Skip to main content
Log in

Near real-time field measurements of δ13C in CO2 from volcanoes

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

This paper describes the operation and application of a portable cavity ring-down spectrometer (CRDS) designed to measure the isotopic composition of carbon dioxide. The instrument is capable of measuring δ13C for CO2 concentrations ranging from atmospheric (400 ppm) to 100%, at precisions and accuracies that are comparable to laboratory-based gas source mass spectrometers. This flexibility and portability are ideal for applications on active volcanoes, and it is now possible to obtain isotopic measurements on a near real-time basis. We show applications of the CRDS for soil gases on volcanoes and in calderas, for characterizing the isotopic composition of a volcanic plume, and for measuring the temporal variability of δ13C in the atmosphere. Future directions hold the potential to use volcanic gas isotopes for monitoring purposes, and to combine different isotopic systems to reveal the source or sources of gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aiuppa A, Moretti R, Federico C, Giudice G, Gurrieri S, Liuzzo M, Papale P, Shinohara H, Valenza M (2007) Forecasting Etna eruptions by real-time observation of volcanic gas composition. Geology 35:1115–1118

    Article  Google Scholar 

  • Bergfeld D, Evans WC, Howle JF, Farrar CD (2006) Carbon dioxide emissions from vegetation-kill zones around the resurgent dome of Long Valley caldera, eastern California, USA. J Volcanol Geotherm Res 152:140–156

    Article  Google Scholar 

  • Chiodini G, Caliro S, Cardellini C, Avino R, Granieri D, Schmidt A (2008) Carbon isotopic composition of soil CO2 efflux, a powerful method to discriminate different sources feeding soil CO2 degassing in volcanic-hydrothermal areas. Earth Planet Sci Lett 274:372–379

    Article  Google Scholar 

  • Chiodini G, Caliro S, Aiuppa A, Avino R, Granieri D, Moretti R, Parello F (2011) First 13C/12C isotopic characterization of volcanic plume CO2. Bull Volcanol 73:531–542

    Article  Google Scholar 

  • Conde V, Bredemeyer S, Duarte E, Pacheco JF, Miranda S, Galle B, Hansteen TH (2014) SO2 degassing from Turrialba volcano linked to seismic signatures during the period 2008-2012. Int J Earth Sci 103:1983–1998

    Article  Google Scholar 

  • Cuntz M (2011) Carbon cycle: a dent in carbon’s gold standard. Nature 477:547–548

    Article  Google Scholar 

  • Daag AS, Tubianosa BS, Newhall CG, Tuñgol NM, Javier D, Dolan MT, Reyes PJD, Arboleda RA, Martinez MML, Regalado MTM (1996) Monitoring sulfur dioxide emission at mount Pinatubo. In: Newhall CG, Punongbayan RS (eds) Fire and mud, eruptions and lahars of mount Pinatubo,, Philippines, Philippine Institute of Volcanology and Seismology, Quezon City, University of Washington Press, Seattle, pp 409–414

  • De Moor JM, Aiuppa A, Avard G, Wehrmann H, Dunbar N, Muller C, Tamburello G, Giudice G, Liuzzo M, Moretti R, Conde V, Galle B (2016) Turmoil at Turrialba volcano (Costa Rica): degassing and eruptive processes inferred from high-frequency gas monitoring. J Geophys Res 121:5761–5775. doi:10.1002/2016JB013150

    Article  Google Scholar 

  • Edmonds M, Herd RA, Galle B, Oppenheimer CM (2003) Automated, high time resolution measurements of SO2 flux at Soufrière Hills volcano, Montserrat. Bull Volcanol 65:578–586

    Article  Google Scholar 

  • Fischer TP, Lopez TM (2016) First airborne samples of a volcanic plume for δ13C of CO2 determinations. Geophys Res Lett 43:3272–3279. doi:10.1002/2016GL068499

    Article  Google Scholar 

  • Galle B, Oppenheimer C, Geyer A, McGonigle AJS, Edmonds M, Horrocks L (2003) A miniaturised ultraviolet spectrometer for remote sensing of SO2 fluxes: a new tool for volcano surveillance. J Volcanol Geotherm Res 119:241–254

    Article  Google Scholar 

  • Global Volcanism Program (2015) Report on Turrialba (Costa Rica). In: Wunderman R (ed) Bulletin of the Global Volcanism Network, Smithsonian Institution 40:4

  • Horton KA, Williams-Jones G, Garbeil H, Elias T, Sutton AJ, Mouginis-Mark P, Porter JN, Clegg S (2006) Real-time measurement of volcanic SO2 emissions: validation of a new UV correlation spectrometer (FLYSPEC). Bull Volcanol 68:323–327

    Article  Google Scholar 

  • Lloyd J, Kruijt B, Hollinger DY, Grace J, Francey RJ, Wong SC, Kelliher FM, Miranda AC, Farquhar GD, Gash JH, Vygodskaya NN (1996) Vegetation effects on the isotopic composition of atmospheric CO2 at local and regional scales: theoretical aspects and a comparison between rain forest in Amazonia and a boreal forest in Siberia. Funct Plant Biol 23:371–399

    Google Scholar 

  • Lucic G, Stix J, Sherwood Lollar B, Lacrampe-Couloume G, Muñoz A, Ibarra CM (2014) The degassing character of a young volcanic center: Cerro Negro, Nicaragua. Bull Volcanol 76:850. doi:10.1007/s00445-014-0850-6

