Skip to main content

The Medial Septum: Node of the Ascending Brainstem Hippocampal Synchronizing Pathways

  • Chapter
The Behavioral Neuroscience of the Septal Region

Abstract

The study of electroencephalographic (EEG) (field) activities indigenous to the hippocampal formation (HPC) has proven to be a fruitful approach, based on the assumption that they reflect the neural processing going on in these structures (Bland 1986). To date, as a result of the research efforts of many laboratories, we have a better appreciation of the range of field activities, the concurrent cellular activity, and the behavioral conditions with which they are associated. The study of HPC theta field activity has now been placed within the more general context of oscillation and synchrony in the central nervous system (Bland and Colom 1993). Although the nomenclature varied somewhat, earlier studies identified three major field activities: (1) theta—a sinusoidal-like rhythmical activity (also called RSA), up to 2mV in amplitude and a frequency range of 3-12 Hz in rodents, depending on the recording conditions; (2) LIA (large amplitude irregular activity)—an irregular activity with a broad-band frequency ranging from 0.5 to 25Hz; (3) beta—fast waves occuring in a frequency range from 20 to 70Hz (Stumpf 1965; Vanderwolf et al. 1975; Leung, Lopes Da Silva, and Wadman 1982; Leung 1992). The large amplitude aperiodic spikes occurring during LIA have been subsequently well characterized as sharp waves (SPWs), large amplitude (1-3mV) transient field potentials with a duration of 40-100ms (Buzsaki 1986), along with a 200Hz oscillation associated with the SPWs (see Chrobak and Buzsaki 1998; and Chrobak, Chapter 4, this volume). This chapter will focus on the HPC field activities of theta and LIA. Limbic cortex represents multiple synchronizing systems. Subsets of cells in these structures exhibit membrane potential oscillations as a result of intrinsic properties of membrane currents. These cells also receive inputs from other cells in the same structure, as well as from cells extrinsic to the structure. A major source of extrinsic inputs are the ascending brainstem HPC synchronizing pathways originating in the rostral pontine region, ascending and synapsing with midline caudal diencephalic nuclei, which in turn send projections to the medial septal region (see Figure 6.1). The medial septal region functions as the node in the ascending pathways, sending both cholinergic and GABA-ergic projections to the HPC (Vertes and Kocsis 1997; Bland and Oddie 1998; Chapter 2, current volume). A complete understanding of the functional significance of “theta band” oscillation and synchrony in limbic cortex will require an understanding of how intrinsic and extrinsic properties interact.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acsady, L., Halasy, K., and Freund, T.F. 1993. Calretinin is present in non-pyramidal cells of the rat hippocampus—111. Their inputs from the median raphe and medial septal nuclei. Neuroscience. 52:829–841.

    Article  PubMed  CAS  Google Scholar 

  • Alonso, A., Gaztelu, J.M., Buno Jr., W., and Garcia-Austt, E.1987. Cross-correlation analysis of septohippocampal neurons during 0-rhythm. Brain Res. 413:135–146.

    Article  PubMed  CAS  Google Scholar 

  • Artemenko, D.P. 1973. Participation of hippocampal neurons in theta-wave generation. Neurophysiology. 4:409–415.

    Article  Google Scholar 

  • Barrenechea, C., Pedemonte, M., Nunez, A., and Garcia-Austt, E. 1995. In vivo. intra-cellular recordings of medial septal and diagonal band of Broca neurons: relationships with theta rhythm. Exp. Brain Res. 103:31–40.

    Article  PubMed  CAS  Google Scholar 

  • Bland, B.H. 1986. The physiology and pharmacology of hippocampal formation theta rhythms. Prog. Neurobiol. 26:1–54.

    Article  PubMed  CAS  Google Scholar 

  • Bland, S.K., and Bland, B.H. 1986. Medial septal modulation of hippocampal theta cell discharges. Brain Res. 375:102–116.

    Article  PubMed  CAS  Google Scholar 

  • Bland, B.H., and Colom, L.V. 1988. Responses of phasic and tonic hippocampal theta-on cells to cholinergics: differential effects of muscarinic and nicotinic activation. Brain Res. 440:167–171.

