LC, de Souza da Fonseca A (2014) Expression of DNA repair genes in burned skin exposed to low-level red laser. Lasers Med Sci 29:1953–1957. https://doi.org/10.1007/s10103-014-1612-6

    Article  PubMed  Google Scholar 

  12. Fiório FB, Albertini R, Leal-Junior EC, de Carvalho P de TC (2014) Effect of low-level laser therapy on types I and III collagen and inflammatory cells in rats with induced third-degree burns. Lasers Med Sci 29:313–319. https://doi.org/10.1007/s10103-013-1341-2

    Article  PubMed  Google Scholar 

  13. Fiório FB, Silveira L Jr, Munin E, de Lima CJ, Fernandes KP, Mesquita-Ferrari RA, de Carvalho P de T, Lopes-Martins RA, Aimbire F, de Carvalho RA (2011) Effect of incoherent LED radiation on third-degree burning wounds in rats. J Cosmet Laser Ther 13:315–322. https://doi.org/10.3109/14764172.2011.630082

    Article  PubMed  Google Scholar 

  14. Núñez SC, França CM, Silva DF, Nogueira GE, Prates RA, Ribeiro MS (2013) The influence of red laser irradiation timeline on burn healing in rats. Lasers Med Sci 28:633–641. https://doi.org/10.1007/s10103-012-1105-4

    Article  PubMed  Google Scholar 

  15. de Moraes JM, Eterno de Oliveira Mendonça D, Moura VB, Oliveira MA, Afonso CL, Vinaud MC, Bachion MM, de Souza Lino R Jr (2013) Anti-inflammatory effect of low-intensity laser on the healing of third-degree burn wounds in rats. Lasers Med Sci 28:1169–7116. https://doi.org/10.1007/s10103-012-1213-1

    Article  PubMed  Google Scholar 

  16. Khoshvaghti A, Zibamanzarmofrad M, Bayat M (2011) Effect of low-level treatment with an 80-Hz pulsed infrared diode laser on mast-cell numbersand degranulation in a rat model of third-degree burn. Photomed Laser Surg 29:597–604. https://doi.org/10.1089/pho.2010.2783

    Article  PubMed  Google Scholar 

  17. Garcia VG, de Lima MA, Okamoto T, Milanezi LA, Júnior EC, Fernandes LA, de Almeida JM, Theodoro LH (2010) Effect of photodynamic therapy on the healing of cutaneous third-degree-burn: histological study in rats. Lasers Med Sci 25:221–228. https://doi.org/10.1007/s10103-009-0694-z

    Article  PubMed  Google Scholar 

  18. Meirelles GC, Santos JN, Chagas PO, Moura AP, Pinheiro AL (2008) A comparative study of the effects of laser photobiomodulation on the healing of third-degree burns: a histological study in rats. Photomed Laser Surg 26:159–166. https://doi.org/10.1089/pho.2007.2052

    Article  PubMed  Google Scholar 

  19. Meireles GC, Santos JN, Chagas PO, Moura AP, Pinheiro AL (2008) Effectiveness of laser photobiomodulation at 660 or 780 nanometers on the repair of third-degree burns in diabetic rats. Photomed Laser Surg 26:47–54. https://doi.org/10.1089/pho.2007.2051

    Article  PubMed  Google Scholar 

  20. Bayat M, Vasheghani MM, Razavie N, Jalili MR (2008) Effects of low-level laser therapy on mast cell number and degranulation in third-degree burns of rats. J Rehabil Res Dev 45:931–938. https://doi.org/10.1682/JRRD.2007.07.0110

    Article  PubMed  Google Scholar 

  21. da Silva D de F, Vidal B de C, Zezell DM, Zorn TM, Núñez SC, Ribeiro MS (2006) Collagen birefringence in skin repair in response to red polarized-laser therapy. J Biomed Opt 11(2):024002

    Article  Google Scholar 

  22. Catão MH, Costa RO, Nonaka CF, Junior RL, Costa IR (2016) Green LED light has anti-inflammatory effects on burns in rats. Burns 42(2):392–396. https://doi.org/10.1016/j.burns.2015.07.003

    Article  PubMed  Google Scholar 

  23. Neves SM, Nicolau RA, Filho AL, Mendes LM, Veloso AM (2014) Digital photogrammetry and histomorphometric assessment of the effect of non-coherent light (light-emitting diode) therapy (λ640 ± 20 nm) on the repair of third-degree burns in rats. Lasers Med Sci 29(1):203–212. https://doi.org/10.1007/s10103-013-1312-7

    Article  PubMed  Google Scholar 

  24. Oliveira PC, Pinheiro AL, Reis Junior JA, de Castro IC, Gurgel C, Noia MP, Meireles GC, Cangussu MC, Ramalho LM (2010) Polarized light (λ400-2000 nm) on third-degree burns in diabetic rats: immunohistochemical study. Photomed Laser Surg 28(5):613–619. https://doi.org/10.1089/pho.2009.2675