    Article  Google Scholar 

  • Lucic G, Stix J, Wing B (2015) Structural controls on the emission of magmatic carbon dioxide gas, Long Valley caldera, USA. J Geophys Res 120:2262–2278. doi:10.1002/2014JB011760

    Article  Google Scholar 

  • Malowany K, Stix J, Van Pelt A, Lucic G (2015) H2S interference on CO2 isotopic measurements using a Picarro G1101-i cavity ring-down spectrometer. Atmos Meas Tech 8:4075–4082

    Article  Google Scholar 

  • Malowany K, Stix J, de Moor M, Sherwood Lollar B, Chu K, Lacrampe-Couloume G (2017) Carbon isotope systematics of Turrialba volcano, Costa Rica, using a portable cavity ring-down spectrometer. Geochem Geophys Geosyst, doi:10.1002/2017GC006856

  • Moussallam Y, Peters N, Ramírez C, Oppenheimer C, Aiuppa A, Giudice G (2014) Characterisation of the magmatic signature in gas emissions from Turrialba volcano, Costa Rica. Solid Earth 5:1341–1350. doi:10.5194/se-5-1341-2014

    Article  Google Scholar 

  • Oppenheimer C, Bani P, Calkins JA, Burton MR, Sawyer GM (2006) Rapid FTIR sensing of volcanic gases released by strombolian explosions at Yasur volcano, Vanuatu. Appl Phys B Lasers Opt 85:453–460

    Article  Google Scholar 

  • Oremland RS, Miller LG, Whiticar MJ (1987) Sources and flux of natural gases from Mono Lake, California. Geochim Cosmochim Acta 51:2915–2929

    Article  Google Scholar 

  • Picarro Inc. (2015) Cavity ring-down spectroscopy (CRDS). Picarro Inc http://wwwpicarrocom/technology/cavity_ring_down_spectroscopy Accessed 15 July 2015 2015

  • Rella CW, Chen H, Andrews AE, Filges A, Gerbig C, Hatakka J, Karion A, Miles NL, Richardson SJ, Steinbacher M, Sweeney C, Wastine B, Zellweger C (2013) High accuracy measurements of dry mole fractions of carbon dioxide and methane in humid air. Atmos Meas Techn 6:837–860. doi:10.5194/amt-6-837-2013

    Article  Google Scholar 

  • Rizzo A, Jost H, Caracausi A, Paonita A, Liotta M, Martelli M (2014) Real-time measurements of the concentration and isotope composition of atmospheric and volcanic CO2 at Mount Etna (Italy). Geophys Res Lett 41:2382–2389. doi:10.1002/2014GL059722

    Article  Google Scholar 

  • Rizzo AL, Liuzzo M, Ancellin MA, Jost HJ (2015) Real-time measurements of δ13C, CO2 concentration, and CO2/SO2 in volcanic plume gases at Mount Etna, Italy, over 5 consecutive days. Chem Geol 411:182–191

    Article  Google Scholar 

  • Shinohara H (2005) A new technique to estimate volcanic gas composition: plume measurements with a portable multi-sensor system. J Volcanol Geotherm Res 143:319–333

    Article  Google Scholar 

  • Vogel FR, Huang L, Ernst D, Giroux L, Racki S, Worthy DEJ (2013) Evaluation of a cavity ring-down spectrometer for in situ observations of 13CO2. Atmos Meas Techn 6:301–308

    Article  Google Scholar 

  • Zapata GJA, Calvache VML, Cortés JGP, Fischer TP, Garzon VG, Gómez MD, Narváez ML, Ordóñez VM, Ortega EA, Stix J, Torres CR, Williams SN (1997) SO2 fluxes from Galeras volcano, Colombia, 1989-1995: progressive degassing and conduit obstruction of a decade volcano. J Volcanol Geotherm Res 77:195–208

    Article  Google Scholar 

Download references

Acknowledgements

We are most grateful to the staff at Picarro Inc. for their continued assistance and interest in our applications, most notably Aaron Van Pelt, Mike Ahern, Danthu Vu, and Linda Huynh. Aaron has been a steadfast and enthusiastic supporter of using this technology for applications on active volcanoes. Maarten de Moor has provided crucial scientific and logistical advice at Turrialba. Boswell Wing of McGill University has helped us considerably in a number of ways, extending his extensive isotopic knowledge and perceptive insight to help us resolve a variety of issues. Barbara Sherwood Lollar, Georges Lacrampe-Couloume, and Katrina Chu of the University of Toronto have provided fundamentally important scientific and technical input into cross-calibration of our Picarro CRDS with their gas source mass spectrometers. We thank one anonymous reviewer, Taryn Lopez, and the editor Toby Fischer for helpful comments and suggestions that improved the paper. We acknowledge ongoing support from the Natural Sciences and Engineering Research Council of Canada for this research through Discovery, Accelerator, and Create grants to JS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Stix.

Additional information

Editorial responsibility: T.P. Fischer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stix, J., Lucic, G. & Malowany, K. Near real-time field measurements of δ13C in CO2 from volcanoes. Bull Volcanol 79, 62 (2017). https://doi.org/10.1007/s00445-017-1144-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-017-1144-6

Keywords

Navigation