    Article  PubMed  CAS  Google Scholar 

  • Bland, B.H., and Colom, L.V. 1989. Preliminary observations on the physiology and pharmacology of hippocampal theta-off cells. Brain Res. 505:333–336.

    Article  PubMed  CAS  Google Scholar 

  • Bland, B.H., and Colom, L.V. 1993. Extrinsic and intrinsic properties underlying oscillation and synchrony in limbic cortex. Prog. Neurobiol. 41:157–208.

    Article  PubMed  CAS  Google Scholar 

  • Bland, B.H., Colom, L.V, and Ford, R.D. 1990. Responses of septal theta-on and theta-off cells to activation of the dorsomedial-posterior hypothalamic region. Brain. Res. Bull. 24:71–79.

    Article  PubMed  CAS  Google Scholar 

  • Bland, B.H., Colom, L.V, Konopacki, J., and Roth, S.H. 1988. Intracellular records of carbachol-induced theta rhythm in hippocampal slices. Brain Res. 447:364–368.

    Article  PubMed  CAS  Google Scholar 

  • Bland, B.H., Colom, L.V, Oddie, S.D., Kirk, I. J., and Scarlett, D. 1997. Mechanisms of hippocampal theta generation: evidence from simultaneous recordings of medial septal and hippocampal cells. Soc. Neurosci. Abstr. 23:486.

    Google Scholar 

  • Bland, B.H., Konopacki, J., Kirk, I. J., Oddie, S.D., and Dickson, C.T. 1995. Discharge patterns of hippocampal theta-related cells in the caudal diencephalon of the urethan-anesthetized rat. J. Neurophysiol. 74:322–333.

    PubMed  CAS  Google Scholar 

  • Bland, B.H., and Oddie, S.D. 1998. Anatomical, electrophysiological and pharmacological studies of ascending brainstem hippocampal synchronizing pathways. Neurosci. Biobehav. Rev. 22:259–273.

    Article  PubMed  CAS  Google Scholar 

  • Bland, B.H., Oddie, S.D., and Colom, L.V. 1999. Mechanisms of neural synchrony in the septohippocampal pathways underlying hippocampal theta generation. J. Neurosci. 19:3223–3237.

    PubMed  CAS  Google Scholar 

  • Bland, B.H., Oddie, S.D., Colom, L.V., and Vertes, R.P. 1994. Extrinsic modulation of medial septal cell discharges by the ascending brainstem hippocampal synchronizing pathway. Hippocampus. 6:649–660.

    Article  Google Scholar 

  • Bland, B.H., Trepel, C, Oddie, S.D., and Kirk, I. J. 1996. Intraseptal microinfusion of muscimol: effects on hippocampal formation field activity and phasic theta-on cell discharges. Exp. Neurol. 138:286–297.

    Article  PubMed  CAS  Google Scholar 

  • Bland, B.H., and Vanderwolf, C.H. 1972. Diencephalic and hippocampal mechanisms of motor activity in the rat: effects of posterior hypothalamic stimulation on behavior and hippocampal slow activity. Brain Res. 43:67–88.

    Article  PubMed  CAS  Google Scholar 

  • Brazhnik, E.S., and Fox, S.E. 1997. Intracellular recordings from medial septal neurons during hippocampal theta rhythm. Exp. Brain Res. 114:442–453.

    Article  PubMed  CAS  Google Scholar 

  • Buzsaki, G. 1986. Generation of hippocampal EEG patterns. In The Hippocampus, Vol. 3, eds. R.L. Isaacson, and K.H. Pribram, pp 137–168. New York: Plenum Press.

    Google Scholar 

  • Chrobak, J. J., and Buzsaki, G. 1998. Operational dynamics in the hippocampal-entorhinal axis. Neurosci. Biobehav. Rev. 22:303–310.

    Article  PubMed  CAS  Google Scholar 

  • Colom, L.V., and Bland, B.H. 1987. State-dependent spike train dynamics of hippocampal formation neurons: evidence for theta-on and theta-off cells. Brain Res. 422:277–286.

