Skip to main content

Advertisement

Log in

The degassing character of a young volcanic center: Cerro Negro, Nicaragua

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Cerro Negro volcano is a young basaltic cinder cone which is part of the Nicaraguan volcanic arc. Eruptive activity at Cerro Negro is characterized by explosive strombolian to subplinian eruptions driven by volatile-rich basaltic magma ascending rapidly from various crustal depths (>15 to 6 km) resulting in the onset of precursory activity only ∼30 min before an eruption. In this paper, we present a comprehensive degassing characterization of the volcano over a 4-year period aimed at improving our understanding of the magmatic plumbing network and its relationship with regional tectonics. A total of 124 individual soil gas samples were collected between 2010 and 2013 and analyzed for stable carbon isotopes (δ13C) from CO2. High temperature fumaroles were sampled for δ18O, δD, and 3He/4He isotope analysis, and major degassing zones were mapped using soil CO2 flux measurements. Gases at Cerro Negro are characterized by a strong 3He/4He mantle signature (6.3 to 7.3 RA), magmatic δ13C ratios (−2.3 to −3.0 ‰), meteoric δ18O and δD ratios, and stable CO2 fluxes (31 t d−1). The lack of δ13C fractionation and an increase in the relative mantle component from 2002 to 2012 suggest that the volatile flux at Cerro Negro originates from the mantle and ascends to the surface via a series of crustal fractures that act as permeable conduits. Despite the lack of new eruptions, the hydrothermal system of Cerro Negro continues to evolve due to seasonal inputs of meteoric water, slope failures that expose and bury sites of active degassing, and bursts of regional seismicity that have the potential to open up new conduits for gas release as well as magma. Continuing geophysical and geochemical monitoring of the main edifice and the recently formed south zone is essential, as the volcano remains overdue to erupt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aiuppa A, Franco A, von Glasow R, Allen AG, Alessandro W, Mather TA, Pyle DM, Valenza M (2007) The tropospheric processing of acidic gases and hydrogen sulphide in volcanic gas plumes as inferred from field and model investigations. Atmos Chem Phys 7:1441–1450. doi:10.5194/acp-7-1441-2007

    Article  Google Scholar 

  • Aiuppa A, Shinohara H, Tamburello G, Giudice G, Liuzzo M, Moretti R (2011) Hydrogen in the gas plume of an open-vent volcano, Mount Etna, Italy. J Geophys Res 116, B10204. doi:10.1029/2011jb008461

    Article  Google Scholar 

  • Barrancos J, Ibarra M, Melián G, Álvarez J, Rodriguez F, Nolasco D, Padilla G, Calvo D, Dionis S, Padron E, Hernández PA, Pérez NM, Munoz A (2013) Diffuse CO2 monitoring at Cerro Negro volcano, Nicaragua. International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) Scientific Assembly, Kagohsima, 3W_2G-P11, Abstract

  • Blundy J, Cashman KV, Rust A, Witham F (2010) A case for CO2-rich arc magmas. Earth Planet Sci Lett 290:289–301. doi:10.1016/j.epsl.2009.12.013

    Article  Google Scholar 

  • Camarda M, De Gregorio S, Favara R, Gurrieri S (2007) Evaluation of carbon isotope fractionation of soil CO2 under an advective–diffusive regimen: a tool for computing the isotopic composition of unfractionated deep source. Geochim Cosmochim Acta 71:3016–3027. doi:10.1016/j.gca.2007.04.002

    Article  Google Scholar 

  • Carr MJ, Feigenson MD, Patino LC, Walker JA (2003) Volcanism and geochemistry in Central America: progress and problems. In: Inside the subduction factory, vol. 138. Geophys Monogr Ser AGU, Washington, DC, pp 153–174. doi: 10.1029/138GM09

  • Chiodini G, Cioni R, Guidi M, Raco B, Marini L (1998) Soil CO2 flux measurements in volcanic and geothermal areas. Appl Geochem 13:543–552. doi:10.1016/S0883-2927(97)00076-0

    Article  Google Scholar 

  • Chiodini G, Caliro S, Cardellini C, Avino R, Granieri D, Schmidt A (2008) Carbon isotopic composition of soil CO2 efflux, a powerful method to discriminate different sources feeding soil CO2 degassing in volcanic-hydrothermal areas. Earth Planet Sci Lett 274:372–379. doi:10.1016/j.epsl.2008.07.051

    Article  Google Scholar 

  • Chiodini G, Caliro S, Aiuppa A, Avino R, Granieri D, Moretti R, Parello F (2011) First 13C/12C isotopic characterization of volcanic plume CO2. Bull Volcanol 73:531–542. doi:10.1007/s00445-010-0423-2