    Article  CAS  PubMed  Google Scholar 

  25. Oliveira PC, Pinheiro AL, de Castro IC, Reis JA Jr, Noia MP, Gurgel C, Teixeira Cangussú MC, Pedreira Ramalho LM (2011) Evaluation of the effects of polarized light (λ400-200 nm) on the healing of third-degree burns in induced diabetic and nondiabetic rats. Photomed Laser Surg 29(9):619–625. https://doi.org/10.1089/pho.2010.2914

    Article  PubMed  Google Scholar 

  26. Enwemeka CS, Parker JC, Dowdy DS, Harkness EE, Harkness LE, Woodruff LD (2004) The efficacy of low-power lasers in tissue repair and pain control: a meta-analysis study. Photomed Laser Surg 22:323–329. https://doi.org/10.1089/pho.2004.22.323

    Article  PubMed  Google Scholar 

  27. Toussaint J, Singer AJ (2014) The evaluation and management of thermal injuries: 2014 update. Clin Exp Emerg Med 1:8–18. https://doi.org/10.15441/ceem.14.029

    Article  PubMed  PubMed Central  Google Scholar 

  28. Guo HF, Ali RM, Hamid RA, Zaini AA, Khaza’ai H (2017) A new model for studying deep partial-thickness burns in rats. Int J Burns Trauma 7:107–114

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Venter NG, Monte-Alto-Costa A, Marques RG (2015) A new model for the standardization of experimental burn wounds. Burns 41:542–547. https://doi.org/10.1016/j.burns.2014.08.002

    Article  PubMed  Google Scholar 

  30. Hamblin MR (2017) Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophysics 4:337–361. https://doi.org/10.3934/biophy.2017.3.337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rocha JCT, Ferraresi C, Hamblin MR, Damasceno FM, do Nascimento NRF, Driusso P, Parizotto NA (2016) Low-level laser therapy (904 nm) can increase collagen and reduce oxidative and nitrosative stress in diabetic wounded mouse skin. J Photochem Photobiol B 164:96–102. https://doi.org/10.1016/j.jphotobiol.2016.09.017

    Article  CAS  PubMed Central  Google Scholar 

  32. Oliveira Silva AA, Leal-Junior EC, D'Avila KL, Serra AJ, Albertini R, França CM, Nishida JA, de Carvalho P de TC (2015) Pre-exercise low-level laser therapy improves performance and levels of oxidative stress markers in mdx mice subjected to muscle fatigue by high-intensity exercise. Lasers Med Sci 30:1719–1727. https://doi.org/10.1007/s10103-015-1777-7

    Article  Google Scholar 

  33. Dos Santos SA, Serra AJ, Stancker TG, Simões MCB, dos Santos Vieira MA, Leal-Junior EC, Prokic M, Vasconsuelo A, Santos SS, de Carvalho P de TC (2017) Effects of photobiomodulation therapy on oxidative stress in muscle injury animal models: a systematic review. Oxid Med Cell Longev. https://doi.org/10.1155/2017/5273403

  34. Martins F, Rennó ACM, de Oliveira F, Minatel NP, Bortolin JA, Quintana HT, Aveiro MC (2015) Low-level laser therapy modulates musculoskeletal loss in a skin burn model in rats. Acta Cir Bras 30:94–99. https://doi.org/10.1590/S0102-86502015002000002

    Article  PubMed  Google Scholar 

  35. Bjordal JM, Lopes-Martins RA, Joensen J, Couppe C, Ljunggren AE, Stergioulas A, Johnson MI (2008) A systematic review with procedural assessments and meta-analysis of low level laser therapy in lateral elbow tendinopathy (tennis elbow). BMC Musculoskelet Disord 9:75. https://doi.org/10.1186/1471-2474-9-75

    Article  PubMed  PubMed Central  Google Scholar 

  36. Khatib MN, Shankar A, Kirubakaran R, Agho K, Simkhada P, Gaidhane S, Zahiruddin SQ (2015) Effect of ghrelin on mortality and cardiovascular outcomes in experimental rat and mice models of heart failure: a systematic review and meta-analysis. PLoS One 10(5):e0126697. https://doi.org/10.1371/journal.pone.0126697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. De Vries RBM, Wever KE, Avey MT, Stephens ML, Sena ES, Leenaars M (2014) The usefulness of systematic reviews of animal experiments for the Design of Preclinical and Clinical Studies. ILAR J 55(3):427–437. https://doi.org/10.1093/ilar/ilu043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from the São Paulo Research Foundation (FAPESP, grant number (2015/13677-4) and the National Council for Scientific and Technological (grant number 309065/2015-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo de Tarso Camillo de Carvalho.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ocon, C.A., dos Santos, S.A., Caires, J.R. et al. Effects and parameters of the photobiomodulation in experimental models of third-degree burn: systematic review. Lasers Med Sci 34, 637–648 (2019). https://doi.org/10.1007/s10103-018-2633-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-018-2633-3

Keywords

Navigation