    Article  PubMed  CAS  Google Scholar 

  • Colom, L.V., and Bland, B.H. 1991. Medial septal cell interactions in relation to hippocampal field activity and the effects of atropine. Hippocampus. 1:15–30.

    Article  PubMed  CAS  Google Scholar 

  • Colom, L.V., Christie, B.R., and Bland, B.H. 1988. Cingulate cell discharge patterns related to hippocampal EEG and their modulation by muscarinic and nicotinic agents. Brain Res. 460:329–338.

    Article  PubMed  CAS  Google Scholar 

  • Colom, L.V., Ford, R.D., and Bland, B.H. 1987. Hippocampal formation neurons code the level of activation of the cholinergic septo-hippocampal pathway. Brain Res. 410:12–20.

    Article  PubMed  CAS  Google Scholar 

  • Colom, L.V., Nassif-Caudarella, S., Dickson, C.T., Smythe, J.W., and Bland, B.H. 1991. In vivo. intrahippocampal microinfusion of carbachol and bicuculline induces theta-like oscillations in the septally deafferented hippocampus. Hippocampus. 1:381–390.

    Article  PubMed  CAS  Google Scholar 

  • Dickson, C.T., Kirk, I. J., Oddie, S.D., and Bland, B.H. 1995. Classification of theta-related cells in the entorhinal cortex: cell discharges are controlled by the ascending brainstem synchronizing pathway in parallel with hippocampal theta-related cells. Hippocampus. 5:306–319.

    Article  PubMed  CAS  Google Scholar 

  • Dickson, C.T., Trepel, C., and Bland, B.H. 1994. Extrinsic modulation of theta field activity in the entorhinal cortex of the anesthetized rat. Hippocampus. 4:37–52.

    Article  PubMed  CAS  Google Scholar 

  • Eggermont, J. J. 1994. Neural interaction in the cat primary auditory cortex II. Effects of sound stimulation. J. Neurophysiol. 71:246–270.

    PubMed  CAS  Google Scholar 

  • Eggermont, J. J., Epping, W. J.M., and Aertsen, A.M.H. J. 1983. Stimulus dependent neural correlations in the auditory midbrain of the grassfrog (Rana temporaria L). Biol. Cybern. 47:103–117.

    Article  PubMed  CAS  Google Scholar 

  • Epping, W. J.M., and Eggermont, J. J. 1987. Coherent neural activity in the auditory midbrain of the grassfrog. J. Neurophysiol. 57:1464–1483.

    PubMed  CAS  Google Scholar 

  • Fisher, R.S., and Alger, B.E. 1984. Electrophysiological mechanism of kainic acid-induced epileptiform activity in the rat hippocampal slice. J. Neurophysiol. 4:1312–1323.

    CAS  Google Scholar 

  • Ford, R.D., Colom, L.V., and Bland, B.H. 1989. The classification of medial septum-diagonal band cells as theta-on or theta-off in relation to hippocampal EEG states. Brain Res. 493:269–282.

    Article  PubMed  CAS  Google Scholar 

  • Fortin, W. J. 1995. A PHA-L analysis of projections from the nucleus reticularis pontis oralis, the pedunculopontine tegmental nucleus and the median raphe nucleus in the rat: implications for the modulation of the hippocampal EEG. Unpublished Master’s thesis, Florida Atlantic University.

    Google Scholar 

  • Fox, S.E. 1989. Membrane potential and impedance changes in hippocampal pyramidal cells during theta rhythm. Exp. Brain Res. 77:283–294.

    Article  PubMed  CAS  Google Scholar 

  • Freund, T.F. 1989. GABA-ergic septohippocampal neurons contain parvalbumin. Brain Res. 478: 375–381.

    Article  PubMed  CAS  Google Scholar 

  • Freund, T.F, and Antal, M. 1988. GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature. 336:170–173.

    Article  PubMed  CAS  Google Scholar 

  • Frostig, R.D., Gottlieb, Y., Vaadia, E., and Abeles, M. 1983. The effects of stimuli on the activity and functional connectivity of local neuronal groups in the cat auditory cortex. Brain Res. 272:211–221.