    Article  Google Scholar 

  • Clark ID, Fritz P (1997) Tracing the carbon cycle. In: Starkweather AW (ed) Environmental isotopes in hydrogeology. Lewis Publishers, New York, pp 111–134

    Google Scholar 

  • Connor C, Hill B, LaFemina P, Navarro M (1996) Soil 222Rn pulse during the initial phase of the June–August 1995 eruption of Cerro Negro, Nicaragua. J Volcanol Geotherm Res 73:119–127. doi:10.1016/0377-0273(96)00020-0

    Article  Google Scholar 

  • Courtland LM, Kruse SE, Connor CB, Connor LJ, Savov IP, Martin KT (2012) GPR investigation of tephra fallout, Cerro Negro volcano, Nicaragua: a method for constraining parameters used in tephra sedimentation models. Bull Volcanol 74:1409–1424. doi:10.1007/s00445-012-0603-3

    Article  Google Scholar 

  • Craig H, Lupton JE, Horibe Y (1978) A mantle helium component in Circum-Pacific volcanic gases: Hakone, the Marianas, and Mt. Lassen. Terr Rare Gases 3–16

  • Dagg AS, Tubianosa BS, Newhall CG, Tungol NM, Javier D, Dolan MT, Reyes PJD, Arboleda RA, Martinez MMA, Regalado MTM (1996) Monitoring sulphur dioxide emission at Mount Pinatubo. In: Newhall CG, Punongbayan RS (eds) Fire and mud: eruptions and lahars of Mount Pinatubo. Phivolcs/U of Washington Press, pp 409–414

  • Díez M, LaFemina PC, Connor CB, Strauch W (2005) Evidence for static stress changes triggering the 1999 eruption of Cerro Negro Volcano, Nicaragua and regional aftershock sequences. Geophys Res Lett 32:1–4. doi:10.1029/2004GL021788

    Article  Google Scholar 

  • Elkins LJ, Fischer TP, Hilton DR, Sharp ZD, McKnight S, Walker J (2006) Tracing nitrogen in volcanic and geothermal volatiles from the Nicaraguan volcanic front. Geochim Cosmochim Acta 70:5215–5235. doi:10.1016/j.gca.2006.07.024

    Article  Google Scholar 

  • Fischer TP, Arehart GB, Sturchio NC, Williams SN (1996) The relationship between fumarole gas composition and eruptive activity at Galeras Volcano, Colombia. Geology 24:531–534. doi:10.1130/0091-7613(1996)024<0531:TRBFGC>2.3.CO;2

    Article  Google Scholar 

  • Fischer TP, Sturchio NC, Stix J, Arehart GB, Counce D, Williams SN (1997) The chemical and isotopic composition of fumarolic gases and spring discharges from Galeras Volcano, Colombia. J Volcanol Geotherm Res 77:229–253. doi:10.1016/S0377-0273(96)00096-0

    Article  Google Scholar 

  • Garofalo K, Tassi F, Vaselli O, Delgado-Huertas A (2007) Fumarolic gases at Mombacho volcano (Nicaragua): presence of magmatic gas species and implications for volcanic surveillance. Bull Volcanol 69:785–795. doi:10.1007/s00445-006-0108-z

    Article  Google Scholar 

  • Gerlach TM, Taylor BE (1990) Carbon isotope constraints on degassing of carbon-dioxide from Kilauea volcano. Geochim Cosmochim Acta 54:2051–2058. doi:10.1016/0016-7037(90)90270-U

    Article  Google Scholar 

  • Giggenbach WF (1987) Redox processes governing the chemistry of fumarolic gas discharges from White Island, New Zealand. Appl Geochem 2:143–161. doi:10.1016/0883-2927(87)90030-8

    Article  Google Scholar 

  • Giggenbach WF (1992) Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their origin. Earth Planet Sci Lett 113:495–510. doi:10.1016/0012-821X(92)90127-H

    Article  Google Scholar 

  • Gilfillan S, Ballentine CJ, Holland G, Blagburn D (2008) The noble gas geochemistry of natural CO2 gas reservoirs from the Colorado Plateau and Rocky Mountain provinces, USA. Geochim Cosmochim Acta 72:1174–1198. doi:10.1016/j.gca.2007.10.009

    Article  Google Scholar 

  • Gilfillan SM, Lollar BS, Holland G, Blagburn D, Stevens S, Schoell M, Cassidy M, Ding Z, Zhou Z, Lacrampe-Couloume G, Ballentine CJ (2009) Solubility trapping in formation water as dominant CO2 sink in natural gas fields. Nature 458:614–618. doi:10.1038/nature07852

    Article  Google Scholar 

  • Girard G, van Wyk de Vries B (2005) The Managua Graben and Las Sierras-Masaya volcanic complex (Nicaragua); pull-apart localization by an intrusive complex: results from analogue modeling. J Volcanol Geotherm Res 144:37–57. doi:10.1016/j.jvolgeores.2004.11.016

    Article  Google Scholar 

  • Graham DW (2002) Noble gas isotope geochemistry of mid-ocean ridge and ocean island basalts; characterization of mantle source reservoirs. Rev Mineral Geochem 47:247–317. doi:10.2138/rmg.2002.47.8

    Article  Google Scholar 

  • Hernández PA, Pérez NM, Salazar JML, Sato M, Notsu K, Wakita H (2000) Soil gas CO2, CH4 and H2 distribution in and around Las Cañadas caldera, Tenerife, Canary Islands, Spain. J Volcanol Geotherm Res 103:425–438. doi:10.1016/S0377-0273(00)00235-3

    Article  Google Scholar 

  • Hill BE, Connor CB, Jarzemba MS, LaFemina PC, Navarro M, Strauch W (1998) 1995 eruptions of Cerro Negro volcano, Nicaragua, and risk assessment for future eruptions. Geol Soc Am Bull 110:1231–1241. doi:10.1130/0016-7606(1998)110<1231:EOCNVN>2.3.CO;2

    Article  Google Scholar 

  • Hilton DR, Ramirez CJ, Mora-Amador R, Fischer TP, Fueri E, Barry PH, Shaw AM (2010) Monitoring of temporal and spatial variations in fumarole helium and carbon dioxide characteristics at Poas and Turrialba volcanoes, Costa Rica (2001–2009). Geochem J 44:431–440

    Article  Google Scholar 

  • Hynek BM, McCollom TM, Marcucci EC, Brugman K, Rogers KL (2013) Assessment of environmental controls on acid-sulfate alteration at active volcanoes in Nicaragua: applications to relic hydrothermal systems on Mars. J Geophys Res Planets 118:2083–2104. doi:10.1002/jgre.20140

    Article  Google Scholar 

  • INETER (2012) Sismos y volcanes de Nicaragua. In: Tenorio V (eds) Catálogo Anual, 2012, pp 66, http://www.ineter.gob.ni/articulos/comunicaciones/boletines/boletin-sismologico.html

  • INETER (2013) Sismos y volcanes de Nicaragua. In: Tenorio V (eds) Catálogo Anual, 2013, pp 53, http://www.ineter.gob.ni/articulos/comunicaciones/boletines/boletin-sismologico.html

  • International Atomic Energy Agency (IAEA) (2004) Global network of isotopes in precipitation. http://www-naweb.iaea.org/napc/ih/IHS_resources_gnip.html. Accessed 17 April 2013

  • Javoy M, Pineau F, Delorme H (1986) Carbon and nitrogen isotopes in the mantle. Chem Geol 57:41–62. doi:10.1016/0009-2541(86)90093-8

    Article  Google Scholar 

  • Kazahaya K, Shinohara H, Uto K, Odai M, Nakahori Y, Mori H, Iino H, Miyashita M, Hirabayashi J (2004) Gigantic SO2 emission from Miyakejima volcano, Japan, caused by caldera collapse. Geology 32:425–428. doi:10.1130/g20399.1

    Article  Google Scholar 

  • LaFemina PC, Dixon TH, Stauch W (2002) Bookshelf faulting in Nicaragua. Geology 30:751–754. doi:10.1130/0091-7613(2002)030<0751:BFIN>2.0.CO;2

    Article  Google Scholar 

  • LaFemina PC, Connor CB, Hill BE, Strauch W (2004) Magma–tectonic interactions in Nicaragua: the 1999 seismic swarm and eruption of Cerro Negro volcano. J Volcanol Geotherm Res 137:187–199. doi:10.1016/j.jvolgeores.2004.05.006

    Article  Google Scholar 

  • Li L, Bebout GE (2005) Carbon and nitrogen geochemistry of sediments in the Central American convergent margin: insights regarding subduction input fluxes, diagenesis, and paleoproductivity. J Geophys Res 110:1–17. doi:10.1029/2004JB003276

    Google Scholar 

  • Manga M, Brodsky E (2006) Seismic triggering of eruptions in the far field: volcanoes and geysers. Annu Rev Earth Planet Sci 34:263–291. doi:10.1146/annurev.earth.34.031405.125125