    Article  PubMed  CAS  Google Scholar 

  • Frotscher, M., and Leranth, C. 1985. Cholinergic innervation of the rat hippocampus as revealed by choline-acetyltransferase immunocytochemistry: a combined light and electron-microscope study. J. Comp. Neurol. 239:237–246.

    Article  PubMed  CAS  Google Scholar 

  • Fujita, Y, and Sato, T. 1964. Intracellular records from hippocampal pyramidal cells in rabbits during theta rhythm activity. J. Neurophysiol. 27:1011–1025.

    Google Scholar 

  • Gerstein, G.L. 1970. Functional associations of neurons: detection and interpretation. In The Neurosciences: Second Study Program., ed. F.O. Schmitt, pp. 648–661. New York: Rockefeller Univ. Press.

    Google Scholar 

  • Gray, J.A., and Ball, C.G. 1970. Frequency-specific relation between hippocampal theta rhythm. Science. 168:1246–1248.

    Article  PubMed  CAS  Google Scholar 

  • Hanada, Y, Hallworth, N.E., Szgatti, T.L., and Bland, B.H. 1999.The distribution and analysis of hippocampal theta-related cells in the pontine region of the urethane-anestheized rat. Hippocampus. 9:288–302.

    Article  PubMed  CAS  Google Scholar 

  • Kirk, I. J., and McNaughton, N. 1991. Supramammillary cell firing and hippocampal rhythmical slow activity. Neuroreport. 2:723–725.

    Article  PubMed  CAS  Google Scholar 

  • Kirk, I. J., and McNaughton, N. 1993. Mapping the differential effects of procaine on the frequency and amplitude of reticularly elicited rhythmical slow activity. Hippocampus. 3:517–526.

    Article  PubMed  CAS  Google Scholar 

  • Kirk, I. J., Oddie, S.D., Konopacki, X, and Bland, B.H. 1996. Evidence for differential control of posterior hypothalamic, supramammillary, and medial mammillary theta-related cellular discharge by ascending and descending pathways. J. Neurosci. 16:5547–5554.

    PubMed  CAS  Google Scholar 

  • Kocsis, B., and Vertes, R.P. 1994. Characterization of neurons in the supramammillary nucleus and mammillary body that discharge rhythmically with the hippocampal theta rhythm in the rat. J. Neurosci. 14:7040–7052.

    PubMed  CAS  Google Scholar 

  • Konopacki, J., Bland, B.H., Colom, L.V., and Oddie, S.D. 1992. In vivo. intracellular correlates of hippocampal formation theta-on and theta-off cells. Brain Res. 586:247–255.

    Article  PubMed  CAS  Google Scholar 

  • Kramis, R.C., Vanderwolf, C.H., and Bland, B.H. 1975. Two types of hippocampal rhythmical slow activity in both the rabbit and the rat: relations to behavior and effects of atropine, diethyl ether, urethane, and pentobarbital. Exp. Neurol. 49:58–85.

    Article  PubMed  CAS  Google Scholar 

  • Lanthorn, T., Storm, J., and Andersen, P. 1984. Current-to-frequency transduction in CA1 pyramidal cells: slow potentials dominate in the primary range firing. Exp. Brain Res. 53:431–443.

    Article  PubMed  CAS  Google Scholar 

  • Lawson, V.H., and Bland, B.H. 1993. The role of the septo-hippocampal pathway in the regulation of hippocampal field activity and behavior: analysis by the intraseptal microinfusion of carbachol, atropine and procaine. Exp. Neurol. 120:132–144.

    Article  PubMed  CAS  Google Scholar 

  • Leung, L-W-S. 1992. Fast (beta) rhythms in the hippocampus: a review. Hippocampus. 2:93–98.

    Article  PubMed  CAS  Google Scholar 

  • Leung, L-W-S., Lopes Da Silva, F.H., and Wadman, W. J. 1982. Spectral characteristics of the hippocampal EEG in the freely moving rat. Electroencephalogr. Clin. Neurophysiol. 54:203–219.

    Article  PubMed  CAS  Google Scholar 

  • Leung, L-W-S., and Yim C-Y.C. 1986. Intracellular records of theta rhythm in hippocampal CA1 cells of the rat. Brain Res. 367:323–327.

    Article  PubMed  CAS  Google Scholar 

  • Leung, L-W-S., and Yim C-Y.C. 1988. Membrane potential oscillations in hippocampal neurons in vitro induced by carbachol or depolarizing currents. Neurosci. Res. Comm. 2:159–167.

    Google Scholar 

  • Leung, L-W-S., and Yim C-Y.C. 1991. Intrinsic membrane potential oscillations in hippocampal neurons in vitro. Brain Res. 553:261–274.

    Article  PubMed  CAS  Google Scholar 

  • Macadar, S.W., Chalupa, L.M., and Lindsley, D.B. 1974. Differentiation of brainstem loci which affect hippocampal and neocortical activity. Exp. Neurol. 43: 499–514.

    Article  PubMed  CAS  Google Scholar 

  • Macadar, O., Roig, J.A., Monti, J.M., and Budelli, R. 1970. The functional relationship between septal and hippocampal unit activity and hippocampal theta rhythm. Physiol. Behav. 5:1443–1449.

    Article  PubMed  CAS  Google Scholar 

  • MacVicar, B.A. 1985. Depolarizing prepotentials are Na+ dependent in CA1 pyramidal neurons. Brain Res. 33:378–381.

    Article  Google Scholar 

  • MacVicar, B.A., and Tse, F.W.Y. 1989. Local neuronal circuitry underlying cholinergic ryhthmical slow activity in CA3 area of rat hippocampal slices. J. Physiol. 417:197–212.

    PubMed  CAS  Google Scholar 

  • Malpeli, J.G., and Schiller, P.H. 1979. A method of reversible inactivation of small regions of brain tissue. J. Neurosci. Methods. 1:143–151.

    Article  PubMed  CAS  Google Scholar 

  • Misgeld, U., and Frotscher, M. 1986. Postsynaptic-GABA-ergic inhibition of non-pyramidal neurons in the guinea pig hippocampus. Neuroscience. 19:185–193.

    Article  Google Scholar 

  • Mitchell, S. J., Rawlins, J.N.P., Steward, O., and Olton, D.S. 1982. Medial septal area lesions disrupt theta rhythm and cholinergic staining in medial entorhinal cortex and produce impaired radial arm maze behavior in rats. J. Neurosci. 2:292–302.

    PubMed  CAS  Google Scholar 

  • Mizumori, S. J.Y., Barnes, C.A., and McNaughton, B.L. 1989. Reversible inactivation of the medial septum. Selective effects on the spontaneous unit activity of different hippocampal cell types. Brain Res. 500:99–106.

    Article  PubMed  CAS  Google Scholar 

  • Monmaur, P., and Breton, P. 1991. Elicitation of hippocampal theta by intraseptal carbachol injection in freely moving rats. Brain Res. 544:150–155.

    Article  PubMed  CAS  Google Scholar 

  • Munoz, M.D., Nunez, A., and Garcia-Ausst, E. 1990. In vivo. intracellular analysis of rat dentate granule cells. Brain Res. 509:91–98.

    Article  PubMed  CAS  Google Scholar 

  • Natsume, K., Hallworth, N.E., Szagatti, T.L., and Bland, B.H. 1998. Theta related cells in the superior colliculus of the urethane-anesthetized rat. Neuroscience Res. 22:462, Suppl. S222.

    Article  Google Scholar 

  • Nunez, A., de Andres, I., and Garcia-Austt, E. 1991. Relationship of nucleus reticu-laris pontis caudalis neuronal discharge with sensory and carbachol evoked hip-pocampal theta rhythm. Exp. Brain. Res. 87:303–308.

    Article  PubMed  CAS  Google Scholar 

  • Nunez, A., Garcia-Austt, E., and Buno, Jr., W. 1987. Intracellular theta rhythm generation in identified hippocampal pyramids. Brain Res. 416:289–300.