    Article  Google Scholar 

  • McKnight SB (1995) Geology and petrology of Cerro Negro volcano, Nicaragua. MS Thesis, Arizona State University, Tempe

  • McKnight SB, Williams SN (1997) Old cinder cone or young composite volcano?: The nature of Cerro Negro, Nicaragua. Geology 25:339–342. doi:10.1130/0091-7613(1997)025<0339:OCCOYC>2.3.CO;2

    Article  Google Scholar 

  • Melián GV, Galindo I, Pérez NM, Hernández PA, Fernández M, Ramírez C, Mora R, Alvarado GE (2007) Diffuse emission of hydrogen from Poás volcano, Costa Rica, America Central. Pure Appl Geophys 164:2465–2487. doi:10.1007/s00024-007-0282-8

    Article  Google Scholar 

  • Mizutani Y (1978) Isotopic compositions of volcanic steam from Showashinzan volcano, Hokkaido, Japan. Geochem J 12:57–63

    Article  Google Scholar 

  • Oppenheimer C (2003) Volcanic degassing. In: Holland HD, Turekian KK (eds) Treatise on geochemistry. Pergamon, Oxford, pp 123–166. doi:10.1016/B0-08-043751-6/03020-6

    Chapter  Google Scholar 

  • Oppenheimer C, Scaillet B, Martin RS (2011) Sulfur degassing from volcanoes: source conditions, surveillance, plume chemistry and earth system impacts. Rev Mineral Geochem 73:363–421. doi:10.2138/rmg.2011.73.13

    Article  Google Scholar 

  • Pinti DL, Castro MC, Shouakar-Stash O (2013) Evolution of the geothermal fluids at Los Azufres, Mexico, as traced by noble gas isotopes, δ18O, δD, δ13C and 87Sr/86Sr. J Volcanol Geotherm Res 249:1–11. doi:10.1016/j.jvolgeores.2012.09.006

    Article  Google Scholar 

  • Portnyagin MV, Hoernle K, Mironov NL (2012) Contrasting compositional trends of rocks and olivine-hosted melt inclusions from Cerro Negro volcano (Central America): implications for decompression-driven fractionation of hydrous magmas. Int J Earth Sci. doi:10.1007/s00531-012-0810-3

    Google Scholar 

  • Pribnow D, Schütze C, Hurter SJ, Flechsig C (2003) Fluid flow in the resurgent dome of Long Valley Caldera: implications from thermal data and deep electrical sounding. J Volcanol Geotherm Res 127:329–345. doi:10.1016/S0377-0273(03)00175-6

    Article  Google Scholar 

  • Ray MC, Hilton DR, Muñoz J, Fischer TP, Shaw AM (2009) The effects of volatile recycling, degassing and crustal contamination on the helium and carbon geochemistry of hydrothermal fluids from the Southern Volcanic Zone of Chile. Chem Geol 266:38–49. doi:10.1016/j.chemgeo.2008.12.026

    Article  Google Scholar 

  • Roggensack K (2001) Sizing up crystals and their melt inclusions: a new approach to crystallization studies. Earth Planet Sci Lett 187:221–237. doi:10.1016/S0012-821X(01)00269-2

    Article  Google Scholar 

  • Roggensack K, Hervig RL, McKnight SB, Williams SN (1997) Explosive basaltic volcanism from Cerro Negro volcano: influence of volatiles on eruptive style. Science 277:1639–1642. doi:10.1126/science.277.5332.1639

    Article  Google Scholar 

  • Salazar JML, Hernández PA, Pérez NM, Melián G, Álvarez J, Segura F, Notsu K (2001) Diffuse emission of carbon dioxide from Cerro Negro Volcano, Nicaragua, Central America. Geophys Res Lett 28:4275–4278. doi:10.1029/2001GL013709

    Article  Google Scholar 

  • Sano Y, Fischer TP (2012) The analysis and interpretation of noble gases in modern hydrothermal systems. In: Burnard P (ed) The noble gases as geochemical tracers, advances in isotope geochemistry. Chapter 10. Springer, Berlin, pp 249–317. doi:10.1007/978-3-642-28836-4_10

    Google Scholar 

  • Sano Y, Marty B (1995) Origin of carbon in fumarolic gas from island arcs. Chem Geol 119:265–274. doi:10.1016/0009-2541(94)00097-R

    Article  Google Scholar 

  • Sano Y, Williams SN (1996) Fluxes of mantle and subducted carbon along convergent plate boundaries. Geophys Res Lett 23:2749–2752. doi:10.1029/96GL02260

    Article  Google Scholar 

  • Shaw AM, Hilton DR, Fischer TP, Walker JA (2003) Contrasting He–C relationships in Nicaragua and Costa Rica: insights into C cycling through subduction zones. Earth Planet Sci Lett 214:499–513. doi:10.1016/S0012-821X(03)00401-1

    Article  Google Scholar 

  • Shaw AM, Hilton DR, Fischer TP, Walker JA (2006) Helium isotope variations in mineral separates from Costa Rica and Nicaragua: assessing crustal contributions, timescale variations and diffusion-related mechanisms. Chem Geol 230:124–139. doi:10.1016/j.chemgeo.2005.12.003

    Article  Google Scholar 

  • Sheppard S, Epstein S (1970) D/H and 18O/16O ratios of minerals of possible mantle or lower crustal origin. Earth Planet Sci Lett 9:232–239. doi:10.1016/0012-821X(70)90033-6

    Article  Google Scholar 

  • Shinohara H, Ohba T, Kazahaya K, Takahashi H (2008) Origin of volcanic gases discharging from a cooling lava dome of Unzen volcano, Japan. J Volcanol Geotherm Res 175:133–140. doi:10.1016/j.jvolgeores.2008.03.024

    Article  Google Scholar 

  • Sinclair AJ (1974) Selection of threshold values in geochemical data using probability graphs. J Geochem Explor 3:129–149

    Article  Google Scholar 

  • Sparks RSJ, Biggs J, Neuberg JW (2012) Monitoring volcanoes. Science 335:1310–1311. doi:10.1126/science.1219485

    Article  Google Scholar 

  • Taran YA, Hedenquist JW, Korzhinsky MA, Tkachenko SI, Shmulovich KI (1995) Geochemistry of magmatic gases from Kudryavy volcano, Iturup, Kuril islands. Geochim Cosmochim Acta 59:1749–1761. doi:10.1016/0016-7037(95)00079-F

    Article  Google Scholar 

  • Troll VR, Hilton DR, Jolis EM, Chadwick JP, Blythe LS, Deegan FM, Schwarzkopf LM, Zimmer M (2012) Crustal CO2 liberation during the 2006 eruption and earthquake events at Merapi volcano, Indonesia. Geophys Res Lett 39, L11302. doi:10.1029/2012GL051307

    Article  Google Scholar 

  • Weiss RF (1971) Solubility of helium and neon in water and seawater. Journal of Chemical & Engineering Data 16:235–241. doi:10.1021/je60049a019

  • Wilhelm E, Battino R, Wilcock RJ (1977) Low-pressure solubility of gases in liquid water. Chem Rev 77:219–262. doi:10.1021/cr60306a003

    Article  Google Scholar 

  • Williams SN, Sano Y, Wakita H (1987) Helium-3 emission from Nevado Del Ruiz Volcano, Colombia. Geophys Res Lett 14:1035–1038. doi:10.1029/GL014i010p01035

    Article  Google Scholar 

  • World Meteorological Organization (WMO) (2004) Global precipitation data sets. http://www.wmo.int/pages/themes/climate/climate_data_and_products.php. Accessed 17 April 2013

Download references

Acknowledgments

We thank Marc-Antoine Longpré and Jack Wilcock for their help with fieldwork and sample collection. Reviews and discussions with Dr. Boswell Wing were very helpful and much appreciated. We are most grateful to Dave Hilton for analyzing helium isotopes and Jean-François Hélie for the analysis of oxygen and deuterium isotopes. We would like to thank the staff at the Stable Isotope Laboratory, University of Toronto, for their help with sample preparation and debates regarding carbon isotopes. We thank Pete LaFemina for his insight into Nicaraguan tectonics, Allison Shaw for providing additional data, and Tobias Fischer for discussions on Cerro Negro’s hydrothermal system. This research was made possible with funding to Gregor Lucic from GEOTOP, MAGNET, and the Department of Earth and Planetary Sciences at McGill. This work was also supported by Discovery Grants to John Stix and Barbara Sherwood Lollar from the Natural Sciences and Engineering Research Council of Canada (NSERC) and by an NSERC CREATE grant to Stix and Sherwood Lollar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregor Lucic.

Additional information

Editorial responsibility: S. Calvari

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lucic, G., Stix, J., Sherwood Lollar, B. et al. The degassing character of a young volcanic center: Cerro Negro, Nicaragua. Bull Volcanol 76, 850 (2014). https://doi.org/10.1007/s00445-014-0850-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-014-0850-6

Keywords

Navigation