    Article  PubMed  CAS  Google Scholar 

  • Nunez, A., Garcia-Ausst, E., and Buno, Jr., W. 1990a. Synaptic contributions to theta rhythm genesis in rat CA1-CA3 hippocampal pyramidal neurons in vivo. Brain Res. 533:176–179.

    Article  PubMed  CAS  Google Scholar 

  • Nunez, A., Garcia-Ausst, E., and Buno, Jr., W. 1990b. Slow intrinsic spikes recorded in vivo in rat CA1-CA3 hippocampal pyramidal neurons. Exp. Nenrol. 109: 294–299.

    Article  CAS  Google Scholar 

  • Nunez, A., Garcia-Ausst, E., and Buno, Jr., W. 1990c. In vivo electrophysiological analysis of Lucifer yellow-coupled hippocampal pyramids. Exp. Neurol. 108:76–82.

    Article  PubMed  CAS  Google Scholar 

  • Oddie, S.D., and Bland, B.H. 1998. Hippocampal formation theta activity and movement selection. Neurosci. Biobehav. Rev. 22:221–231.

    Article  PubMed  CAS  Google Scholar 

  • Oddie, S.D., Bland, B.H., Colom, L.V., and Vertes, R.P. 1994. The midline posterior hypothalamic region comprises a critical part of the ascending brainstem hippocampal synchronizing pathway. Hippocampus. 4:454–473.

    Article  PubMed  CAS  Google Scholar 

  • Oddie, S.D., Kirk, I. J., Whishaw, I.Q., and Bland, B.H. 1997. Hippocampal formation is involved in movement selection: evidence from medial septal cholinergic modulation and concurrent slow-wave (theta thythm) recording. Behav. Brain Res. 88:169–180.

    Article  PubMed  CAS  Google Scholar 

  • Oddie, S.D., Kirk, I. J., Whishaw, I.Q., and Bland, B.H. Fimbria-fornix transection: effects on locomotor behavior and hippocampal field activity in rats. Unpublished data.

    Google Scholar 

  • Oddie, S.D., Stefanek, W., Kirk, I. J., and Bland, B.H. 1996. Intraseptal procaine abolishes hypothalamic stimulation-induced wheel-running and hippocampal theta field activity in rats. J. Neurosci. 16:1948–1956.

    PubMed  CAS  Google Scholar 

  • Perkel, D.H., Gerstein, G.L., and Moore, G.P. 1967. Neuronal spike trains and stochastic processes. II. Simultaneous spike trains. Biophys. J. 7:419–440.

    Article  PubMed  CAS  Google Scholar 

  • Scarlett, D., and Bland, B.H. 1997. Evidence that the medial septum controls the reset of hippocampal theta frequency. Soc. Neurosci. Abstr. 23:486.

    Google Scholar 

  • Serafin, M., Williams, S., Khateb, A., Fort, P., and Muhlethaler, M. 1996. Rhythmic firing of medial septum non-cholinergic neurons. Neuroscience. 75:671–675.

    Article  PubMed  CAS  Google Scholar 

  • Siegel, J.M., McGinty, D. J., and Breedlove, S.M. 1977. Sleep and waking activity of pontine gigantocellular field neurons. Exp. Neurol. 56:553–573.

    Article  PubMed  CAS  Google Scholar 

  • Smythe, J.W., Christie, B.R., Colom, L.V., Lawson, V.H., and Bland, B.H. 1991. Hippocampal theta field activity and theta-onJtheta-off cell discharges are controlled by an ascending hypothalamo-septal pathway. J. Neurosci. 11:2241–2248.

    PubMed  CAS  Google Scholar 

  • Smythe, J.W., Colom, L.V., and Bland, B.H. 1992. The extrinsic modulation of hippocampal theta depends on the coactivation of cholinergic and GABAergic medial septal inputs. Neurosci. Biobehav. Rev. 16:289–308.

    Article  PubMed  CAS  Google Scholar 

  • Stumpf. C. 1965. The fast component in the electrical activity of rabbit’s hippocampus. Electroencephalogr. Clin. Neurophysiol. 18:477–486.

    Article  PubMed  CAS  Google Scholar 

  • Swanson, L.W. 1992. Brain Maps: Structure of the Rat Brain. Amsterdam: Elsevier.

    Google Scholar 

  • Tse, F.W.Y., and MacVicar, B.A. 1989. Phosphoinositides and GTP binding proteins involved in muscarinic generation of hippocampal rhythmic slow activity. Neurosci. Lett. 102:58–63.

    Article  PubMed  CAS  Google Scholar 

  • Vanderwolf, C.H., and Baker, G.B. 1986. Evidence that serotonin mediates non-cholinergic neocortical low voltage fast activity, non-cholinergic hippocampal rhythmical slow activity and contributes to intelligent behavior. Brain Res. 374:342–356.

    Article  PubMed  CAS  Google Scholar 

  • Vanderwolf, C.H., Kramis, R., Gillespie, L.A., and Bland, B.H. 1975. Hippocampal rhythmical slow activity and neocortical low voltage fast activity: Relations to behavior. In The Hippocampus: A Comprehensive Treatise., eds. K.H. Pribram and R.L. Isaacson, pp. 101–128. New York: Plenum Publishing Corp.

    Google Scholar 

  • Vertes, R.P. 1977. Selective firing of rat pontine gigantocellular neurons during movement and REM sleep. Brain Res. 128:146–152.

    Article  PubMed  CAS  Google Scholar 

  • Vertes, R.P. 1979. Brain stem gigantocellular neurons: patterns of activity during behavior and sleep in the freely moving rat. J. Neurophysiol. 42:214–228.

    PubMed  CAS  Google Scholar 

  • Vertes, R.P. 1981. An analysis of ascending brain stem systems involved in hippocampal synchronization and desynchronization. J. Neurophysiol. 46:1140–1159.

    PubMed  CAS  Google Scholar 

  • Vertes, R.P. 1992. PHA-L analysis of projections from the supramammillary nucleus in the rat. J. Comp. Neurol. 326:595–62.

    Article  PubMed  CAS  Google Scholar 

  • Vertes, R.P, Colom, L.V., Fortin, W. J., and Bland, B.H. 1993. Brainstem sites for the carbachol elicitation of the hippocampal theta rhythm in the rat. Exp. Brain Res. 96:419–429.

    Article  PubMed  CAS  Google Scholar 

  • Vertes, R.P, Crane, A.M., Colom, L.V., and Bland, B.H. 1995. Ascending projections of the posterior nucleus of the hypothalamus: a PHA-L analysis in the rat. J. Comp. Neurol. 359:90–116.

    Article  PubMed  CAS  Google Scholar 

  • Vertes, R.P, and Kocsis, B. 1997. Brainstem-diencephalo-septohippocampal systems controlling the theta rhythm of the hippocampus. Neuroscience. 81:893–926.

    Article  PubMed  CAS  Google Scholar 

  • Whishaw, I.Q. 1988. Food wrenching and dodging: use of action patterns for the analysis of sensorimotor and social behavior in the rat. J. Neurosci. Meth. 24:169–178.

    Article  CAS  Google Scholar 

  • Witter, M.P, Groenewegen, H. J., Lopes da Silva, E.H., and Lohman, A.H.M. 1989. Functional organization of the extrinsic and intrinsic circuitry of the parahip-pocampal region. Prog. Neurobiol. 33:161–253.

    Article  PubMed  CAS  Google Scholar 

  • Wong, R.K.S., and Prince, D.A. 1978. Participation of calcium spikes during intrinsic burst firing in hippocampal neurons. Brain Res. 159:385–390.

    Article  PubMed  CAS  Google Scholar 

  • Yim, C-Y.C., and Leung, L-W-S. 1988. Effects of carbachol perfusion on evoked responses and excitability of pyramidal cells in the hippocampal slice. Neurosci. Res. Comm. 2:47–52.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bland, B.H. (2000). The Medial Septum: Node of the Ascending Brainstem Hippocampal Synchronizing Pathways. In: Numan, R. (eds) The Behavioral Neuroscience of the Septal Region. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1302-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1302-4_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7086-7

  • Online ISBN: 978-1-4612-1302-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics